Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 169(7): 150, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898334

RESUMO

Secoviruses are single-stranded RNA viruses that infect plants. In the present study, we identified 61 putative novel secoviral genomes in various plant species by mining publicly available plant transcriptome data. These viral sequences represent the genomes of 13 monopartite and 48 bipartite secovirids. The genome sequences of 52 secovirids were coding-complete, and nine were partial. Except for small open reading frames (ORFs) determined in waikaviral genomes and RNA2 of torradoviruses, all of the recovered genomes/genome segments contained a large ORF encoding a polyprotein. Based on genome organization and phylogeny, all but three of the novel secoviruses were assigned to different genera. The genome organization of two identified waika-like viruses resembled that of the recently identified waika-like virus Triticum aestivum secovirus. Phylogenetic analysis revealed a pattern of host-virus co-evolution in a few waika- and waika-like viruses and increased phylogenetic diversity of nepoviruses. The study provides a basis for further investigation of the biological properties of these novel secoviruses.


Assuntos
Variação Genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Secoviridae , Transcriptoma , Genoma Viral/genética , Fases de Leitura Aberta/genética , Secoviridae/genética , Secoviridae/classificação , Doenças das Plantas/virologia , Plantas/virologia , RNA Viral/genética
2.
Arch Virol ; 169(3): 68, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453712

RESUMO

The complete genome sequence of a novel sadwavirus infecting cattleya orchids in South East Queensland is described. Isometric virions of c. 27 nm diameter were observed in sap extracts viewed under a transmission electron microscope, and the genome sequence of this virus was determined by high-throughput sequencing. The viral genome consists of two RNA components, 5,910 and 4,435 nucleotides (nt) in length, each encoding a long polyprotein, with predicted cleavage sites at H/Y, E/G, Q/S, and Q/G for the RNA1 and T/G for the RNA2 translation products, respectively. RNA2 has an additional small ORF of 684 nt near the 3' untranslated region. Phylogenetic analysis based on an amino acid sequence alignment of the Pro-Pol region suggested that this virus is most closely related to pineapple secovirus A, a member of the subgenus Cholivirus, but warrants classification as a member of a new species because it exhibited no more than 64% amino acid identity in pairwise sequence comparisons. Because of the prominent purple ringspots that were observed on the leaves of some of the plants, we propose the name "cattleya purple ringspot virus" for this virus (suggested species name: "Sadwavirus cattleyacola").


Assuntos
RNA Viral , Secoviridae , RNA Viral/genética , Filogenia , Sequência de Aminoácidos , Secoviridae/genética , Vírion , Genoma Viral
3.
Plant Cell Physiol ; 65(3): 447-459, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38174432

RESUMO

Tomato torrado virus (ToTV) is a type member of the Torradovirus genus in the Secoviridae family known to cause severe necrosis in susceptible tomato varieties. ToTV also infects other Solanaceae plants, including Nicotiana benthamiana, where it induces distinctive disease symptoms: plant growth drop with the emergence of spoon-like malformed systemic leaves. Virus-induced post-transcriptional gene silencing (PTGS) is significant among plant defense mechanisms activated upon virus invasion. The PTGS, however, can be counteracted by suppressors of RNA silencing commonly found in viruses, which efficiently disrupt the antiviral defense of their host. Here, we addressed the question of PTGS antiviral activity and its suppression in N. benthamiana during ToTV infection-a phenomenon not described for any representative from the Torradovirus genus so far. First, we showed that neither the Vp26-a necrosis-inducing pathogenicity determinant of ToTV-nor other structural viral proteins limited the locally induced PTGS similar to p19, a well-characterized potent suppressor of RNA silencing of tombusviruses. Moreover, by employing wild-type and transgenic lines of N. benthamiana with suppressed Dicer-like 2 (DCL2), Dicer-like 4 (DCL4), Argonaute 2 and RNA-dependent RNA polymerase 6 (RDR6) proteins, we proved their involvement in anti-ToTV defense. Additionally, we identified DCL4 as the major processor of ToTV-derived siRNA. More importantly, our results indicate the essential role of the Suppressor of Gene Silencing 3 (SGS3)/RDR6 pathway in anti-ToTV defense. Finally, we conclude that ToTV might not require a potent RNA silencing suppressor during infection of the model plant N. benthamiana.


Assuntos
Nicotiana , Secoviridae , Nicotiana/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Plantas/metabolismo , Secoviridae/metabolismo , Interferência de RNA , Necrose/genética , Antivirais , Doenças das Plantas
4.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958540

RESUMO

Aconitum carmichaelii is a herbaceous herb indigenous to China that has been cultivated for traditional medicine for centuries. Virus-like symptoms of A. carmichaelii plants were observed on leaves in some A. carmichaelii plantations in Zhanyi and Wuding Counties, Yunnan Province, southwest China. High-throughput sequencing (HTS) was performed on 28 symptomatic plants, and the results revealed infection with 11 viruses, including 2 novel viruses and 9 previously described viruses: Aconitum amalgavirus 1 (AcoAV-1), aconite virus A (AcVA), cucumber mosaic virus (CMV), currant latent virus (CuLV), apple stem grooving virus (ASGV), chilli veinal mottle virus (ChiVMV), tomato spotted wilt orthotospovirus (TSWV), tobacco vein distorting virus (TVDV), and potato leafroll virus (PLRV). Two novel viruses tentatively named Aconitum potyvirus 1 and Aconitum betapartitivirus 1, were supported by sequence and phylogenetic analysis results of their genomes. We proposed the names Potyvirus aconiti and Betapartitivirus aconiti. RT-PCR assays of 142 plants revealed the predominance and widespread distribution of CMV, AcVA, and AcoPV-1 in plantations. The detection of isolates of CuLV, ASGV, ChiVMV, TSWV, TVDV, and PLRV infections for the first time in A. carmichaelii expands their known host ranges.


Assuntos
Aconitum , Cucumovirus , Infecções por Citomegalovirus , Potyvirus , Secoviridae , Vírus , Filogenia , Viroma , China
5.
Arch Microbiol ; 205(5): 186, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043042

RESUMO

Gymnema sylvestre is a tropical climber species that is widely used in traditional medicine since ages. In the present study, the transcriptome datasets of G. sylvestre available in public domain were screened for the presence of novel plant viral sequences and a putative novel virus tentatively named as Gymnema sylvestre virus 1 (GysV1) was identified. Coding-complete genome segments of GysV1 that are 6.35 kb (RNA1) and 3.98 kb (RNA2) long possessed a single large open reading frame coding for a polyprotein. BLASTp, sequence identity and phylogenetic analyses revealed the relatedness of GysV1 to the members of the subgenus Cholivirus (genus Sadwavirus; family Secoviridae; order Picornavirales). Based on the species demarcation criteria of the family Secoviridae, GysV1 can be regarded as a new cholivirus member.


Assuntos
Gymnema sylvestre , Vírus de RNA , Secoviridae , Gymnema sylvestre/genética , Transcriptoma , Filogenia , Secoviridae/genética , Vírus de RNA/genética , Genoma Viral
6.
Arch Virol ; 168(4): 107, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899282

RESUMO

Burdock (Arctium lappa L.) is not only a popular vegetable crop but also an important medicinal plant. In burdock plants with symptoms of leaf mosaic, a novel torradovirus tentatively named "burdock mosaic virus" (BdMV) was identified by high-throughput sequencing. The complete genomic sequence of BdMV was further determined using RT-PCR and the rapid amplification of cDNA ends (RACE) method. The genome is composed of two positive-sense single-stranded RNAs. RNA1 (6991 nt) encodes a polyprotein of 2186 aa, and RNA2 (4700 nt) encodes a protein of 201 aa and a polyprotein of 1212 aa that is predicted to be processed into one movement protein (MP) and three coat proteins (CPs). The Pro-Pol region of RNA1 and the CP region of RNA2 shared the highest amino acid sequence identity of 74.0% and 70.6%, respectively, with the corresponding sequences of lettuce necrotic leaf curl virus (LNLCV) isolate JG3. Phylogenetic analysis based on the amino acid sequences of the Pro-Pol and CP regions showed that BdMV clustered with other non-tomato-infecting torradoviruses. Taken together, these results suggest that BdMV is a new member of the genus Torradovirus.


Assuntos
Arctium , Vírus do Mosaico , Secoviridae , Arctium/genética , Filogenia , Genoma Viral , Secoviridae/genética , Genômica , Vírus do Mosaico/genética , Poliproteínas/genética , Doenças das Plantas
7.
Arch Virol ; 167(12): 2801-2804, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269415

RESUMO

The complete genome sequence of pineapple secovirus B (PSV-B), a new virus infecting pineapple (Ananas comosus) on the island of Oahu, Hawaii, was determined by high-throughput sequencing (HTS). The genome comprises two RNAs that are 5,956 and 3,808 nt long, excluding the 3'-end poly-A tails, both coding for a single large polyprotein. The RNA1 polyprotein contains five conserved domains associated with replication, while the RNA2 polyprotein is cleaved into the movement protein and coat protein. PSV-B is representative of a new species in the subgenus Cholivirus (genus Sadwavirus; family Secoviridae), as the level of amino acid sequence identity to recognized members of this subgenus in the Pro-Pol and coat protein regions is below currently valid species demarcation thresholds.


Assuntos
Ananas , Secoviridae , RNA Viral/genética , RNA Viral/metabolismo , Filogenia , Secoviridae/genética , Genoma Viral , Poliproteínas/genética
8.
Arch Virol ; 167(12): 2529-2543, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36042138

RESUMO

Plant-infecting viruses of the genus Nepovirus (subfamily Comovirinae, family Secoviridae, order Picornavirales) are bipartite positive-strand RNA viruses with each genomic RNA encoding a single large polyprotein. The RNA1-encoded 3C-like protease cleaves the RNA1 polyprotein at five sites and the RNA2 polyprotein at two or three sites, depending on the nepovirus. The specificity of nepovirus 3C-like proteases is notoriously diverse, making the prediction of cleavage sites difficult. In this study, the position of nepovirus cleavage sites was systematically re-evaluated using alignments of the RNA1 and RNA2 polyproteins, phylogenetic relationships of the proteases, and sequence logos to examine specific preferences for the P6 to P1' positions of the cleavage sites. Based on these analyses, the positions of previously elusive cleavage sites, notably the 2a-MP cleavage sites of subgroup B nepoviruses, are now proposed. Distinct nepovirus protease clades were identified, each with different cleavage site specificities, mostly determined by the nature of the amino acid at the P1 and P1' positions of the cleavage sites, as well as the P2 and P4 positions. The results will assist the prediction of cleavage sites for new nepoviruses and help refine the taxonomy of nepoviruses. An improved understanding of the specificity of nepovirus 3C-like proteases can also be used to investigate the cleavage of plant proteins by nepovirus proteases and to understand their adaptation to a broad range of hosts.


Assuntos
Nepovirus , Secoviridae , Nepovirus/genética , Poliproteínas/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Filogenia , RNA Viral/genética , RNA Viral/química , Proteínas Virais/metabolismo , Secoviridae/genética , Endopeptidases/genética
9.
Virus Genes ; 58(6): 598-604, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36040568

RESUMO

Secoviruses are mono-/bipartite plant-infecting, icosahedral RNA viruses that incite economically important diseases in plants. In the present study, nine secoviruses tentatively named as Ananas comosus secovirus (AcSV), Artocarpus altilis secovirus (AaSV), Boehmeria nivea secovirus (BnSV), Gynostemma pentaphyllum secovirus (GpSV), Orobanche cernua secovirus (OcSV), Paris polyphylla secovirus 1 (PpSV1), Paris polyphylla secovirus 2 (PpSV2), Rhododendron delavayi secovirus (RdSV), and Yucca gloriosa secovirus (YgSV) were identified by probing publicly available transcriptomes of eight plant species. Coding-complete genome/genome segments of all the identified viruses encoding a polyprotein were recovered. Two of the nine identified viruses-AcSV and GpSV were discovered in few of the small RNA libraries of respective plant species. Putative cleavage sites were predicted in polyproteins encoded by AcSV, GpSV, PpSV2 and YgSV genome segments. Phylogenetic and sequence identity analyses revealed that AcSV, GpSV and YgSV, PpSV1 and RdSV putatively belong to the genera- Sadwavirus (sub genus: Cholivirus), Fabavirus, Nepovirus and Waikavirus, respectively, while AaSV, BnSV, and PpSV2 may represent a distinct group of viruses within the family Secoviridae as they could not conclusively be assigned to a single genus.


Assuntos
Secoviridae , Secoviridae/genética , Filogenia , Genoma Viral/genética , Transcriptoma , Setor Público , RNA Viral/genética , Poliproteínas/genética , Doenças das Plantas
10.
Mol Pharm ; 19(5): 1573-1585, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35333531

RESUMO

In situ vaccination for cancer immunotherapy uses intratumoral administration of small molecules, proteins, nanoparticles, or viruses that activate pathogen recognition receptors (PRRs) to reprogram the tumor microenvironment and prime systemic antitumor immunity. Cowpea mosaic virus (CPMV) is a plant virus that─while noninfectious toward mammals─activates mammalian PRRs. Application of CPMV as in situ vaccine (ISV) results in a potent and durable efficacy in tumor mouse models and canine patients; data indicate that CPMV outperforms small molecule PRR agonists and other nonrelated plant viruses and virus-like particles (VLPs). In this work, we set out to compare the potency of CPMV versus other plant viruses from the Secoviridae. We developed protocols to produce and isolate cowpea severe mosaic virus (CPSMV) and tobacco ring spot virus (TRSV) from plants. CPSMV, like CPMV, is a comovirus with genome and protein homology, while TRSV lacks homology and is from the genus nepovirus. When applied as ISV in a mouse model of dermal melanoma (using B16F10 cells and C57Bl6J mice), CPMV outperformed CPSMV and TRSV─again highlighting the unique potency of CPMV. Mechanistically, the increased potency is related to increased signaling through toll-like receptors (TLRs)─in particular, CPMV signals through TLR2, 4, and 7. Using knockout (KO) mouse models, we demonstrate here that all three plant viruses signal through the adaptor molecule MyD88─with CPSMV and TRSV predominantly activating TLR2 and 4. CPMV induced significantly more interferon ß (IFNß) compared to TRSV and CPSMV; therefore, IFNß released upon signaling through TLR7 may be a differentiator for the observed potency of CPMV-ISV. Additionally, CPMV induced a different temporal pattern of intratumoral cytokine generation characterized by significantly increased inflammatory cytokines 4 days after the second of 2 weekly treatments, as if CPMV induced a "memory response". This higher, longer-lasting induction of cytokines may be another key differentiator that explains the unique potency of CPMV-ISV.


Assuntos
Vacinas Anticâncer , Comovirus , Neoplasias , Vírus de Plantas , Secoviridae , Animais , Citocinas , Cães , Humanos , Imunoterapia , Mamíferos , Camundongos , Receptor 2 Toll-Like , Microambiente Tumoral
11.
Viruses ; 13(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834945

RESUMO

Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus-host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood in perennial fruit crops. Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. After validation of the infection status of the experimental vines by high-throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically deregulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptomless. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines, whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection.


Assuntos
Frutas/virologia , Nepovirus , Doenças das Plantas/virologia , Genótipo , Transtornos do Crescimento , Sequenciamento de Nucleotídeos em Larga Escala , Nepovirus/genética , Filogenia , Secoviridae , Nicotiana/virologia , Transcriptoma , Vitis/virologia
12.
Arch Virol ; 166(12): 3473-3476, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34605994

RESUMO

We herein present the complete genome sequence of codonopsis torradovirus A (CoTVA), which was isolated from Codonopsis lanceolata (deodeok) in Gangwon-do, South Korea. The CoTVA genome contains two positive-sense RNA segments, namely RNA1 (6922 nucleotides), which encodes a predicted polyprotein, and RNA2 (4613 nucleotides), which encodes a movement protein and coat proteins (CPs). The proteinase-polymerase (Pro-Pol) and CP amino acid sequences were 75% and 54% identical, respectively, to those of motherwort yellow mosaic virus. Pairwise comparisons of the Pro-Pol and CP sequences revealed that the virus described in this study should be considered a member of a new torradovirus species. Phylogenetic analysis of the Pro-Pol sequence encoded by RNA1 and the CP region encoded by RNA2 indicated that CoTVA is a new member of the genus Torradovirus in the family Secoviridae. CoTVA is the first torradovirus detected in Codonopsis lanceolata.


Assuntos
Codonopsis , Secoviridae , Genoma Viral , Filogenia , Doenças das Plantas , RNA Viral/genética , Secoviridae/genética
13.
Virus Res ; 298: 198397, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744338

RESUMO

High throughput sequencing was performed on virion-associated nucleic acids (VANA) from a pool of fifty asymptomatic rough bluegrasses (Poa trivialis L.) collected in a Belgian grazed pasture. Bioinformatics analyses produced some contigs presenting similarities with secovirid genomes, in particular nepoviruses and waikaviruses. Three distinct positive-sense single-stranded RNAs including 5' and 3' UTR were reconstructed and they represented two novel viruses infecting rough bluegrass, for which the provisional names poaceae Liege nepovirus A (PoLNVA, 7298 nt for RNA1 and 4263 nt for RNA2) and poaceae Liege virus 1 (PoLV1, 11,623 nt) were proposed. Compared to other Secoviridae members, the highest amino acid identity reached 90.7 % and 66.7 % between PoLNVA and nepoviruses for the Pro-Pol and CP regions respectively, while PoLV1 presented the highest amino acid identity with waikaviruses but with lower identities, i.e. 41.2 % for Pro-Pol and 25.8 % for CP regions, far below the ICTV demarcation criteria for novel secovirid. Based on sequence identity and phylogenetic analyses, PoLNVA was proposed to belong to the genus Nepovirus and PoLV1 as an unclassified secovirids. Detection of the two novel viruses was confirmed in high prevalence in rough bluegrass and ten other wild Poaceae species (Agropyron repens, Agrostis capillaris, Apera spica-venti, Anthoxanthum odoratum, Cynosorus cristatus, Festuca rubra, Holcus lanatus, Lolium perenne, Phleum bertolini and Phleum pratense) by RT-PCR and Sanger sequencing, revealing a diverse host range within Poaceae for these novel secovirids. Seed transmission was evaluated and confirmed for PoLNVA.


Assuntos
Nepovirus , Secoviridae , Aminoácidos , Bélgica , Nepovirus/genética , Filogenia , Doenças das Plantas , Poaceae , RNA Viral/genética
14.
Viruses ; 12(10)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092281

RESUMO

Green fluorescent protein (GFP)-tagged viruses are basic research tools widely applied in studies concerning molecular determinants of disease during virus infection. Here, we described a new generation of genetically stable infectious clones of tomato torrado virus isolate Kra (ToTVpJL-Kra) that could infect Nicotiana benthamiana and Solanum lycopersicum. Importantly, a modified variant of the viral RNA2-with inserted sGFP (forming, together with virus RNA1, into ToTVpJL-KraGFP)-was engineered as well. RNA2 of ToTVpJL-KraGFP was modified by introducing an additional open reading frame (ORF) of sGFP flanked with an amino acid-coding sequence corresponding to the putative virus protease recognition site. Our further analysis revealed that sGFP-tagged ToTV-Kra was successfully passaged by mechanical inoculation and spread systemically in plants. Therefore, the clone might be applied in studying the in vivo cellular, tissue, and organ-level localization of ToTV during infection. By performing whole-plant imaging, followed by fluorescence and confocal microscopy, the presence of the ToTVpJL-KraGFP-derived fluorescence signal was confirmed in infected plants. All this information was verified by sGFP-specific immunoprecipitation and western blot analysis. The molecular biology of the torradovirus-plant interaction is still poorly characterized; therefore, the results obtained here opened up new possibilities for further research. The application of sGFP-tagged virus infectious clones and their development method can be used for analyzing plant-virus interactions in a wide context of plant pathology.


Assuntos
Vetores Genéticos , Proteínas de Fluorescência Verde , Vírus de Plantas/metabolismo , Secoviridae/genética , Interações entre Hospedeiro e Microrganismos , Microscopia de Fluorescência/métodos , Patologia Vegetal/instrumentação
15.
Sci Rep ; 10(1): 13555, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782359

RESUMO

Lithospermum erythrorhizon is a medicinal plant that produces shikonin, a red lipophilic naphthoquinone derivative that accumulates exclusively in roots. The biosynthetic steps required to complete the naphthalene ring of shikonin and its mechanism of secretion remain unclear. Multiple omics studies identified several candidate genes involved in shikonin production. The functions of these genes can be evaluated using virus-induced gene silencing (VIGS) systems, which have been shown advantageous in introducing iRNA genes into non-model plants. This study describes the development of a VIGS system using an apple latent spherical virus (ALSV) vector and a target gene, phytoene desaturase (LePDS1). Virus particles packaged in Nicotiana benthamiana were inoculated into L. erythrorhizon seedlings, yielding new leaves with albino phenotype but without disease symptoms. The levels of LePDS1 mRNAs were significantly lower in the albino plants than in mock control or escape plants. Virus-derived mRNA was detected in infected plants but not in escape and mock plants. Quantitative PCR and deep sequencing analysis indicated that transcription of another hypothetical PDS gene (LePDS2) also decreased in the defective leaves. Virus infection, however, had no effect on shikonin production. These results suggest that virus-based genetic transformation and the VIGS system silence target genes in soil-grown L. erythrorhizon.


Assuntos
Regulação da Expressão Gênica de Plantas , Inativação Gênica , Lithospermum/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/antagonistas & inibidores , Plantas Medicinais/genética , Secoviridae/genética , Lithospermum/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Plantas Medicinais/virologia , Secoviridae/patogenicidade
16.
Virus Genes ; 56(1): 67-77, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31646461

RESUMO

Apple latent spherical virus (ALSV) is a latent virus with wide host range of plant species. In the present study, we prepared ALSV vectors expressing RNA silencing suppressors (RSSs) from eight plant viruses: P19 of carnation Italian ring spot virus (tombusvirus), 2b of peanut stunt virus (cucumovirus), NSs of tomato spotted wilt virus (tospovirus), HC-Pro of bean yellow mosaic virus (potyvirus), γb of barley stripe mosaic virus (hordeivirus), P15 of peanut clump virus (pecluvirus), P1 of rice yellow mottle virus (sobemovirus), or P21 of beet yellows virus (closterovirus). These vectors were inoculated to Nicotiana benthamiana to investigate the effects of RSSs on the virulence and accumulation of ALSV. Among the vectors, ALSV expressing NSs (ALSV-NSs) developed severe mosaic symptoms in newly developed leaves followed by plant death. Infection of ALSV-γb induced characteristic concentric ringspot symptoms on leaves, and plants infected with ALSV-HC-Pro showed mosaic and dwarf symptoms. Infection of the other five ALSV vectors did not show symptoms. ELISA and immunoblot assay indicated that virus titer increased in leaves infected with ALSV-NSs, γb, HC-Pro, or P19. RT-qPCR indicated that the amount of ALSV in plants infected with ALSV-NSs was increased by approximately 45 times compared with that of wtALSV without expression of any RSS. When ALSV-P19, NSs, or HC-Pro was inoculated to Cucumis sativus plants, none of these ALSV vectors induced symptoms, but accumulation of ALSV in plants infected with ALSV-NSs was increased, suggesting that functions of RSSs on virulence and accumulation of ALSV depend on host species.


Assuntos
Vetores Genéticos/genética , Doenças das Plantas/virologia , Vírus de Plantas/metabolismo , Secoviridae/genética , Proteínas Virais/metabolismo , Expressão Gênica , Vetores Genéticos/metabolismo , Folhas de Planta/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , RNA Viral/genética , RNA Viral/metabolismo , Secoviridae/metabolismo , Nicotiana/virologia , Proteínas Virais/genética
17.
Methods Mol Biol ; 2028: 273-288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31228121

RESUMO

The apple latent spherical virus (ALSV), originally isolated from an apple tree in Japan, is a small spherical virus with a diameter of 25 nm and comprises a bisegmented, single-stranded RNA genome (RNA1 and RNA2) and three different capsid proteins (Vp25, Vp20, and Vp24). The virus can experimentally infect a broad range of plants including, not only model plants (Arabidopsis thaliana and Nicotiana species) but also economically important crops such as cucumber, soybean, tomato, fruit trees, and flowers. ALSV has been used as an effective plant virus vector for virus-induced gene silencing (VIGS) to assess gene functions because the virus infects most of the host plants without showing any symptoms and induces a uniform knockout phenotype in infected plants. Moreover, the VIGS persists throughout plant growth in infected plants. Here, we show that genetically engineered ALSV vectors (ALSV vaccines) containing a partial genome sequence of pathogenic viruses display a high degree of cross-protection against the challenge inoculation of the corresponding pathogenic viruses. Treatment effects can also be expected in virus-infected plants by subsequent inoculation with ALSV vaccine.


Assuntos
Inativação Gênica , Vírus de Plantas/imunologia , Interferência de RNA , Secoviridae/genética , Secoviridae/imunologia , Vacinas , Vacinas Virais/imunologia , Proteção Cruzada , Fenótipo
18.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541838

RESUMO

Strawberry mottle virus (SMoV) belongs to the family Secoviridae (order Picornavirales) and has a bipartite genome with each RNA encoding one polyprotein. All characterized secovirids encode a single protease related to the picornavirus 3C protease. The SMoV 3C-like protease was previously shown to cut the RNA2 polyprotein (P2) at a single site between the predicted movement protein and coat protein (CP) domains. However, the SMoV P2 polyprotein includes an extended C-terminal region with a coding capacity of up to 70 kDa downstream of the presumed CP domain, an unusual characteristic for this family. In this study, we identified a novel cleavage event at a P↓AFP sequence immediately downstream of the CP domain. Following deletion of the PAFP sequence, the polyprotein was processed at or near a related PKFP sequence 40 kDa further downstream, defining two protein domains in the C-terminal region of the P2 polyprotein. Both processing events were dependent on a novel protease domain located between the two cleavage sites. Mutagenesis of amino acids that are conserved among isolates of SMoV and of the related Black raspberry necrosis virus did not identify essential cysteine, serine, or histidine residues, suggesting that the RNA2-encoded SMoV protease is not related to serine or cysteine proteases of other picorna-like viruses. Rather, two highly conserved glutamic acid residues spaced by 82 residues were found to be strictly required for protease activity. We conclude that the processing of SMoV polyproteins requires two viral proteases, the RNA1-encoded 3C-like protease and a novel glutamic protease encoded by RNA2.IMPORTANCE Many viruses encode proteases to release mature proteins and intermediate polyproteins from viral polyproteins. Polyprotein processing allows regulation of the accumulation and activity of viral proteins. Many viral proteases also cleave host factors to facilitate virus infection. Thus, viral proteases are key virulence factors. To date, viruses with a positive-strand RNA genome are only known to encode cysteine or serine proteases, most of which are related to the cellular papain, trypsin, or chymotrypsin proteases. Here, we characterize the first glutamic protease encoded by a plant virus or by a positive-strand RNA virus. The novel glutamic protease is unique to a few members of the family Secoviridae, suggesting that it is a recent acquisition in the evolution of this family. The protease does not resemble known cellular proteases. Rather, it is predicted to share structural similarities with a family of fungal and bacterial glutamic proteases that adopt a lectin fold.


Assuntos
Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Poliproteínas/metabolismo , Secoviridae/enzimologia , Secoviridae/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/virologia , Ácido Glutâmico/metabolismo , Proteólise , RNA Viral/genética , Alinhamento de Sequência , Nicotiana/virologia
19.
Planta ; 248(6): 1431-1441, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30128602

RESUMO

MAIN CONCLUSION: Gentian plants ( Gentiana triflora ) severely restrict apple latent spherical virus (ALSV) invasion to the gametes (pollens and ovules) and block seed transmission to progeny plants. Early flowering of horticultural plants can be induced by infection of ALSV vector expressing Flowering Locus T (FT) gene. In the present study, flowering of gentian plants was induced by infection with an ALSV vector expressing a gentian FT gene and the patterns of seed transmission of ALSV in gentian were compared with those in apple and Nicotiana benthamiana. Infection of gentian progeny plants with ALSV was examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and enzyme-linked immunosorbent assay (ELISA). ALSV was not transmitted to the progeny gentian plants, whereas small proportions of apple and N. benthamiana progeny plants are infected with ALSV. The in situ hybridization analyses indicated that ALSVs are not present in gentian pollen and ovules, but detected in most of gametes in apple and N. benthamiana. Collectively, these results suggest that seed transmission of ALSV is blocked in gentian plants through the unknown barriers present in their gametes. On the other hand, apple and N. benthamiana seem to minimize ALSV seed transmission by inhibiting viral propagation in embryos.


Assuntos
Gentiana/virologia , Malus/virologia , Doenças das Plantas/virologia , Secoviridae/fisiologia , Gentiana/citologia , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/virologia , Malus/citologia , Doenças das Plantas/prevenção & controle , Reação em Cadeia da Polimerase , Secoviridae/genética , Plântula/citologia , Plântula/virologia , Sementes/citologia , Sementes/virologia , Nicotiana/citologia , Nicotiana/virologia
20.
Arch Virol ; 154(5): 899-907, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19350366

RESUMO

The order Picornavirales includes several plant viruses that are currently classified into the families Comoviridae (genera Comovirus, Fabavirus and Nepovirus) and Sequiviridae (genera Sequivirus and Waikavirus) and into the unassigned genera Cheravirus and Sadwavirus. These viruses share properties in common with other picornavirales (particle structure, positive-strand RNA genome with a polyprotein expression strategy, a common replication block including type III helicase, a 3C-like cysteine proteinase and type I RNA-dependent RNA polymerase). However, they also share unique properties that distinguish them from other picornavirales. They infect plants and use specialized proteins or protein domains to move through their host. In phylogenetic analysis based on their replication proteins, these viruses form a separate distinct lineage within the picornavirales branch. To recognize these common properties at the taxonomic level, we propose to create a new family termed "Secoviridae" to include the genera Comovirus, Fabavirus, Nepovirus, Cheravirus, Sadwavirus, Sequivirus and Waikavirus. Two newly discovered plant viruses share common properties with members of the proposed family Secoviridae but have distinct specific genomic organizations. In phylogenetic reconstructions, they form a separate sub-branch within the Secoviridae lineage. We propose to create a new genus termed Torradovirus (type species, Tomato torrado virus) and to assign this genus to the proposed family Secoviridae.


Assuntos
Filogenia , Vírus de Plantas/classificação , Vírus de RNA/classificação , Genoma Viral , Vírus de Plantas/genética , Vírus de RNA/genética , RNA Viral/genética , Secoviridae/classificação , Secoviridae/genética , Análise de Sequência de RNA , Sequiviridae/classificação , Sequiviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA