Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 104(3): 693-705, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32777127

RESUMO

Serrulatane diterpenoids are natural products found in plants from a subset of genera within the figwort family (Scrophulariaceae). Many of these compounds have been characterized as having anti-microbial properties and share a common diterpene backbone. One example, leubethanol from Texas sage (Leucophyllum frutescens) has demonstrated activity against multi-drug-resistant tuberculosis. Leubethanol is the only serrulatane diterpenoid identified from this genus; however, a range of such compounds have been found throughout the closely related Eremophila genus. Despite their potential therapeutic relevance, the biosynthesis of serrulatane diterpenoids has not been previously reported. Here we leverage the simple product profile and high accumulation of leubethanol in the roots of L. frutescens and compare tissue-specific transcriptomes with existing data from Eremophila serrulata to decipher the biosynthesis of leubethanol. A short-chain cis-prenyl transferase (LfCPT1) first produces the rare diterpene precursor nerylneryl diphosphate, which is cyclized by an unusual plastidial terpene synthase (LfTPS1) into the characteristic serrulatane diterpene backbone. Final conversion to leubethanol is catalyzed by a cytochrome P450 (CYP71D616) of the CYP71 clan. This pathway documents the presence of a short-chain cis-prenyl diphosphate synthase, previously only found in Solanaceae, which is likely involved in the biosynthesis of other known diterpene backbones in Eremophila. LfTPS1 represents neofunctionalization of a compartment-switching terpene synthase accepting a novel substrate in the plastid. Biosynthetic access to leubethanol will enable pathway discovery to more complex serrulatane diterpenoids which share this common starting structure and provide a platform for the production and diversification of this class of promising anti-microbial therapeutics in heterologous systems.


Assuntos
Diterpenos/metabolismo , Scrophulariaceae/metabolismo , Alquil e Aril Transferases/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Eremophila (Planta)/genética , Escherichia coli/genética , Neopreno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fosfatos de Poli-Isoprenil/metabolismo , Scrophulariaceae/genética , Nicotiana/genética , Nicotiana/metabolismo , Transferases/genética , Transferases/metabolismo
2.
Mol Phylogenet Evol ; 112: 194-208, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28411161

RESUMO

The genus Zaluzianskya (Scrophulariaceae s.s.) encompasses a diversity of floral and ecological traits. However, this diversity, as described by the current taxonomic circumscription of Zaluzianskya, is an underestimate. We present molecular data suggesting that this genus requires expansion via incorporation of species from other genera and recognition of unnamed cryptic species. This study advances prior molecular phylogenies of the southern African genus through the addition of DNA regions and 51 populations that had not previously been sampled in a published phylogeny. A total of 82 species of Zaluzianskya and related genera are included, adding 48 to those previously sampled. Results are presented from analyses of five DNA regions, including nuclear ITS and four rapidly evolving chloroplast regions (trnL-trnF, rpl16, rps16, and trnS-trnfM). Our primary finding is that the genus Phyllopodium is polyphyletic as currently circumscribed, with some species placed within Zaluzianskya and others grouping with Polycarena, indicating the need for further phylogenetic work on these genera. Preliminary support for the incorporation of Reyemia into Zaluzianskya is reinforced here by the first molecular analysis to include both species of Reyemia and a strong sampling of species across Zaluzianskya and major clades of tribe Limoselleae. The two disjunct, tropical African species of Zaluzianskya are also confirmed as members of this genus. Finally, a broad sampling of 21 populations of Z. microsiphon establishes their phylogenetic division into two to five separate lineages. Hybridization, coevolution, and cryptic speciation may each play a role in the evolution of Z. microsiphon. Further resolution within a clade comprising sections Nycterinia and Macrocalyx is needed to better understand their relationships.


Assuntos
Filogenia , Scrophulariaceae/anatomia & histologia , Scrophulariaceae/classificação , Sequência de Bases , Teorema de Bayes , Cloroplastos/genética , DNA de Cloroplastos/genética , Evolução Molecular , Fenótipo , Scrophulariaceae/genética
3.
Phytochemistry ; 105: 43-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24874947

RESUMO

Previous studies have demonstrated that the widely distributed desert plant Eremophila longifolia has at least six geographically defined essential oil chemotypes. The focus of the present study is to extend and enhance information concerning known chemotypes and to investigate the involvement of cell nuclei ploidy in this variation. Forty field collected specimens of E. longifolia were taken from most of the mainland states of Australia then subjected to hydrodistillation to produce essential oils, which were then chemically characterised. Ploidy was determined using relative fluorescence of cell nuclei stained with propidium iodide, measured in a flow cytometer. Using principal component analysis (PCA), at least three essential oil chemotypes, in addition to the six already described, were identified in the present study. Previously described high yielding essential oil chemotypes were also characterised in terms of diploidy. For the first time diploid populations were identified in New South Wales, correlating with high yielding isomenthone/menthone and karahanaenone chemotypes. Furthermore, the separate diploid population previously described from Western Australia was demonstrated to be the safrole/methyl eugenol type, which is restricted to a small geographic range in far north-west Western Australia (Murchison District). All other chemotypes were shown to be tetraploid, including apparently randomly emerging individuals, representative of chemotypes producing low yields of isomenthone/menthone and karahanaenone similar in composition to the high yielding diploid types.


Assuntos
Eremophila (Planta)/química , Óleos Voláteis/química , Scrophulariaceae/química , Austrália , Eugenol/análogos & derivados , Eugenol/análise , Eugenol/química , Humanos , Mentol/análise , Mentol/química , Estrutura Molecular , Análise de Componente Principal , Safrol/análise , Safrol/química , Scrophulariaceae/genética
4.
Plant Biol (Stuttg) ; 7(1): 67-78, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15666207

RESUMO

The Lamiales are one of the largest orders of angiosperms, with about 22,000 species. The Scrophulariaceae, as one of their most important families, has recently been shown to be polyphyletic. As a consequence, this family was re-classified and several groups of former scrophulariaceous genera now belong to different families, such as the Calceolariaceae, Plantaginaceae, or Phrymaceae. In the present study, relationships of the genera Craterostigma, Lindernia and its allies, hitherto classified within the Scrophulariaceae, were analyzed. Sequences of the chloroplast trnK intron and the matK gene (approximately 2.5 kb) were generated for representatives of all major lineages of the Lamiales and the former Scrophulariaceae. Bayesian and parsimony analyses revealed two isolated lineages, one of which consists of Lindernia and its allies, the other of Gratiola and allies. Gratiola was previously assumed to be related to Lindernia and was therefore included here. It is proposed to treat the two clades as separate families, Linderniaceae and Gratiolaceae. For the Linderniaceae, several morphological synapomorphies exist in addition to molecular data, such as conspicuous club-shaped stamen appendages.


Assuntos
Scrophulariaceae/classificação , Teorema de Bayes , Genes de Plantas , Íntrons , Fenótipo , Filogenia , Scrophulariaceae/anatomia & histologia , Scrophulariaceae/genética , Especificidade da Espécie
5.
J Exp Bot ; 54(380): 115-22, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12456761

RESUMO

The Solanaceae, Rosaceae, and Scrophulariaceae families all possess an RNase-mediated self-incompatibility mechanism through which their pistils can recognize and reject self-pollen to prevent inbreeding. The highly polymorphic S-locus controls the self-incompatibility interaction, and the S-locus of the Solanaceae has been shown to be a multi-gene complex in excess of 1.3 Mb. To date, the function of only one of the S-locus genes, the S-RNase gene, has been determined. This article reviews the current status of the search for the pollen S-gene and the current models for how S-haplotype specific inhibition of pollen tubes can be accomplished by S-RNases.


Assuntos
Flores/fisiologia , Ribonucleases/metabolismo , Fertilidade/genética , Fertilidade/fisiologia , Flores/genética , Genômica/métodos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Rosaceae/enzimologia , Rosaceae/genética , Rosaceae/fisiologia , Scrophulariaceae/enzimologia , Scrophulariaceae/genética , Scrophulariaceae/fisiologia , Solanaceae/enzimologia , Solanaceae/genética , Solanaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA