Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.371
Filtrar
1.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745279

RESUMO

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Assuntos
Arachis , Secas , Estresse Fisiológico , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/fisiologia , Prolina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Microbiologia do Solo , Pressão Osmótica , Betaína/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Acinetobacter/metabolismo , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/fisiologia , Cianeto de Hidrogênio/metabolismo , Trealose/metabolismo
2.
J Agric Food Chem ; 72(19): 10692-10709, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712500

RESUMO

Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Secas , Regulação da Expressão Gênica de Plantas , Deficiências de Ferro , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Temperatura Baixa , Produtos Agrícolas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento
3.
Funct Plant Biol ; 512024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723163

RESUMO

The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.


Assuntos
Secas , Filogenia , Proteínas de Plantas , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Família Multigênica , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
4.
Planta ; 259(6): 142, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702456

RESUMO

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Sulfeto de Hidrogênio , Fosfolipase D , Estômatos de Plantas , Arabidopsis/genética , Arabidopsis/fisiologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Fosfolipase D/metabolismo , Fosfolipase D/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sulfeto de Hidrogênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Prolina/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Peroxidação de Lipídeos
5.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674058

RESUMO

In this study, we obtained and cloned VvSnRK2.7 by screening transcriptomic data to investigate the function of the grape sucrose non-fermenting kinase 2 (SnRK2) gene under stress conditions. A yeast two-hybrid (Y2H) assay was used to further screen for interaction proteins of VvSnRK2.7. Ultimately, VvSnRK2.7 was heterologously expressed in Arabidopsis thaliana, and the relative conductivity, MDA content, antioxidant enzyme activity, and sugar content of the transgenic plants were determined under drought treatment. In addition, the expression levels of VvSnRK2.7 in Arabidopsis were analyzed. The results showed that the VvSnRK2.7-EGFP fusion protein was mainly located in the cell membrane and nucleus of tobacco leaves. In addition, the VvSnRK2.7 protein had an interactive relationship with the VvbZIP protein during the Y2H assay. The expression levels of VvSnRK2.7 and the antioxidant enzyme activities and sugar contents of the transgenic lines were higher than those of the wild type under drought treatment. Moreover, the relative conductivity and MDA content were lower than those of the wild type. The results indicate that VvSnRK2.7 may activate the enzyme activity of the antioxidant enzyme system, maintain normal cellular physiological metabolism, stabilize the berry sugar metabolism pathway under drought stress, and promote sugar accumulation to improve plant resistance.


Assuntos
Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Vitis , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Vitis/genética , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Resistência à Seca
6.
Mol Biol Rep ; 51(1): 581, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668759

RESUMO

BACKGROUND: Homeodomain-leucine ZIPper (HD-ZIP) transcription factors play crucial roles in plant growth, development, and stress responses. The HD-ZIP family is categorised into four groups (HD-ZIP I-IV). While extensive genome-wide studies have been conducted on the HD-ZIP I, III, and IV subfamily in Nicotiana tabacum (tobacco), comprehensive reports on the HD-ZIP II subfamily genes are limited. METHODS: Bioinformatics resources and tools were utilised to analyse molecular characteristics, phylogenetic homology, and protein interactions. Expression pattern analyses in various tissues and the relative expression of NtHD-ZIP II genes under drought and GA3 treatment were assessed by qRT-PCR. RESULTS: In this study, 24 HD-ZIP II members were systematically identified and categorised into seven independent clades through phylogenetic analysis involving tobacco and other plant species. We found that 19 NtHD-ZIP II genes exhibited tissue-specific expression. The transcripts of NtHD-ZIPII3, 4, 14, 23, 24 were notably induced under the drought treatments, while those of NtHD-ZIPII7, 11, 12, 20 were suppressed. Furthermore, NtHD-ZIPII15 transcripts decreased following GA3 treatment, whereas the transcripts of NtHD-ZIPII7, 8, 11, 12 were induced after GA3 treatment. Notably, an increase in trichomes was observed in tobacco leaves treated with GA3 and subjected to drought. CONCLUSIONS: The expression levels of some HD-ZIP II genes were altered, and an increase in glandular trichomes was induced under GA3 and drought treatments in tobacco. Overall, our findings provide insights into the expression patterns of NtHD-ZIP II genes and will facilitate their functional characterisation in future studies.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Nicotiana , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Giberelinas/metabolismo , Zíper de Leucina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica/métodos
7.
BMC Plant Biol ; 24(1): 330, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664602

RESUMO

Whole-genome doubling leads to cell reprogramming, upregulation of stress genes, and establishment of new pathways of drought stress responses in plants. This study investigated the molecular mechanisms of drought tolerance and cuticular wax characteristics in diploid and tetraploid-induced Erysimum cheiri. According to real-time PCR analysis, tetraploid induced wallflowers exhibited increased expression of several genes encoding transcription factors (TFs), including AREB1 and AREB3; the stress response genes RD29A and ERD1 under drought stress conditions. Furthermore, two cuticular wax biosynthetic pathway genes, CER1 and SHN1, were upregulated in tetraploid plants under drought conditions. Leaf morphological studies revealed that tetraploid leaves were covered with unique cuticular wax crystalloids, which produced a white fluffy appearance, while the diploid leaves were green and smooth. The greater content of epicuticular wax in tetraploid leaves than in diploid leaves can explain the decrease in cuticle permeability as well as the decrease in water loss and improvement in drought tolerance in wallflowers. GC‒MS analysis revealed that the wax components included alkanes, alcohols, aldehydes, and fatty acids. The most abundant wax compound in this plant was alkanes (50%), the most predominant of which was C29. The relative abundance of these compounds increased significantly in tetraploid plants under drought stress conditions. These findings revealed that tetraploid-induced wallflowers presented upregulation of multiple drought-related and wax biosynthesis genes; therefore, polyploidization has proved useful for improving plant drought tolerance.


Assuntos
Diploide , Secas , Regulação da Expressão Gênica de Plantas , Tetraploidia , Ceras , Ceras/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Epiderme Vegetal/fisiologia , Perfilação da Expressão Gênica , Resistência à Seca
8.
PLoS One ; 19(4): e0294394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635811

RESUMO

Drought stress (DS) is one of the important abiotic stresses facing cash crops today. Drought can reduce plant growth and development, inhibit photosynthesis, and thus reduce plant yield. In this experiment, we investigated the protective mechanism of AMF on plant photosynthetic system by inoculating Paris polyphylla var. yunnanensis(P.py) with a clumping mycorrhizal fungus (AMF) under drought conditions. The drought environment was maintained by weighing AMF plants and non-AMF plants. The relative water content (RWC) of plant leaves was measured to determine its drought effect. DS decreased the RWC of plants, but AMF was able to increase the RWC of plants. chlorophyll a fluorescence curve measurements revealed that DS increased the OKJIP curve of plants, but AMF was able to reduce this trend, indicating that AMF increased the light absorption capacity of plants. DS also caused a decrease in plant Y(I) and Y(II). ETRI and ETRII, and increased Y(NO) and Y(NA) in plants, indicating that DS caused photosystem damage in plants. For the same host, different AMFs did not help to the same extent, but all AMFs were able to help plants reduce this damage and contribute to the increase of plant photosynthesis under normal water conditions.


Assuntos
Liliaceae , Micorrizas , Clorofila A , Secas , Água
9.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1494-1505, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621933

RESUMO

Mentha canadensis is a traditional Chinese herb with great medicinal and economic value. Abscisic acid(ABA) receptor PYLs have important roles in plant growth and development and response to adversity. The M. canadensis McPYL4 gene was cloned, and its protein characteristics, gene expression, and protein interactions were analyzed, so as to provide genetic resources for genetic improvement and molecular design breeding for M. canadensis resistance. Therefore, the protein characteristics, subcellular localization, gene expression pattern, and protein interactions of McPYL4 were analyzed by bioinformatics analysis, transient expression of tobacco leaves, RT-qPCR, and yeast two-hybrid(Y2H) techniques. The results showed that the McPYL4 gene was 621 bp in length, encoding 206 amino acids, and its protein had the conserved structural domain of SRPBCC and was highly homologous with Salvia miltiorrhiza SmPYL4. McPYL4 protein was localized to the cell membrane and nucleus. The McPYL4 gene was expressed in all tissue of M. canadensis, with the highest expression in roots, followed by leaves, and it showed a pattern of up-regulation followed by down-regulation in leaves 1-8. In both leaves and roots, the McPYL4 gene responded to the exogenous hormones ABA, MeJA, and the treatments of drought, AlCl_3, NaCl, CdCl_2, and CuCl_2. Moreover, McPYL4 was up-regulated for expression in both leaves and roots under the MeJA treatment, as well as in leaves treated with AlCl_3 stress for 1 h, whereas McPYL4 showed a tendency to be down-regulated in both leaves and roots under other treatments. Protein interactions showed that McPYL4 interacted with AtABI proteins in an ABA-independent manner. This study demonstrated that McPYL4 responded to ABA, JA, and several abiotic stress treatments, and McPYL4 was involved in ABA signaling in M. canadensis and thus in the regulation of leaf development and various abiotic stresses in M. canadensis.


Assuntos
Ácido Abscísico , Mentha , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas
10.
Biochem Biophys Res Commun ; 709: 149840, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38564941

RESUMO

As one of the largest transcription factor (TF) families in plants, the NAC (NAM, ATAF1/2, and CUC2) family plays important roles in response pathways to various abiotic and biotic stresses, such as drought, high salinity, low temperature, and pathogen infection. Although, there are a number of reviews on the involvement of NAC TF in plant responses to biotic and abiotic stresses, most of them are focused on the model plants Arabidopsis thaliana and Oryza sativa, and there is a lack of systematic evaluation of specific species. Solanaceae, the world's third most significant cash crop, has been seriously affected by environmental disturbances in recent years in terms of yield and quality, posing a severe threat to global food security. This review focuses on the functional roles of NAC transcription factors in response to external stresses involved in five important Solanaceae crops: tomato, potato, pepper, eggplant and tobacco, and analyzes the affinities between them. It will provide resources for stress-resistant breeding of Solanaceae crops using transgenic technology.


Assuntos
Solanum tuberosum , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Produtos Agrícolas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Secas
11.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673916

RESUMO

Tobacco is an ideal model plant in scientific research. G-quadruplex is a guanine-rich DNA structure, which regulates transcription and translation. In this study, the prevalence and potential function of G-quadruplexes in tobacco were systematically analyzed. In tobacco genomes, there were 2,924,271,002 G-quadruplexes in the nuclear genome, 430,597 in the mitochondrial genome, and 155,943 in the chloroplast genome. The density of the G-quadruplex in the organelle genome was higher than that in the nuclear genome. G-quadruplexes were abundant in the transcription regulatory region of the genome, and a difference in G-quadruplex density in two DNA strands was also observed. The promoter of 60.4% genes contained at least one G-quadruplex. Compared with up-regulated differentially expressed genes (DEGs), the G-quadruplex density in down-regulated DEGs was generally higher under drought stress and salt stress. The G-quadruplex formed by simple sequence repeat (SSR) and its flanking sequence in the promoter region of the NtBBX (Nitab4.5_0002943g0010) gene might enhance the drought tolerance of tobacco. This study lays a solid foundation for further research on G-quadruplex function in tobacco and other plants.


Assuntos
Quadruplex G , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Nicotiana , Estresse Fisiológico , Nicotiana/genética , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Secas , Estresse Salino/genética
12.
BMC Plant Biol ; 24(1): 314, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654167

RESUMO

BACKGROUND: Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS: In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS: The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.


Assuntos
Azospirillum brasilense , Carvão Vegetal , Solo , Triticum , Triticum/metabolismo , Azospirillum brasilense/fisiologia , Solo/química , Desidratação , Secas
13.
BMC Plant Biol ; 24(1): 351, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684962

RESUMO

BACKGROUND: Rose (Rosa hybrida) is a globally recognized ornamental plant whose growth and distribution are strongly limited by drought stress. The role of Mediator, a multiprotein complex crucial for RNA polymerase II-driven transcription, has been elucidated in drought stress responses in plants. However, its physiological function and regulatory mechanism in horticultural crop species remain elusive. RESULTS: In this study, we identified a Tail module subunit of Mediator, RhMED15a-like, in rose. Drought stress, as well as treatment with methyl jasmonate (MeJA) and abscisic acid (ABA), significantly suppressed the transcript level of RhMED15a-like. Overexpressing RhMED15a-like markedly bolstered the osmotic stress tolerance of Arabidopsis, as evidenced by increased germination rate, root length, and fresh weight. In contrast, the silencing of RhMED15a-like through virus induced gene silencing in rose resulted in elevated malondialdehyde accumulation, exacerbated leaf wilting, reduced survival rate, and downregulated expression of drought-responsive genes during drought stress. Additionally, using RNA-seq, we identified 972 differentially expressed genes (DEGs) between tobacco rattle virus (TRV)-RhMED15a-like plants and TRV controls. Gene Ontology (GO) analysis revealed that some DEGs were predominantly associated with terms related to the oxidative stress response, such as 'response to reactive oxygen species' and 'peroxisome'. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment highlighted pathways related to 'plant hormone signal transduction', in which the majority of DEGs in the jasmonate (JA) and ABA signalling pathways were induced in TRV-RhMED15a-like plants. CONCLUSION: Our findings underscore the pivotal role of the Mediator subunit RhMED15a-like in the ability of rose to withstand drought stress, probably by controlling the transcript levels of drought-responsive genes and signalling pathway elements of stress-related hormones, providing a solid foundation for future research into the molecular mechanisms underlying drought tolerance in rose.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Vírus de Plantas , Rosa , Rosa/genética , Rosa/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Acetatos/farmacologia , Plantas Geneticamente Modificadas
14.
Int J Biol Macromol ; 266(Pt 1): 131020, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521330

RESUMO

Ammopiptanthus mongolicus, a rare temperate evergreen broadleaf shrub, exhibits remarkable tolerance to low temperature and drought stress in winter. Late embryogenesis abundant (LEA) proteins, a kind of hydrophilic protein with a protective function, play significant roles in enhancing plant tolerance to abiotic stress. In this present study, we analyzed the evolution and expression of LEA genes in A. mongolicus, and investigated the function and regulatory mechanism of dehydrin under abiotic stresses. Evolutionary analysis revealed that 14 AmLEA genes underwent tandem duplication events, and 36 AmLEA genes underwent segmental duplication events Notably, an expansion in SKn-type dehydrins was observed. Expression analysis showed that AmDHN4, a SKn-type dehydrin, was up-regulated in winter and under low temperature and osmotic stresses. Functional analysis showcased that the heterologous expression of the AmDHN4 enhanced the tolerance of yeast and tobacco to low temperature stress. Additionally, the overexpression of AmDHN4 significantly improved the tolerance of transgenic Arabidopsis to low temperature, drought, and osmotic stress. Further investigations identified AmWRKY45, a downstream transcription factor in the jasmonic acid signaling pathway, binding to the AmDHN4 promoter and positively regulating its expression. In summary, these findings contribute to a deeper understanding of the functional and regulatory mechanisms of dehydrin.


Assuntos
Arabidopsis , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Filogenia , Secas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estações do Ano
15.
Physiol Plant ; 176(2): e14258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522952

RESUMO

Salt and drought are documented among the most detrimental and persistent abiotic stresses for crop production. Here, we investigated the impact of Pseudomonas koreensis strain S4T10 on plant performance under salt and drought stress. Arabidopsis thaliana Col-0 wild type and atnced3 mutant plants were inoculated with P. koreensis or tap water and exposed to NaCl (100 mM) for five days and drought stress by withholding water for seven days. P. koreensis significantly enhanced plant biomass and photosynthetic pigments under salt and drought stress conditions. Moreover, P. koreensis activated the antioxidant defence by modulating glutathione (GSH), superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities to scavenge the reactive oxygen species produced due to the stress. In addition, the application of P. koreensis upregulated the expression of genes associated with antioxidant responses, such as AtCAT1, AtCAT3, and AtSOD. Similarly, genes linked to salt stress, such as AtSOS1, AtSOS2, AtSOS3, AtNHX1, and AtHKT1, were also upregulated, affirming the positive role of P. koreensis S4T10 in streamlining the cellular influx and efflux transport systems during salt stress. Likewise, the PGPB inoculation was observed to regulate the expression of drought-responsive genes AtDREB2A, AtDREB2B, and ABA-responsive genes AtAO3, AtABA3 indicating that S4T10 enhanced drought tolerance via modulation of the ABA pathway. The results of this study affirm that P. koreensis S4T10 could be further developed as a biofertilizer to mitigate salt and drought stress at the same time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
16.
Ying Yong Sheng Tai Xue Bao ; 35(2): 439-446, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523102

RESUMO

Aglaia duperreana, a species with a long cultivation history, is of high ornamental value. To understand the growth and photosynthetic changes of A. duperreana seedlings under variable environmental conditions, we conducted an experiment with light intensities adjusted at 70%, 50% and 30%, crossed with three moisture treatments at 70%, 50% and 30% of field capacity, and a control group which maintained 90% light intensity and 90% field capacity. The results showed that both drought stress and shading propensity significantly inhibited the growth of A. duperreana seedlings, with stronger impacts from drought stress. The increments in stem height and ground diameter, net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content were decreased with the maximum declines by 71.4%, 81.2%, 93.2%, 71.5%, 70.6% and 30.4%, respectively. Under severe drought stress (30% of field capacity), partial shading (50% of translucency) appeared to lessen the detrimental effects of drought. The combination of 70% translucency and 70% field capacity was optimal, resulting in higher increments in stem height, leaf area, net photosynthetic rate, transpiration rate, and stomatal conductance. The maximum fluorescence, variable fluorescence, PSⅡ potential activity, and PSⅡ maximum light energy conversion efficiency increased and then decreased with decreasing moisture. These findings suggested that A. duperreana could adapt to drought and shading stress by modulating growth, enhancing chlorophyll content, and adjusting photosynthetic system. Maintaining translucency at 70% and field moisture capacity at 70% could promote photosynthesis, with positive consequences on growth of A. duperreana.


Assuntos
Aglaia , Plântula , Água , Fotossíntese , Clorofila , Secas , Folhas de Planta
17.
BMC Plant Biol ; 24(1): 219, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532379

RESUMO

BACKGROUND: Drought is considered the main environmental factor restricting apple production and thus the development of the apple industry. Rootstocks play an important role in enhancing the drought tolerance of apple plants. Studies of the physiology have demonstrated that 'ZC9-3' is a strong drought-resistant rootstock, whereas 'Jizhen-2' is a weak drought-resistant rootstock. However, the metabolites in these two apple rootstock varieties that respond to drought stress have not yet been characterized, and the molecular mechanisms underlying their responses to drought stress remain unclear. RESULTS: In this study, the physiological and molecular mechanisms underlying differences in the drought resistance of 'Jizhen-2' (drought-sensitive) and 'ZC9-3' (drought-resistant) apple rootstocks were explored. Under drought stress, the relative water content of the leaves was maintained at higher levels in 'ZC9-3' than in 'Jizhen-2', and the photosynthetic, antioxidant, and osmoregulatory capacities of 'ZC9-3' were stronger than those of 'Jizhen-2'. Metabolome analysis revealed a total of 95 and 156 differentially accumulated metabolites in 'Jizhen-2' and 'ZC9-3' under drought stress, respectively. The up-regulated metabolites in the two cultivars were mainly amino acids and derivatives. Transcriptome analysis revealed that there were more differentially expressed genes and transcription factors in 'ZC9-3' than in 'Jizhen-2' throughout the drought treatment. Metabolomic and transcriptomic analysis revealed that amino acid biosynthesis pathways play key roles in mediating drought resistance in apple rootstocks. A total of 13 metabolites, including L-α-aminoadipate, L-homoserine, L-threonine, L-isoleucine, L-valine, L-leucine, (2S)-2-isopropylmalate, anthranilate, L-tryptophan, L-phenylalanine, L-tyrosine, L-glutamate, and L-proline, play an important role in the difference in drought resistance between 'ZC9-3' and 'Jizhen-2'. In addition, 13 genes encoding O-acetylserine-(thiol)-lyase, S-adenosylmethionine synthetase, ketol-acid isomeroreductase, dihydroxyacid dehydratase, isopropylmalate isomerase, branched-chain aminotransferase, pyruvate kinase, 3-dehydroquinate dehydratase/shikimate 5-dehydrogenase, N-acetylglutamate-5-P-reductase, and pyrroline-5-carboxylate synthetase positively regulate the response of 'ZC9-3' to drought stress. CONCLUSIONS: This study enhances our understanding of the response of apple rootstocks to drought stress at the physiological, metabolic, and transcriptional levels and provides key insights that will aid the cultivation of drought-resistant apple rootstock cultivars. Especially, it identifies key metabolites and genes underlying the drought resistance of apple rootstocks.


Assuntos
Malus , Malus/genética , Secas , Perfilação da Expressão Gênica , Metabolômica , Metaboloma , Aminoácidos , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
18.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542284

RESUMO

Climate change, particularly drought stress, significantly impacts plant growth and development, necessitating the development of resilient crops. This study investigated physiological and molecular modulations to drought stress between diploid parent species and their polyploid progeny in the Brassica species. While no significant phenotypic differences were observed among the six species, drought stress reduced growth parameters by 2.4% and increased oxidative stress markers by 1.4-fold. Drought also triggered the expression of genes related to stress responses and led to the accumulation of specific metabolites. We also conducted the first study of perfluorooctane sulfonic acid (PFOS) levels in leaves as a drought indicator. Lower levels of PFOS accumulation were linked to plants taking in less water under drought conditions. Both diploid and polyploid species responded to drought stress similarly, but there was a wide range of variation in their responses. In particular, responses were less variable in polyploid species than in diploid species. This suggests that their additional genomic components acquired through polyploidy may improve their flexibility to modulate stress responses. Despite the hybrid vigor common in polyploid species, Brassica polyploids demonstrated intermediate responses to drought stress. Overall, this study lays the framework for future omics-level research, including transcriptome and proteomic studies, to deepen our understanding of drought tolerance mechanisms in Brassica species.


Assuntos
Brassica , Brassica/genética , Estresse Fisiológico/genética , Secas , Proteômica , Poliploidia
19.
Gene ; 913: 148398, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518901

RESUMO

The gene encoding the specific phosphohydrolase LONELY GUY (LOG) plays an important role in the activation of cytokinin and the stress response in plant cells. However, the role of LOG genes in castor bean (Ricinus communis) has not been reported. In this study, we identified a total of nine members of the LOG gene family in the castor bean genome and investigated the upregulated expression of the RcLOG5 gene using transcriptome data analysis. We found that the RcLOG5 gene exhibited tissue-specific expression and was activated by polyethylene glycol, NaCl, low temperature, and abscisic acid stress. The subcellular localization results showed that the RcLOG5 gene is mainly located in the cytoplasm. Based on phenotypic and physiological indicators, namely root length, peroxidase activity, and malondialdehyde content, overexpression of the RcLOG5 gene not only improved the drought resistance, salt tolerance, and cold tolerance of transgenic Arabidopsis, but also shortened the dormancy period of the transgenic plants. Transcriptomic sequencing revealed that the overexpression of the RcLOG5 gene led to the enrichment of differentially expressed genes in the glutathione metabolism pathway in transgenic Arabidopsis. Moreover, the overexpression plants had higher levels of glutathione and a higher GSH/GSSG ratio under stress compared to the wild type. Therefore, we inferred that the RcLOG5 gene may be responsible for regulating cell membrane homeostasis by reducing the accumulation of reactive oxygen species through the glutathione pathway. Overall, the overexpression of the RcLOG5 gene positively regulated the stress resistance of transgenic Arabidopsis. This study provides valuable gene resources for breeding stress-tolerant castor bean varieties.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Resposta ao Choque Frio/genética , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glutationa/genética
20.
Sci Rep ; 14(1): 7508, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553545

RESUMO

The frequent occurrence of extreme weather events is one of the future prospects of climate change, and how ecosystems respond to extreme drought is crucial for response to climate change. Taking the extreme drought event in the Tropic of Cancer (Yunnan section) during 2009-2010 as a case study, used the standardized precipitation evapotranspiration index to analyse the impact of extreme drought on enhanced vegetation index (EVI), leaf area index (LAI) and gross primary productivity (GPP), and to analyzed the post extreme drought vegetation recovery status. The results indicate the following: (1) Due to the cumulative effects of drought and vegetation phenology, vegetation growth in the months of March to May in 2010 was more severely affected. (2) Compared to EVI and LAI, GPP is more sensitive to drought and can accurately indicate areas where drought has impacted vegetation. (3) Following an extreme drought event, 70% of the vegetation can recover within 3 months, while 2.87-6.57% of the vegetation will remain unrecovered after 6 months. (4) Cropland and grassland show the strongest response, with longer recovery times, while woodland and shrubland exhibit weaker responses and shorter recovery times. This study provides a reference for the effects of extreme drought on vegetation.


Assuntos
Ecossistema , Neoplasias , Humanos , China , Mudança Climática , Secas , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA