Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biosci Biotechnol Biochem ; 88(6): 630-636, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38553959

RESUMO

N-Methylisothiazolinone (MIT) is a thiol group modifier and antimicrobial agent. Arthrobacter sarcosine oxidase (SoxA), a diagnostic enzyme for assaying creatinine, loses its activity upon the addition of MIT, and its inactivation mechanism remains unclear. In this study, SoxA was chemically modified using MIT (mo-SoxA), and its structural and chemical properties were characterized. Spectral analysis data, oxygen consumption rates, and reactions were compared between intact SoxA and mo-SoxA. These demonstrate that the oxidative half-reaction toward oxygen is inhibited by MIT modification. The oxidase activity of mo-SoxA was approximately 2.1% of that of intact SoxA, and its dehydrogenase activity was approximately 4.2 times higher. The C-to-S mutants revealed that cooperative modification of 2 specific cysteine residues caused a drastic change in the enzyme reaction mode. Based on the modeled tertiary structures, the putative entrance for oxygen uptake is predicted to be blocked by the chemical modification of the 2 cysteine residues.


Assuntos
Arthrobacter , Oxigênio , Sarcosina Oxidase , Tiazóis , Arthrobacter/enzimologia , Oxigênio/metabolismo , Oxigênio/química , Sarcosina Oxidase/metabolismo , Sarcosina Oxidase/química , Sarcosina Oxidase/genética , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Oxirredução , Cisteína/química , Cisteína/metabolismo , Modelos Moleculares , Cinética
2.
Protein Sci ; 31(12): e4501, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334042

RESUMO

Sphingomonas paucimobilis' P450SPα (CYP152B1) is a good candidate as industrial biocatalyst. This enzyme is able to use hydrogen peroxide as unique cofactor to catalyze the fatty acids conversion to α-hydroxy fatty acids, thus avoiding the use of expensive electron-donor(s) and redox partner(s). Nevertheless, the toxicity of exogenous H2 O2 toward proteins and cells often results in the failure of the reaction scale-up when it is directly added as co-substrate. In order to bypass this problem, we designed a H2 O2 self-producing enzyme by fusing the P450SPα to the monomeric sarcosine oxidase (MSOX), as H2 O2 donor system, in a unique polypeptide chain, obtaining the P450SPα -polyG-MSOX fusion protein. The purified P450SPα -polyG-MSOX protein displayed high purity (A417 /A280  = 0.6) and H2 O2 -tolerance (kdecay  = 0.0021 ± 0.000055 min-1 ; ΔA417  = 0.018 ± 0.001) as well as good thermal stability (Tm : 59.3 ± 0.3°C and 63.2 ± 0.02°C for P450SPα and MSOX domains, respectively). The data show how the catalytic interplay between the two domains can be finely regulated by using 500 mM sarcosine as sacrificial substrate to generate H2 O2 . Indeed, the fusion protein resulted in a high conversion yield toward fat waste biomass-representative fatty acids, that is, lauric acid (TON = 6,800 compared to the isolated P450SPα TON = 2,307); myristic acid (TON = 6,750); and palmitic acid (TON = 1,962).


Assuntos
Ácidos Graxos , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Sarcosina Oxidase/química , Sarcosina Oxidase/metabolismo , Oxirredução , Peróxido de Hidrogênio
3.
J Am Chem Soc ; 143(37): 15145-15151, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494833

RESUMO

Rapid and specific identification of tumor metabolic markers is of great significance. Herein, a convenient, reliable and specific strategy was proposed to screen prostate cancer (PCa) individuals through indirectly quantifying sarcosine, an early indicator of PCa, in the clinical urine samples. The success roots in the rational design of a cascade response model, which takes integrated sarcosine oxidase (SOX) as a specific recognition unit and oxygen-sensitive molecule as a signal reporter. The newly developed hierarchical mesoporous Zr-based metal-organic frameworks with continuously tunable mesopore size ensure the synergetic work of the SOX and response unit spatially separated in their neighboring mesoporous and microporous domains, respectively. The large mesopore up to 12.1 nm not only greatly enhances the loading capacity of SOX but also spares enough space for the free diffusion of sarcosine. On this basis, the probe is competent to specifically check out the tiny concentration change of sarcosine in the urine sample between PCa patients and healthy humans. Such a concept of enzyme-assisted substrate sensing could be simply extended by altering the type of immobilized enzymes, hopefully setting a guideline for the rational design of multiple probes to quantify specific biomarkers in complex biological samples.


Assuntos
Técnicas Eletroquímicas/métodos , Estruturas Metalorgânicas/síntese química , Neoplasias da Próstata/diagnóstico , Biomarcadores Tumorais , Humanos , Limite de Detecção , Masculino , Estruturas Metalorgânicas/química , Modelos Moleculares , Estrutura Molecular , Sarcosina Oxidase/química , Sarcosina Oxidase/metabolismo
4.
Environ Sci Pollut Res Int ; 25(23): 22790-22796, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29855879

RESUMO

The widespread use of glyphosate has permeated not only small- and large-scale agriculture, but also the fight against drug trafficking and illicit crops. Health, alimentary security, and the rights of peasant and indigenous communities have been compromised in countries with intensive use of glyphosate-based herbicides. In 2015, the International Agency for Research on Cancer classified this substance as probably carcinogenic to humans, leading to the suspension of aerial glyphosate spraying the same year in countries like Colombia, where glyphosate has been extensively used in illicit crop eradication. Notwithstanding, according to a study of the U.S. Geological Survey, traces of glyphosate and its main degradation product, AMPA, remain in soil year after year. This underscores the urgency and importance of assessing new technologies to degrade glyphosate present in soils and waterbodies without leaving persistent byproducts. The aim of this study was to evaluate Lysinibacillus sphaericus' glyphosate uptake as a carbon and phosphorous source by a sarcosine-mediated metabolic pathway that releases glycine as final degradation product. To accomplish this, molecular and analytic evidence were collected in vitro from sarcosine oxidase activity, a key enzyme of a degradation pathway which releases byproducts that are easy to incorporate into natural biosynthesis routes.


Assuntos
Bacillus/metabolismo , Glicina/análogos & derivados , Herbicidas/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Bactérias/metabolismo , Glicina/metabolismo , Redes e Vias Metabólicas , Sarcosina Oxidase/metabolismo , Glifosato
5.
J Cell Biochem ; 118(7): 1678-1688, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27922192

RESUMO

Pipecolate, an intermediate of the lysine catabolic pathway, is oxidized to Δ1 -piperideine-6-carboxylate (P6C) by the flavoenzyme l-pipecolate oxidase (PIPOX). P6C spontaneously hydrolyzes to generate α-aminoadipate semialdehyde, which is then converted into α-aminoadipate acid by α-aminoadipatesemialdehyde dehydrogenase. l-pipecolate was previously reported to protect mammalian cells against oxidative stress. Here, we examined whether PIPOX is involved in the mechanism of pipecolate stress protection. Knockdown of PIPOX by small interference RNA abolished pipecolate protection against hydrogen peroxide-induced cell death in HEK293 cells suggesting a critical role for PIPOX. Subcellular fractionation analysis showed that PIPOX is localized in the mitochondria of HEK293 cells consistent with its role in lysine catabolism. Signaling pathways potentially involved in pipecolate protection were explored by treating cells with small molecule inhibitors. Inhibition of both mTORC1 and mTORC2 kinase complexes or inhibition of Akt kinase alone blocked pipecolate protection suggesting the involvement of these signaling pathways. Phosphorylation of the Akt downstream target, forkhead transcription factor O3 (FoxO3), was also significantly increased in cells treated with pipecolate, further implicating Akt in the protective mechanism and revealing FoxO3 inhibition as a potentially key step. The results presented here demonstrate that pipecolate metabolism can influence cell signaling during oxidative stress to promote cell survival and suggest that the mechanism of pipecolate protection parallels that of proline, which is also metabolized in the mitochondria. J. Cell. Biochem. 118: 1678-1688, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Peróxido de Hidrogênio/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Sobrevivência Celular/fisiologia , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Células HEK293/metabolismo , Humanos , NADP/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Via de Pentose Fosfato , Ácidos Pipecólicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Sarcosina Oxidase/genética , Sarcosina Oxidase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Anal Chim Acta ; 850: 26-32, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25441156

RESUMO

As the prostate cancer (PCa) progresses, sarcosine levels increase both in tumor cells and urine samples, suggesting that this metabolite measurements can help in the creation of non-invasive diagnostic methods for this disease. In this work, a biosensor device was developed for the quantification of sarcosine via electrochemical detection of H2O2 (at 0.6V) generated from the catalyzed oxidation of sarcosine. The detection was carried out after the modification of carbon screen printed electrodes (SPEs) by immobilization of sarcosine oxidase (SOX) on the electrode surface. The strategies used herein included the activation of the carbon films by an electrochemical step and the formation of an NHS/EDAC layer to bond the enzyme to the electrode, the use of metallic or semiconductor nanoparticles layer previously or during the enzyme immobilization. In order to improve the sensor stability and selectivity a polymeric layer with extra enzyme content was further added. The proposed methodology for the detection of sarcosine allowed obtaining a limit of detection (LOD) of 16nM, using a linear concentration range between 10 and 100nM. The biosensor was successfully applied to the analysis of sarcosine in urine samples.


Assuntos
Técnicas Biossensoriais/métodos , Sarcosina Oxidase/metabolismo , Sarcosina/urina , Eletrodos , Enzimas Imobilizadas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Limite de Detecção , Masculino , Modelos Moleculares , Oxirredução , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/urina , Sarcosina/metabolismo
7.
J Transl Med ; 12: 149, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24884785

RESUMO

BACKGROUND: The goal of this study was to investigate the expression of sarcosine metabolism-related proteins, namely glycine N-methyltransferase (GNMT), sarcosine dehydrogenase (SARDH), and l-pipecolic acid oxidase (PIPOX), in the different breast cancer subtypes and to assess the implications of differences in expression pattern according to subtype. METHODS: We analyzed the expression of GNMT, SARDH, and PIPOX in a tissue microarray of 721 breast cancer cases using immunohistochemistry (IHC). We classified breast cancer cases into subtype luminal A, luminal B, HER-2, and triple negative breast cancer (TNBC) according to the status for the estrogen receptor (ER), progesterone receptor (PR), HER-2, and Ki-67. Sarcosine metabolism phenotype was stratified according to IHC results for GNMT, SARDH, and PIPOX: GNMT(+), SARDH and PIPOX(-) was classified as high sarcosine type; GNMT(-), SARDH or PIPOX(-) as low sarcosine type; GNMT(+), SARDH or PIPOX(+) as intermediate sarcosine type, and GNMT(-), SARDH and PIPOX(-) as null type. RESULTS: Expression of sarcosine metabolism-related proteins differed significantly according to breast cancer subtype (GNMT, p=0.005; SARDH, p=0.012; tumoral PIPOX, p=0.008; stromal PIPOX, p<0.001). These proteins were the most frequently expressed in HER-2 type tumors and the least in TNBC. Sarcosine metabolism phenotype also varied according to breast cancer subtype, with high sarcosine type the most common in HER-2, and null type the most common in TNBC (p=0.003). Univariate analysis revealed that GNMT expression (p=0.042), tumoral PIPOX negativity (p=0.039), and high sarcosine type (p=0.021) were associated with shorter disease-free survival (DFS). Multivariate analysis also revealed GNMT expression was an independent factor for shorter DFS (hazard ratio: 2.408, 95% CI: 1.154-5.024, p=0.019). CONCLUSION: Expressions of sarcosine metabolism-related proteins varied according to subtype of breast cancer, with HER-2 type tumors showing elevated expression of these proteins, and TNBC subtype showing decreased expression of these proteins. Expression of sarcosine metabolism-related proteins was also associated with breast cancer prognosis.


Assuntos
Neoplasias da Mama/metabolismo , Sarcosina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Glicina N-Metiltransferase/metabolismo , Humanos , Hibridização in Situ Fluorescente , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Sarcosina Desidrogenase/metabolismo , Sarcosina Oxidase/metabolismo
8.
Int J Clin Exp Pathol ; 7(11): 7824-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25550822

RESUMO

We aimed to evaluate the expression of sarcosine metabolism-related proteins according to site of metastatic breast cancer, and the clinical implications. Immunohistochemical staining for glycine N-methyltransferase (GNMT), sarcosine dehydrogenase (SARDH), and l-pipecolic acid oxidase (PIPOX) was performed on tissue microarrays from 162 metastatic breast cancer (bone metastases = 47, brain metastases = 39, liver metastases = 24, and lung metastases = 52). Sarcosine metabolism-related proteins showed variable expression with regard to metastatic sites. GNMT was expressed in brain and lung metastases, but not in bone and liver metastases (P = 0.016). In view of the sarcosine metabolic phenotype, high sarcosine and intermediate type were only found in the brain and lung metastases, and low sarcosine type was observed more frequently in bone and lung metastases (P = 0.047). By univariate analysis, PIPOX positivity was correlated with shorter overall survival (OS) (P = 0.031). In lung metastases, PIPOX positivity (P = 0.019) and stromal PIPOX positivity (P = 0.001) were associated with shorter OS. In conclusion, in metastatic breast cancer, sarcosine metabolism-related proteins are differently expressed according to the metastatic site. Expression of GNMT and high sarcosine type are predominantly observed in brain and lung metastases.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Glicina N-Metiltransferase/metabolismo , Sarcosina Desidrogenase/metabolismo , Sarcosina Oxidase/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/secundário , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Pessoa de Meia-Idade , Especificidade de Órgãos
9.
J Sep Sci ; 36(18): 3086-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23857750

RESUMO

An efficient affinity-purification protocol for Bacillus monomeric sarcosine oxidase (SOX) expressed in Escherichia coli BL21 (DE3) was developed. 4-Aminopyrrole-2-carboxylic acid was chosen as the affinity ligand, which was coupled with Sepharose CL 4B via spacers composed of epichlorohydrin and ethylenediamine. With the affinity medium, the purification process consisted of only one affinity chromatography step to capture monomeric SOX. The purified SOX was 94 and 96% pure when analyzed on an HPLC Vydac C8 column and reducing SDS-PAGE. Meanwhile, the recoveries of typical SOX activity and protein were 90.8 and 37.5%, respectively, which were higher than other reported traditional protocols. Reducing SDS-PAGE analysis revealed that the enzyme was a single polypeptide with the mass of ~46 kDa. The desorption constant Kd and theoretical maximum absorption Qmax were 35 µg/mL and 52.7 mg/g, respectively, in absorption analysis. All results indicated that the method would be of great potential for purifying monomeric SOX on an industrial scale.


Assuntos
Bacillus/enzimologia , Escherichia coli/metabolismo , Sarcosina Oxidase/biossíntese , Sarcosina Oxidase/isolamento & purificação , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Sarcosina Oxidase/metabolismo
10.
Extremophiles ; 17(4): 601-10, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23674353

RESUMO

Colwellia is a genus of mostly psychrophilic halophilic Gammaproteobacteria frequently isolated from polar marine sediments and sea ice. In exploring the capacity of Colwellia psychrerythraea 34H to survive and grow in the liquid brines of sea ice, we detected a duplicated 37 kbp genomic island in its genome based on the abnormally high G + C content. This island contains an operon encoding for heterotetrameric sarcosine oxidase and is located adjacent to several genes used in the serial demethylation of glycine betaine, a compatible solute commonly used for osmoregulation, to dimethylglycine, sarcosine, and glycine. Molecular clock inferences of important events in the adaptation of C. psychrerythraea 34H to compatible solute utilization reflect the geological evolution of the polar regions. Validating genomic predictions, C. psychrerythraea 34H was shown to grow on defined media containing either choline or glycine betaine, and on a medium with sarcosine as the sole organic source of carbon and nitrogen. Growth by 8 of 9 tested Colwellia species on a newly developed sarcosine-based defined medium suggested that the ability to catabolize glycine betaine (the catabolic precursor of sarcosine) is likely widespread in the genus Colwellia. This capacity likely provides a selective advantage to Colwellia species in cold, salty environments like sea ice, and may have contributed to the ability of Colwellia to invade these extreme niches.


Assuntos
Alteromonadaceae/genética , Transferência Genética Horizontal , Adaptação Fisiológica/genética , Alteromonadaceae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Colina/metabolismo , Evolução Molecular , Genoma Bacteriano , Metilação , Óperon/genética , Oxirredução , Filogenia , Sarcosina/análogos & derivados , Sarcosina/metabolismo , Sarcosina Oxidase/genética , Sarcosina Oxidase/metabolismo
11.
Neoplasia ; 15(5): 491-501, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633921

RESUMO

Metabolomic profiling of prostate cancer (PCa) progression identified markedly elevated levels of sarcosine (N-methyl glycine) in metastatic PCa and modest but significant elevation of the metabolite in PCa urine. Here, we examine the role of key enzymes associated with sarcosine metabolism in PCa progression. Consistent with our earlier report, sarcosine levels were significantly elevated in PCa urine sediments compared to controls, with a modest area under the receiver operating characteristic curve of 0.71. In addition, the expression of sarcosine biosynthetic enzyme, glycine N-methyltransferase (GNMT), was elevated in PCa tissues, while sarcosine dehydrogenase (SARDH) and pipecolic acid oxidase (PIPOX), which metabolize sarcosine, were reduced in prostate tumors. Consistent with this, GNMT promoted the oncogenic potential of prostate cells by facilitating sarcosine production, while SARDH and PIPOX reduced the oncogenic potential of prostate cells by metabolizing sarcosine. Accordingly, addition of sarcosine, but not glycine or alanine, induced invasion and intravasation in an in vivo PCa model. In contrast, GNMT knockdown or SARDH overexpression in PCa xenografts inhibited tumor growth. Taken together, these studies substantiate the role of sarcosine in PCa progression.


Assuntos
Biomarcadores Tumorais/urina , Neoplasias da Próstata/urina , Sarcosina/urina , Idoso , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Progressão da Doença , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Transplante de Neoplasias , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Sarcosina Desidrogenase/genética , Sarcosina Desidrogenase/metabolismo , Sarcosina Oxidase/genética , Sarcosina Oxidase/metabolismo , Carga Tumoral
12.
Enzyme Microb Technol ; 50(4-5): 247-54, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22418265

RESUMO

Commercial enzymes, creatininase (CA) from Pseudomonas sp, creatinase (CI) from Pseudomonas sp, sarcosine oxidase (SO) from Bacillus sp were co-immobilized onto iron oxide nanoparticles/chitosan-graft-polyaniline (Fe(3)O(4)-NPs/CHIT-g-PANI) composite film electrodeposited on surface of Pt electrode through glutaraldehyde coupling. Transmission electron microscopy (TEM) was used for characterization of Fe(3)O(4)-NPs. A creatinine biosensor was fabricated using Enzymes/Fe(3)O(4)-NPs/CHIT-g-PANI/Pt electrode as working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode. The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopic and electrochemical impedance spectroscopy (EIS). The biosensor exhibited an optimum response within 2s at pH 7.5 and 30 °C, when polarized at 0.4V vs Ag/AgCl. The electrocatalytic response showed a linear dependence on creatinine concentration ranging from 1 to 800 µM. The sensitivity of the biosensor was 3.9 µA µM(-1) cm(-2), with a detection limit of 1 µM (S/N=3). Apparent Michaelis-Menton (K(m)) value for creatinine was 0.17 mM. The biosensor showed only 10% loss in its initial response after 120 uses over 200 days, when stored at 4 °C. The biosensor measured creatinine in the serum of apparently healthy persons which correlated well with a standard colorimetric method (r=0.99).


Assuntos
Compostos de Anilina/química , Técnicas Biossensoriais/métodos , Quitosana/química , Creatinina/sangue , Enzimas Imobilizadas/química , Nanopartículas Metálicas/química , Amidoidrolases/química , Amidoidrolases/metabolismo , Técnicas Biossensoriais/instrumentação , Biotecnologia/métodos , Eletrodos , Enzimas Imobilizadas/metabolismo , Compostos Férricos , Humanos , Microscopia Eletrônica de Varredura , Platina , Sarcosina Oxidase/química , Sarcosina Oxidase/metabolismo , Ureo-Hidrolases/química , Ureo-Hidrolases/metabolismo
13.
J Bacteriol ; 190(8): 2690-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17951379

RESUMO

Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-(13)C-labeled choline indicated that these genes are necessary for conversion of GB to DMG. Similar experiments showed that strains with mutations in the dgcAB (PA5398-PA5399) genes, which exhibit homology to genes that encode other enzymes with demethylase activity, are required for the conversion of DMG to sarcosine. Mutant analyses and (13)C NMR studies also confirmed that the soxBDAG genes, predicted to encode a sarcosine oxidase, are required for sarcosine catabolism. Our screen also identified a predicted AraC family transcriptional regulator, encoded by gbdR (PA5380), that is required for growth on GB and DMG and for the induction of gbcA, gbcB, and dgcAB in response to GB or DMG. Mutants defective in the previously described gbt gene (PA3082) grew on GB with kinetics similar to those of the wild type in both the PAO1 and PA14 strain backgrounds. These studies provided important insight into both the mechanism and the regulation of the catabolism of GB in P. aeruginosa.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Família Multigênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Elementos de DNA Transponíveis , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Teste de Complementação Genética , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas/genética , Mutagênese Insercional , Pseudomonas aeruginosa/crescimento & desenvolvimento , Sarcosina/análogos & derivados , Sarcosina/metabolismo , Sarcosina Oxidase/genética , Sarcosina Oxidase/metabolismo , Fatores de Transcrição/genética
14.
J Mol Biol ; 362(4): 656-63, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16934831

RESUMO

Heterotetrameric sarcosine oxidase (TSOX) is a complex bifunctional flavoenzyme that contains two flavins. Most of the FMN in recombinant TSOX is present as a covalent adduct with an endogenous ligand. Enzyme denaturation disrupts the adduct, accompanied by release of a stoichiometric amount of sulfide. Enzyme containing>or=90% unmodified FMN is prepared by displacement of the endogenous ligand with sulfite, a less tightly bound competing ligand. Reaction of adduct-depleted TSOX with sodium sulfide produces a stable complex that resembles the endogenous TSOX adduct and known 4a-S-cysteinyl flavin adducts. The results provide definitive evidence for sulfide as the endogenous TSOX ligand and strongly suggest that the modified FMN is a 4a-sulfide adduct. A comparable reaction with sodium sulfide is not detected with other flavoprotein oxidases. A model of the postulated TSOX adduct suggests that it is stabilized by nearby residues that may be important in the electron transferase/oxidase function of the coenzyme.


Assuntos
Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Pseudomonas/enzimologia , Sarcosina Oxidase/química , Sarcosina Oxidase/metabolismo , Compostos de Sulfidrila/química , Ácido Ditionitrobenzoico/metabolismo , Metanossulfonato de Metila/análogos & derivados , Metanossulfonato de Metila/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína , Sulfetos/metabolismo , Sulfitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA