Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 664
Filtrar
1.
Nutrients ; 16(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892698

RESUMO

One-carbon metabolism (OCM) is a complex and interconnected network that undergoes drastic changes during pregnancy. In this study, we investigated the longitudinal distribution of OCM-related metabolites in maternal and cord blood and explored their relationships. Additionally, we conducted cross-sectional analyses to examine the interrelationships among these metabolites. This study included 146 healthy pregnant women who participated in the Chiba Study of Mother and Child Health. Maternal blood samples were collected during early pregnancy, late pregnancy, and delivery, along with cord blood samples. We analyzed 18 OCM-related metabolites in serum using stable isotope dilution liquid chromatography/tandem mass spectrometry. We found that serum S-adenosylmethionine (SAM) concentrations in maternal blood remained stable throughout pregnancy. Conversely, S-adenosylhomocysteine (SAH) concentrations increased, and the total homocysteine/total cysteine ratio significantly increased with advancing gestational age. The betaine/dimethylglycine ratio was negatively correlated with total homocysteine in maternal blood for all sampling periods, and this correlation strengthened with advances in gestational age. Most OCM-related metabolites measured in this study showed significant positive correlations between maternal blood at delivery and cord blood. These findings suggest that maternal OCM status may impact fetal development and indicate the need for comprehensive and longitudinal evaluations of OCM during pregnancy.


Assuntos
Sangue Fetal , Homocisteína , S-Adenosilmetionina , Humanos , Feminino , Sangue Fetal/metabolismo , Sangue Fetal/química , Gravidez , Adulto , Estudos Longitudinais , Homocisteína/sangue , Japão , S-Adenosilmetionina/sangue , S-Adenosil-Homocisteína/sangue , Estudos Transversais , Idade Gestacional , Carbono/metabolismo , Betaína/sangue , Cisteína/sangue , Espectrometria de Massas em Tandem , Glicina/sangue , População do Leste Asiático , Sarcosina/análogos & derivados
2.
Appl Environ Microbiol ; 90(7): e0031024, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38934615

RESUMO

Integration of metabolites into the overall metabolic network of a cell requires careful coordination dependent upon the ultimate usage of the metabolite. Different stoichiometric needs, and thus pathway fluxes, must exist for compounds destined for diverse uses, such as carbon sources, nitrogen sources, or stress-protective agents. Herein, we expand upon our previous work that highlighted the nature of glycine betaine (GB) metabolism in Methylobacteria to examine the utilization of GB-derivative compounds dimethylglycine (DMG) and sarcosine into Methylorubrum extorquens in different metabolic capacities, including as sole nitrogen and/or carbon sources. We isolated gain-of-function mutations that allowed M. extorquens PA1 to utilize dimethylglycine as a carbon source and dimethylglycine and sarcosine as nitrogen source. Characterization of mutants demonstrated selection for variants of the AraC-like regulator Mext_3735 that confer constitutive expression of the GB metabolic gene cluster, allowing direct utilization of the downstream GB derivatives. Finally, among the distinct isolates examined, we found that catabolism of the osmoprotectant used for selection (GB or dimethylglycine) enhanced osmotic stress resistance provided in the presence of that particular osmolyte. Thus, access to the carbon and nitrogen and osmoprotective effects of GB and DMG are made readily accessible through adaptive mutations. In M. extorquens PA1, the limitations to exploiting this group of compounds appear to exist predominantly at the levels of gene regulation and functional activity, rather than being constrained by transport or toxicity.IMPORTANCEOsmotic stress is a common challenge for bacteria colonizing the phyllosphere, where glycine betaine (GB) can be found as a prevalent osmoprotectant. Though Methylorubrum extorquens PA1 cannot use GB or its demethylation products, dimethylglycine (DMG) and sarcosine, as a sole carbon source, utilization is highly selectable via single nucleotide changes for both GB and DMG growth. The innate inability to use these compounds is due to limited flux through steps in the pathway and regulatory constraints. Herein, the characterization of the transcriptional regulator, Mext_3735 (GbdR), expands our understanding of the various roles in which GB derivatives can be used in M. extorquens PA1. Interestingly, increased catabolism of GB and derivatives does not interfere with, but rather improves, the ability of cells to thrive under increased salt stress conditions, suggesting that metabolic flux improves stress tolerance rather than providing a distinct tension between uses.


Assuntos
Betaína , Pressão Osmótica , Sarcosina , Betaína/metabolismo , Sarcosina/análogos & derivados , Sarcosina/metabolismo , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo
3.
Anal Chim Acta ; 1306: 342586, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692787

RESUMO

BACKGROUND: Early prostatic cancer (PCa) diagnosis significantly improves the chances of successful treatment and enhances patient survival rates. Traditional enzyme cascade-based early cancer detection methods offer efficiency and signal amplification but are limited by cost, complexity, and enzyme dependency, affecting stability and practicality. Meanwhile, sarcosine (Sar) is commonly considered a biomarker for PCa development. It is essential to develop a Sar detection method based on cascade reactions, which should be efficient, low skill requirement, and suitable for on-site testing. RESULTS: To address this, our study introduces the synthesis of organic-inorganic self-assembled nanoflowers to optimize existing detection methods. The Sar oxidase (SOX)-inorganic hybrid nanoflowers (Cu3(PO4)2:Ce@SOX) possess inherent fluorescent properties and excellent peroxidase activity, coupled with efficient enzyme loading. Based on this, we have developed a dual-mode multi-enzyme cascade nanoplatform combining fluorescence and colorimetric methods for the detection of Sar. The encapsulation yield of Cu3(PO4)2:Ce@SOX reaches 84.5 %, exhibiting a remarkable enhancement in catalytic activity by 1.26-1.29 fold compared to free SOX. The present study employing a dual-signal mechanism encompasses 'turn-off' fluorescence signals ranging from 0.5 µM to 60 µM, with a detection limit of 0.226 µM, and 'turn-on' colorimetric signals ranging from 0.18 µM to 60 µM, with a detection limit of 0.120 µM. SIGNIFICANCE: Furthermore, our study developed an intelligent smartphone sensor system utilizing cotton swabs for real-time analysis of Sar without additional instruments. The nano-platform exhibits exceptional repeatability and stability, rendering it well-suited for detecting Sar in authentic human urine samples. This innovation allows for immediate analysis, offering valuable insights for portable and efficient biosensors applicable to Sar and other analytes.


Assuntos
Colorimetria , Oxirredução , Sarcosina , Smartphone , Sarcosina/urina , Sarcosina/análise , Sarcosina/química , Humanos , Nanoestruturas/química , Limite de Detecção , Espectrometria de Fluorescência , Neoplasias da Próstata/diagnóstico , Fluorescência , Técnicas Biossensoriais , Sarcosina Oxidase/química
4.
ACS Appl Mater Interfaces ; 16(15): 19472-19479, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572784

RESUMO

Nanomedicine-enhanced immunogenic cell death (ICD) has attracted considerable attention for its great potential in cancer treatment. Even though polyethylene glycol (PEG) is widely recognized as the gold standard for surface modification of nanomedicines, some shortcomings associated with this PEGylation, such as hindered cell endocytosis and accelerated blood clearance phenomenon, have been revealed in recent years. Notably, polysarcosine (PSar) as a highly biocompatible polymer can be finely synthesized by mild ring-opening polymerization (ROP) of sarcosine N-carboxyanhydrides (Sar-NCAs) and exhibit great potential as an alternative to PEG. In this article, PSar-b-polycamptothecin block copolymers are synthesized by sequential ROP of camptothecin-based NCAs (CPT-NCAs) and Sar-NCAs. Then, the detailed and systematic comparison between PEGylation and PSarylation against the 4T1 tumor model indicates that PSar decoration can facilitate the cell endocytosis, greatly enhancing the ICD effects and antitumor efficacy. Therefore, it is believed that this well-developed PSarylation technique will achieve effective and precise cancer treatment in the near future.


Assuntos
Neoplasias , Peptídeos , Polietilenoglicóis , Sarcosina/análogos & derivados , Humanos , Camptotecina , Morte Celular Imunogênica , Polímeros
5.
Chemistry ; 30(31): e202304375, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563634

RESUMO

The clinical translation of polysarcosine (pSar) as polyethylene glycol (PEG) replacement in the development of novel nanomedicines creates a broad demand of polymeric material in high-quality making high-purity sarcosine N-carboxyanhydride (Sar-NCA) as monomer for its production inevitable. Within this report, we present the use of triethyloxonium tetrafluoroborate in Sar-NCA synthesis with focus on amino acid and chloride impurities to avoid the sublimation of Sar-NCAs. With a view towards upscaling into kilogram or ton scale, a new methodology of monomer purification is introduced by utilizing the Meerwein's Salt triethyloxonium tetrafluoroborate to remove chloride impurities by covalent binding and converting chloride ions into volatile products within a single step. The novel straightforward technique enables access to monomers with significantly reduced chloride content (<100 ppm) compared to Sar-NCA derived by synthesis or sublimation. The derived monomers enable the controlled-living polymerization in DMF and provide access to pSar polymers with Poisson-like molecular weight distribution within a high range of chain lengths (Xn 25-200). In conclusion, the reported method can be easily applied to Sar-NCA synthesis or purification of commercially available pSar-NCAs and eases access to well-defined hetero-telechelic pSar polymers.


Assuntos
Cloretos , Polimerização , Sarcosina , Sarcosina/química , Sarcosina/análogos & derivados , Cloretos/química , Polietilenoglicóis/química , Polímeros/química , Boratos/química , Anidridos/química , Peptídeos
6.
Br J Nutr ; 131(11): 1915-1923, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38443197

RESUMO

It is inconclusive whether trimethylamine N-oxide (TMAO) and choline and related metabolites, namely trimethylamine (TMA), l-carnitine, betaine and dimethylglycine (DMG), are associated with non-alcoholic fatty liver disease (NAFLD). Our objective was to investigate these potential associations. Additionally, we sought to determine the mediating role of TMAO. In this 1:1 age- and sex-matched case-control study, a total of 150 pairs comprising NAFLD cases and healthy controls were identified. According to the fully adjusted model, after the highest tertile was compared with the lowest tertile, the plasma TMAO concentration (OR = 2·02 (95 % CI 1·04, 3·92); P trend = 0·003), l-carnitine concentration (OR = 1·79 (1·01, 3·17); P trend = 0·020) and DMG concentration (OR = 1·81 (1·00, 3·28); P trend = 0·014) were significantly positively associated with NAFLD incidence. However, a significantly negative association was found for plasma betaine (OR = 0. 50 (0·28, 0·88); P trend = 0·001). The restricted cubic splines model consistently indicated positive dose-response relationships between exposure to TMAO, l-carnitine, and DMG and NAFLD risk, with a negative association being observed for betaine. The corresponding AUC increased significantly from 0·685 (0·626, 0·745) in the traditional risk factor model to 0·769 (0·716, 0·822) when TMAO and its precursors were included (l-carnitine, betaine and choline) (P = 0·032). Mediation analyses revealed that 14·7 and 18·6 % of the excess NAFLD risk associated with l-carnitine and DMG, respectively, was mediated by TMAO (the P values for the mediating effects were 0·021 and 0·036, respectively). These results suggest that a higher concentration of TMAO is associated with increased NAFLD risk among Chinese adults and provide evidence of the possible mediating role of TMAO.


Assuntos
Betaína , Carnitina , Colina , Metilaminas , Hepatopatia Gordurosa não Alcoólica , Humanos , Metilaminas/sangue , Colina/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Feminino , Masculino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Betaína/sangue , Carnitina/sangue , Carnitina/análogos & derivados , Adulto , Fatores de Risco , Sarcosina/análogos & derivados , Sarcosina/sangue , China/epidemiologia , Incidência
7.
J Bacteriol ; 206(4): e0008124, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38501746

RESUMO

Paracoccus denitrificans is a facultative methylotroph that can grow on methanol and methylamine as sole sources of carbon and energy. Both are oxidized to formaldehyde and then to formate, so growth on C1 substrates induces the expression of genes encoding enzymes required for the oxidation of formaldehyde and formate. This induction involves a histidine kinase response regulator pair (FlhSR) that is likely triggered by formaldehyde. Catabolism of some complex organic substrates (e.g., choline and L-proline betaine) also generates formaldehyde. Thus, flhS and flhR mutants that fail to induce expression of the formaldehyde catabolic enzymes cannot grow on methanol, methylamine, and choline. Choline is oxidized to glycine via glycine betaine, dimethylglycine, and sarcosine. By exploring flhSR growth phenotypes and the activities of a promoter and enzyme known to be upregulated by formaldehyde, we identify the oxidative demethylations of glycine betaine, dimethylglycine, and sarcosine as sources of formaldehyde. Growth on glycine betaine, dimethylglycine, and sarcosine is accompanied by the production of up to three, two, and one equivalents of formaldehyde, respectively. Genetic evidence implicates two orthologous monooxygenases in the oxidation of glycine betaine. Interestingly, one of these appears to be a bifunctional enzyme that also oxidizes L-proline betaine (stachydrine). We present preliminary evidence to suggest that growth on L-proline betaine induces expression of a formaldehyde dehydrogenase distinct from the enzyme induced during growth on other formaldehyde-generating substrates.IMPORTANCEThe bacterial degradation of one-carbon compounds (methanol and methylamine) and some complex multi-carbon compounds (e.g., choline) generates formaldehyde. Formaldehyde is toxic and must be removed, which can be done by oxidation to formate and then to carbon dioxide. These oxidations provide a source of energy; in some species, the CO2 thus generated can be assimilated into biomass. Using the Gram-negative bacterium Paracoccus denitrificans as the experimental model, we infer that oxidation of choline to glycine generates up to three equivalents of formaldehyde, and we identify the three steps in the catabolic pathway that are responsible. Our work sheds further light on metabolic pathways that are likely important in a variety of environmental contexts.


Assuntos
Betaína , Paracoccus denitrificans , Betaína/metabolismo , Sarcosina/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Metanol , Colina/metabolismo , Glicina , Formaldeído , Formiatos , Metilaminas
8.
Front Immunol ; 15: 1341843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304426

RESUMO

Introduction: A group of SARS-CoV-2 infected individuals present lingering symptoms, defined as long COVID (LC), that may last months or years post the onset of acute disease. A portion of LC patients have symptoms similar to myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), which results in a substantial reduction in their quality of life. A better understanding of the pathophysiology of LC, in particular, ME/CFS is urgently needed. Methods: We identified and studied metabolites and soluble biomarkers in plasma from LC individuals mainly exhibiting ME/CFS compared to age-sex-matched recovered individuals (R) without LC, acute COVID-19 patients (A), and to SARS-CoV-2 unexposed healthy individuals (HC). Results: Through these analyses, we identified alterations in several metabolomic pathways in LC vs other groups. Plasma metabolomics analysis showed that LC differed from the R and HC groups. Of note, the R group also exhibited a different metabolomic profile than HC. Moreover, we observed a significant elevation in the plasma pro-inflammatory biomarkers (e.g. IL-1α, IL-6, TNF-α, Flt-1, and sCD14) but the reduction in ATP in LC patients. Our results demonstrate that LC patients exhibit persistent metabolomic abnormalities 12 months after the acute COVID-19 disease. Of note, such metabolomic alterations can be observed in the R group 12 months after the acute disease. Hence, the metabolomic recovery period for infected individuals with SARS-CoV-2 might be long-lasting. In particular, we found a significant reduction in sarcosine and serine concentrations in LC patients, which was inversely correlated with depression, anxiety, and cognitive dysfunction scores. Conclusion: Our study findings provide a comprehensive metabolomic knowledge base and other soluble biomarkers for a better understanding of the pathophysiology of LC and suggests sarcosine and serine supplementations might have potential therapeutic implications in LC patients. Finally, our study reveals that LC disproportionally affects females more than males, as evidenced by nearly 70% of our LC patients being female.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Masculino , Humanos , Feminino , Síndrome de COVID-19 Pós-Aguda , Doença Aguda , Qualidade de Vida , Sarcosina , SARS-CoV-2 , Biomarcadores , Serina
9.
Int J Pharm ; 653: 123871, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38301810

RESUMO

Biotherapeutic PEGylation to prolong action of medications has gained popularity over the last decades. Various hydrophilic natural polymers have been developed to tackle the drawbacks of PEGylation, such as its accelerated blood clearance and non-biodegradability. Polypeptoides, such as polysarcosine (pSar), have been explored as hydrophilic substitutes for PEG. pSar has PEG-like physicochemical characteristics such as water solubility and no reported cytotoxicity and immunogenicity. This review discusses pSar derivatives, synthesis, characterization approaches, biomedical applications, in addition to the challenges and future perspectives of pSar based biomaterials as an alternative to PEG.


Assuntos
Peptídeos , Sarcosina , Sarcosina/análogos & derivados , Peptídeos/química , Sarcosina/química , Polímeros , Materiais Biocompatíveis , Polietilenoglicóis/química
10.
J Clin Endocrinol Metab ; 109(7): 1793-1802, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38214112

RESUMO

CONTEXT: Current metabolomics studies in diabetes have focused on the fasting state, while only a few have addressed the satiated state. OBJECTIVE: We combined the oral glucose tolerance test (OGTT) and metabolomics to examine metabolite-level changes in populations with different glucose tolerance statuses and to evaluate the potential risk of these changes for diabetes. METHODS: We grouped participants into those with normal glucose tolerance (NGT), impaired glucose regulation (IGR), and newly diagnosed type 2 diabetes (NDM). During the OGTT, serum was collected at 0, 30, 60, 120, and 180 minutes. We evaluated the changes in metabolite levels during the OGTT and compared metabolic profiles among the 3 groups. The relationship between metabolite levels during the OGTT and risk of diabetes and prediabetes was analyzed using a generalized estimating equation (GEE). The regression results were adjusted for sex, body mass index, fasting insulin levels, heart rate, smoking status, and blood pressure. RESULTS: Glucose intake altered metabolic profile and induced an increase in glycolytic intermediates and a decrease in amino acids, glycerol, ketone bodies, and triglycerides. Isoleucine levels differed between the NGT and NDM groups and between the NGT and IGR groups. Changes in sarcosine levels during the OGTT in the diabetes groups were opposite to those in glycine levels. GEE analysis revealed that during OGTT, isoleucine, sarcosine, and acetic acid levels were associated with NDM risks, and isoleucine and acetate levels with IGR risks. CONCLUSION: Metabolic profiles differ after glucose induction in individuals with different glucose tolerance statuses. Changes in metabolite levels during OGTT are potential risk factors for diabetes development.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Teste de Tolerância a Glucose , Isoleucina , Sarcosina , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Pessoa de Meia-Idade , Isoleucina/sangue , Fatores de Risco , Sarcosina/análogos & derivados , Sarcosina/sangue , Glicemia/análise , Glicemia/metabolismo , Adulto , Intolerância à Glucose/sangue , Intolerância à Glucose/epidemiologia , Intolerância à Glucose/metabolismo , Estado Pré-Diabético/sangue , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/metabolismo , Metabolômica , Idoso , Biomarcadores/sangue
11.
Nat Protoc ; 19(4): 1235-1251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291250

RESUMO

Tau protein aggregation is associated with posttranslational modifications (PTMs) in 75% of all dementia cases. The distribution of tau pathology and the presence of specific tau phosphorylation sites of interest are typically visualized and measured using antibodies. However, previous knowledge of the target epitopes is required. Additionally, antibodies can be used in a semi-quantitative manner but cannot be used to determine the absolute amount of tau or the extent of the modifications at specific sites or domains. Here we present a discovery assay that characterizes the global qualitative and quantitative tau modification landscape of a sample without a priori knowledge. Our workflow uses sarkosyl fractionation to extract the pathological tau species from sample-limited brain specimens, followed by mass spectrometry (MS) to characterize and quantify tau PTMs. The two-step MS-based proteomics approach includes an exploratory tau PTM analysis and a targeted full-length expressed stable isotope-labeled tau assay, which monitors specific unmodified tau peptides using a heavy isotope-labeled internal standard as a reference. This enables the absolute quantification of the respective tau peptides and the total tau amount in the sample, thus providing the modification extent of tau PTMs. This approach provides precise, comprehensive, qualitative and quantitative tau PTM profiling of the sample. It also enables the detailed molecular comparison of tau across multiple experiments, including a comparison between neurodegenerative diseases, stages of the disease, human patient heterogeneity and characterization of animal models. The approach is useful for studying the molecular features of pathological tau in neurodegeneration. The procedure requires 7-8 d and is suitable for users with expertise in targeted and untargeted MS-based protein analysis.


Assuntos
Processamento de Proteína Pós-Traducional , Sarcosina/análogos & derivados , Proteínas tau , Animais , Humanos , Espectrometria de Massas/métodos , Proteínas tau/química , Peptídeos , Isótopos
12.
Biosens Bioelectron ; 249: 116035, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244294

RESUMO

As the well-known test-indicator for early prostate cancer (PCa), sarcosine (SA) is closely related to the differential pathological process, which makes its accurate determination increasingly significant. Herein, we for the first time expanded the peroxidase (POD)-like property of facile-synthesized Zn-TCPP(Fe) MOF to fluorescent substrates and exploited it to ratiometric fluorescent (RF) sensing. By harnessing the effective catalytic oxidation of MOF nanozyme toward two fluorescent substrates (Scopoletin, SC; Amplex Red, AR) with contrary changes, and target-responsive (SA + SOx)/MOF/(SC + AR) tandem catalytic reaction, we constructed the first MOF nanozyme-based RF sensor for the quantitative determination of SA. Superior to previous works, the operation of this RF sensor is under the guidance of AND-(AND^NAND) contrary logic circuit. The dual-channel binary output changes (from 1/0 to 0/1) not only enable the intelligent logical recognition of SA, bringing strengthened reliability and accuracy, but also manifest the proof-of-concept discrimination of PCa individuals and healthy ones. Through recording the fluorescence alterations of SC (F465) and AR (F585), two segments of linear relationships between ratiometric values (F585/F465) and varied contents of SA are realized successfully. The LOD for SA could reach to as low as 39.98 nM, which outperforms all nanozyme-originated SA sensors reported till now. Moreover, this sensor also demonstrates high selectivity and satisfactory performance in human serum samples. Furthermore, the portable sensing of SA is realized under the assistance of smartphone-based RGB analysis, demonstrating the potential of point-of-care diagnostics of PCa in the future.


Assuntos
Técnicas Biossensoriais , Sarcosina , Masculino , Humanos , Smartphone , Reprodutibilidade dos Testes , Corantes Fluorescentes/química , Lógica , Catálise
13.
Anal Chim Acta ; 1291: 342235, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38280784

RESUMO

In this study, an electrochemical aptasensor was developed for the specific detection of sarcosine using a covalent organic framework (COF). The imine-based two-dimensional COF was synthesized through a solvothermal process using terephthaldehyde and melamine. This resulted in the formation of a structure that is highly porous and has a unique surface area of 908 m2/g. The produced biosensor demonstrated a significant linear relationship between charge transfer resistance (Rct) and various concentrations of sarcosine in blood serum samples. The aptasensor had two linear ranges, spanning from 0.5 fM to 700 fM and 10 pM to 0.12 nM, respectively, with a detection limit of 0.15 fM. The incorporation of high surface area COFs in the aptasensor design offers a promising combination of sensitivity, stability, and specificity. This combination creates a valuable device for diagnosing and monitoring of prostate cancer and potentially other diseases.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Neoplasias da Próstata , Humanos , Masculino , Estruturas Metalorgânicas/química , Sarcosina , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Neoplasias da Próstata/diagnóstico , Limite de Detecção , Técnicas Eletroquímicas/métodos
14.
Analyst ; 149(3): 935-946, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38193145

RESUMO

It is critical to develop a highly efficient and sensitive method for detecting the biomarker sarcosine (SA) of prostate cancer due to its importance for men's health. In our work, a fluorescence (FL) and colorimetric dual-mode multienzyme cascade nanoplatform for SA detection was designed and constructed. CuNCs/FeMn-ZIF-8/PCN nanocomposites with high FL properties and peroxidase-like activity were successfully prepared by encapsulating copper nanoclusters (CuNCs) into FeMn-ZIF-8 and then loaded onto P-doped graphitic carbon nitride (PCN). Furthermore, the nanocomposites served as carriers for the immobilization of sarcosine oxidase (SOX) to construct a high-efficiency dual-mode multienzyme cascade nanoplatform CuNCs/SOX@FeMn-ZIF-8/PCN for the detection of SA. The intermediate H2O2 generated in the cascade caused the FL quenching of nanocomposites and the discoloration of 3,3',5,5'-tetramethylbenzidin. The linear ranges for SA detection in the dual-mode system were 1-100 µM (FL) and 1-200 µM (colorimetric), with detection limits of 0.34 and 0.59 µM, respectively. This nanoplatform exhibited notable repeatability, specificity, and stability, making it suitable for detecting sarcosine in real human urine samples. Therefore, this dual-mode multienzyme cascade nanoplatform would have a potential applicative prospect for detecting SA and other biomarkers in real clinical samples.


Assuntos
Cobre , Peróxido de Hidrogênio , Masculino , Humanos , Sarcosina , Colorimetria , Limite de Detecção , Antioxidantes
15.
Talanta ; 271: 125628, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219320

RESUMO

This article presents the development of a photothermal biosensing integrated with microfluidic paper-based analytical device (PT-µPAD) as a quantitative biosensor method for monitoring sarcosine in human control urine, plasma, and serum samples. The device utilizes gold nanoparticles (AuNPs) as both a peroxidase-like nanozyme and a photothermal substrate to enable sarcosine detection. In our PT-µPAD, hydrogen peroxide (H2O2) is generated through the oxidation of sarcosine by a sarcosine oxidase (SOx) enzyme. Subsequently, the H2O2 flows through the paper microchannels to the detection zone, where it etches the pre-deposited AuNPs, inducing a temperature change upon exposure by a 532 nm laser. The temperature variation is then measured using a portable and inexpensive infrared thermometer. Under optimized conditions, we obtained a linear range between 10.0 and 40.0 nmol L-1 (R2 = 0.9954) and a detection limit (LOD) of 32.0 pmol L-1. These values fall within the clinical range for sarcosine monitoring in prostate cancer diagnostics in humans. Moreover, our approach exhibits high selectivity without interfering effects. Recovery studies in various human control samples demonstrated a range of 99.05-102.11 % with the highest RSD of 2.25 %. The PT-µPAD was further validated for sarcosine determination in human control urine and compared with a commercial ELISA assay, revealing no significant difference between these two methods at a 95 % confidence level. Overall, our proposed sarcosine biosensor is well-suited for prostate cancer monitoring, given its affordability, sensitivity, and user-friendliness, even for unskilled individuals. Moreover, this strategy has promising prospects for broader applications, potentially detecting various biomarkers as a point-of-care (POC) diagnostic tool.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias da Próstata , Masculino , Humanos , Sarcosina/análise , Ouro , Microfluídica , Peróxido de Hidrogênio , Neoplasias da Próstata/diagnóstico , Técnicas Biossensoriais/métodos
16.
J Agric Food Chem ; 72(5): 2708-2717, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38131116

RESUMO

Our previous study screened out dietary 0.1% dimethylglycine (DMG), which had beneficial effects on egg production and fat deposition in laying hens during the late laying period. In this paper, it was further found that dietary DMG alleviated fatty liver disease and enhanced lipid deposited into the yolk while promoting hepatic lipid transport. There are intestinal estrogen-metabolizing bacteria (EBM) having ß-glucuronase (GUS) activity that regulates the content of circulating estrogen (E2) in mammals. There were 39 related bacteria found in laying hens, and DMG increased E2 in blood, Staphylococcus abundance among EBM and GUS activity in cecum chyme. Interfered in situ, Staphylococcus with GUS activity was proved the target bacteria for DMG. Furthermore, E2 could modify hepatic lipid deposition through promoting lipid transport by the steatosis LMH model. These perspectives confirm that DMG, mediated by Staphylococcus, alleviates the restriction of hepatic lipid transport due to reduced levels of E2 in laying hens.


Assuntos
Galinhas , Hepatopatia Gordurosa não Alcoólica , Sarcosina/análogos & derivados , Animais , Feminino , Galinhas/fisiologia , Fígado/metabolismo , Dieta , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipídeos , Estrogênios/metabolismo , Ração Animal/análise , Mamíferos
17.
Nat Commun ; 14(1): 8490, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123535

RESUMO

One-carbon (C1) substrates, such as methanol or formate, are attractive feedstocks for circular bioeconomy. These substrates are typically converted into formaldehyde, serving as the entry point into metabolism. Here, we design an erythrulose monophosphate (EuMP) cycle for formaldehyde assimilation, leveraging a promiscuous dihydroxyacetone phosphate dependent aldolase as key enzyme. In silico modeling reveals that the cycle is highly energy-efficient, holding the potential for high bioproduct yields. Dissecting the EuMP into four modules, we use a stepwise strategy to demonstrate in vivo feasibility of the modules in E. coli sensor strains with sarcosine as formaldehyde source. From adaptive laboratory evolution for module integration, we identify key mutations enabling the accommodation of the EuMP reactions with endogenous metabolism. Overall, our study demonstrates the proof-of-concept for a highly efficient, new-to-nature formaldehyde assimilation pathway, opening a way for the development of a methylotrophic platform for a C1-fueled bioeconomy in the future.


Assuntos
Escherichia coli , Metanol , Escherichia coli/genética , Escherichia coli/metabolismo , Metanol/metabolismo , Formaldeído/metabolismo , Sarcosina , Frutose-Bifosfato Aldolase/metabolismo , Engenharia Metabólica
18.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003554

RESUMO

N-methyl-glycine (sarcosine) is known to promote metastatic potential in some cancers; however, its effects on bladder cancer are unclear. T24 cells derived from invasive cancer highly expressed GNMT, and S-adenosyl methionine (SAM) treatment increased sarcosine production, promoting proliferation, invasion, anti-apoptotic survival, sphere formation, and drug resistance. In contrast, RT4 cells derived from non-invasive cancers expressed low GNMT, and SAM treatment did not produce sarcosine and did not promote malignant phenotypes. In T24 cells, the expression of miR-873-5p, which suppresses GNMT expression, was suppressed, and the expression of ERVK13-1, which sponges miR-873-5p, was increased. The growth of subcutaneous tumors, lung metastasis, and intratumoral GNMT expression in SAM-treated nude mice was suppressed in T24 cells with ERVK13-1 knockdown but promoted in RT4 cells treated with miR-873-5p inhibitor. An increase in mouse urinary sarcosine levels was observed to correlate with tumor weight. Immunostaining of 86 human bladder cancer cases showed that GNMT expression was higher in cases with muscle invasion and metastasis. Additionally, urinary sarcosine concentrations increased in cases of muscle invasion. Notably, urinary sarcosine concentration may serve as a marker for muscle invasion in bladder cancer; however, further investigation is necessitated.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Sarcosina/farmacologia , Camundongos Nus , S-Adenosilmetionina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular
19.
J Transl Med ; 21(1): 824, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978537

RESUMO

BACKGROUND: The morbidity of cancer keeps growing worldwide, and among that, the colorectal cancer (CRC) has jumped to third. Existing early screening tests for CRC are limited. The aim of this study was to develop a diagnostic strategy for CRC by plasma metabolomics. METHODS: A targeted amino acids metabolomics method was developed to quantify 32 plasma amino acids in 130 CRC patients and 216 healthy volunteers, to identify potential biomarkers for CRC, and an independent sample cohort comprising 116 CRC subjects, 33 precancerosiss patients and 195 healthy volunteers was further used to validate the diagnostic model. Amino acids-related genes were retrieved from Gene Expression Omnibus and Molecular Signatures Database and analyzed. RESULTS: Three were chosen out of the 32 plasma amino acids examined. The tryptophan / sarcosine / glutamic acid -based receiver operating characteristic (ROC) curve showed the area under the curve (AUC) of 0.955 (specificity 83.3% and sensitivity 96.8%) for all participants, and the logistic regression model were used to distinguish between early stage (I and II) of CRC and precancerosiss patients, which showed superiority to the commonly used carcinoembryonic antigen. The GO and KEGG enrichment analysis proved many alterations in amino acids metabolic pathways in tumorigenesis. CONCLUSION: This altered plasma amino acid profile could effectively distinguish CRC patients from precancerosiss patients and healthy volunteers with high accuracy. Prognostic tests based on the tryptophan/sarcosine/glutamic acid biomarkers in the large population could assess the clinical significance of CRC early detection and intervention.


Assuntos
Aminoácidos , Neoplasias Colorretais , Humanos , Triptofano , Sarcosina , Biomarcadores Tumorais/genética , Metabolômica , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Glutamatos
20.
Anal Methods ; 15(37): 4938-4945, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721123

RESUMO

Sarcosine (SRN) detection in body fluids is related to the diagnosis of prostate cancer. However, the development of SRN biosensors has been limited due to the low concentration of SRN in body fluids. Here, a new electrochemical strategy for selective and accurate determination of SRN in urine samples is reported. CuCo2O4 nanosheets (CuCo2O4 NSs) have been synthesized and used as a new platform in the design of efficient electrochemical aptasensors for prostate cancer diagnosis. As far as we know, CuCo2O4 NSs have not been used so far in electrochemical aptasensor design. The presence of CuCo2O4 NSs on the electrode surface as a platform improves the conductivity and surface area. Therefore, it can be very effective in improving the diagnostic performance of the electrochemical aptasensor. The linear concentration range and limit of detection (LOD) for this strategy were calculated to be 1 pM- 8 µM and 350 fM, respectively.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias da Próstata , Humanos , Masculino , Sarcosina , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA