Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
J Physiol ; 602(6): 1065-1083, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38389307

RESUMO

Type 1 diabetes is a disease of the endocrine pancreas; however, it also affects exocrine function. Although most studies have examined the effects of diabetes on acinar cells, much less is known regarding ductal cells, despite their important protective function in the pancreas. Therefore, we investigated the effect of diabetes on ductal function. Diabetes was induced in wild-type and cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice following an i.p. administration of streptozotocin. Pancreatic ductal fluid and HCO3 - secretion were determined using fluid secretion measurements and fluorescence microscopy, respectively. The expression of ion transporters was measured by real-time PCR and immunohistochemistry. Transmission electron microscopy was used for the morphological characterization of the pancreas. Serum secretin and cholecystokinin levels were measured by an enzyme-linked immunosorbent assay. Ductal fluid and HCO3 - secretion, CFTR activity, and the expression of CFTR, Na+ /H+ exchanger-1, anoctamine-1 and aquaporin-1 were significantly elevated in diabetic mice. Acute or chronic glucose treatment did not affect HCO3 - secretion, but increased alkalizing transporter activity. Inhibition of CFTR significantly reduced HCO3 - secretion in both normal and diabetic mice. Serum levels of secretin and cholecystokinin were unchanged, but the expression of secretin receptors significantly increased in diabetic mice. Diabetes increases fluid and HCO3 - secretion in pancreatic ductal cells, which is associated with the increased function of ion and water transporters, particularly CFTR. KEY POINTS: There is a lively interaction between the exocrine and endocrine pancreas not only under physiological conditions, but also under pathophysiological conditions The most common disease affecting the endocrine part is type-1 diabetes mellitus (T1DM), which is often associated with pancreatic exocrine insufficiency Compared with acinar cells, there is considerably less information regarding the effect of diabetes on pancreatic ductal epithelial cells, despite the fact that the large amount of fluid and HCO3 - produced by ductal cells is essential for maintaining normal pancreatic functions Ductal fluid and HCO3 - secretion increase in T1DM, in which increased cystic fibrosis transmembrane conductance regulator activation plays a central role. We have identified a novel interaction between T1DM and ductal cells. Presumably, the increased ductal secretion represents a defence mechanism in the prevention of diabetes, but further studies are needed to clarify this issue.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Camundongos , Bicarbonatos/metabolismo , Colecistocinina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ductos Pancreáticos/metabolismo , Secretina/metabolismo
2.
J Clin Endocrinol Metab ; 108(12): e1597-e1602, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37335970

RESUMO

CONTEXT: The hormone secretin (SCT) is released from intestinal S cells and acts via the SCT receptor (SCTR). Circulating SCT levels increase after Roux-en-Y gastric bypass surgery and have been associated with massive weight loss and high remission rates of type 2 diabetes (T2D) linked to these operations. Exogenous SCT was recently shown to reduce ad libitum food intake in healthy volunteers. OBJECTIVE: To understand SCT biology and its potential role in T2D pathophysiology, we examined the intestinal mucosal expression profile of SCT and SCTR and evaluated the density of S cells along the intestinal tract of individuals with T2D and healthy controls. METHODS: Using immunohistochemistry and messenger RNA (mRNA) sequencing, we analyzed intestinal mucosa biopsies sampled along the small intestine at 30-cm intervals and from 7 well-defined anatomical sites along the large intestine (during 2 sessions of double-balloon enteroscopy) in 12 individuals with T2D and 12 healthy controls. RESULTS: Both groups exhibited a progressive and similar decrease in SCT and SCTR mRNA expression and S-cell density along the small intestine, with reductions of 14, 100, and 50 times, respectively, in the ileum compared to the duodenum (used as reference). Negligible amounts of SCTR and SCT mRNA, as well as low S-cell density, were found in the large intestine. No significant differences were observed between the groups. CONCLUSION: SCT and SCTR mRNA expression and S-cell density were abundant in the duodenum and decreased along the small intestine. Very low SCT and SCTR mRNA levels and S-cell numbers were observed in the large intestine, without aberrations in individuals with T2D compared to healthy controls.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Humanos , Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , RNA Mensageiro/metabolismo , Secretina/genética , Secretina/metabolismo , Transdução de Sinais/fisiologia
3.
Hepatology ; 77(6): 1849-1865, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799446

RESUMO

BACKGROUND AND AIMS: Secretin (SCT) and secretin receptor (SR, only expressed on cholangiocytes within the liver) play key roles in modulating liver phenotypes. Forkhead box A2 (FoxA2) is required for normal bile duct homeostasis by preventing the excess of cholangiocyte proliferation. Short-term administration of the SR antagonist (SCT 5-27) decreased ductular reaction and liver fibrosis in bile duct ligated and Mdr2 -/- [primary sclerosing cholangitis (PSC), model] mice. We aimed to evaluate the effectiveness and risks of long-term SCT 5-27 treatment in Mdr2 -/- mice. APPROACH AND RESULTS: In vivo studies were performed in male wild-type and Mdr2 -/- mice treated with saline or SCT 5-27 for 3 months and human samples from late-stage PSC patients and healthy controls. Compared with controls, biliary SCT/SR expression and SCT serum levels increased in Mdr2 -/- mice and late-stage PSC patients. There was a significant increase in ductular reaction, biliary senescence, liver inflammation, angiogenesis, fibrosis, biliary expression of TGF-ß1/VEGF-A axis, and biliary phosphorylation of protein kinase A and ERK1/2 in Mdr2 -/- mice. The biliary expression of miR-125b and FoxA2 decreased in Mdr2 -/- compared with wild-type mice, which was reversed by long-term SCT 5-27 treatment. In vitro , SCT 5-27 treatment of a human biliary PSC cell line decreased proliferation and senescence and SR/TGF-ß1/VEGF-A axis but increased the expression of miR-125b and FoxA2. Downregulation of FoxA2 prevented SCT 5-27-induced reduction in biliary damage, whereas overexpression of FoxA2 reduced proliferation and senescence in the human PSC cell line. CONCLUSIONS: Modulating the SCT/SR axis may be critical for managing PSC.


Assuntos
Colangite Esclerosante , MicroRNAs , Humanos , Masculino , Camundongos , Animais , Secretina/farmacologia , Secretina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular , Colangite Esclerosante/genética , Cirrose Hepática/metabolismo , Fígado/patologia , Camundongos Knockout , MicroRNAs/metabolismo , Modelos Animais de Doenças
4.
J Hepatol ; 78(1): 99-113, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987275

RESUMO

BACKGROUND & AIMS: Primary biliary cholangitis (PBC) is characterised by ductopenia, ductular reaction, impairment of anion exchanger 2 (AE2) and the 'bicarbonate umbrella'. Ductulo-canalicular junction (DCJ) derangement is hypothesised to promote PBC progression. The secretin (Sct)/secretin receptor (SR) axis regulates cystic fibrosis transmembrane receptor (CFTR) and AE2, thus promoting choleresis. We evaluated the role of Sct/SR signalling on biliary secretory processes and subsequent injury in a late-stage PBC mouse model and human samples. METHODS: At 32 weeks of age, female and male wild-type and dominant-negative transforming growth factor beta receptor II (late-stage PBC model) mice were treated with Sct for 1 or 8 weeks. Bulk RNA-sequencing was performed in isolated cholangiocytes from mouse models. RESULTS: Biliary Sct/SR/CFTR/AE2 expression and bile bicarbonate levels were reduced in late-stage PBC mouse models and human samples. Sct treatment decreased bile duct loss, ductular reaction, inflammation, and fibrosis in late-stage PBC models. Sct reduced hepatic bile acid levels, modified bile acid composition, and restored the DCJ and 'bicarbonate umbrella'. RNA-sequencing identified that Sct promoted mature epithelial marker expression, specifically anterior grade protein 2 (Agr2). Late-stage PBC models and human samples exhibited reduced biliary mucin 1 levels, which were enhanced by Sct treatment. CONCLUSION: Loss of Sct/SR signalling in late-stage PBC results in a faulty 'bicarbonate umbrella' and reduced Agr2-mediated mucin production. Sct restores cholangiocyte secretory processes and DCJ formation through enhanced mature cholangiocyte phenotypes and bile duct growth. Sct treatment may be beneficial for individuals with late-stage PBC. IMPACT AND IMPLICATIONS: Secretin (Sct) regulates biliary proliferation and bicarbonate secretion in cholangiocytes via its receptor, SR, and in mouse models and human samples of late-stage primary biliary cholangitis (PBC), the Sct/SR axis is blunted along with loss of the protective 'bicarbonate umbrella'. We found that both short- and long-term Sct treatment ameliorated ductular reaction, immune cell influx, and liver fibrosis in late-stage PBC mouse models. Importantly, Sct treatment promoted bicarbonate and mucin secretion and hepatic bile acid efflux, thus reducing cholestatic and toxic bile acid-associated injury in late-stage PBC mouse models. Our work perpetuates the hypothesis that PBC pathogenesis hinges on secretory defects, and restoration of secretory processes that promote the 'bicarbonate umbrella' may be important for amelioration of PBC-associated damage.


Assuntos
Cirrose Hepática Biliar , Secretina , Masculino , Feminino , Humanos , Camundongos , Animais , Recém-Nascido , Secretina/metabolismo , Cirrose Hepática Biliar/metabolismo , Bicarbonatos/metabolismo , Via Secretória , Regulador de Condutância Transmembrana em Fibrose Cística , Ductos Biliares/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Ácidos e Sais Biliares/metabolismo , RNA/metabolismo , Mucinas/metabolismo , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo
5.
Pharmacol Res Perspect ; 10(5): e01013, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36177761

RESUMO

The incretin hormones: glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are important regulators of many aspects of metabolism including insulin secretion. Their receptors (GIPR and GLP-1R) are closely related members of the secretin class of G-protein-coupled receptors. As both receptors are expressed on pancreatic ß-cells there is at least the hypothetical possibility that they may form heteromers. In the present study, we investigated GIPR/GLP-1R heteromerization and the impact of GIPR on GLP-1R-mediated signaling and vice versa in HEK-293 cells. Real-time fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) saturation experiments confirm that GLP-1R and GIPR form heteromers. Stimulation with 1 µM GLP-1 caused an increase in both FRET and BRET ratio, whereas stimulation with 1 µM GIP caused a decrease. The only other ligand tested to cause a significant change in BRET signal was the GLP-1 metabolite, GLP-1 (9-36). GIPR expression had no significant effect on mini-Gs recruitment to GLP-1R but significantly inhibited GLP-1 stimulated mini-Gq and arrestin recruitment. In contrast, the presence of GLP-1R improved GIP stimulated mini-Gs and mini-Gq recruitment to GIPR. These data support the hypothesis that GIPR and GLP-1R form heteromers with differential consequences on cell signaling.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptores dos Hormônios Gastrointestinais , Arrestinas/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/farmacologia , Células HEK293 , Humanos , Incretinas , Ligantes , Peptídeos , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/metabolismo , Transdução de Sinais
6.
Eur J Med Chem ; 242: 114642, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987021

RESUMO

The Secretin/Secretin receptor (SCTR) axis is well-known for its important role in water/salt homeostasis and blood pressure control. Recent studies revealed that absence of Secretin could lead to hypertension in animals and the administration of external Secretin leads to a sharp drop in blood pressure. Therefore, Secretin receptor has emerged as a crucial drug target of interest. In this report, using structure based drug design strategy, we have identified a small compound-based Secretin receptor modulator (i.e. purmorphamine or KSD179019). The virtual docking of KSD179019 with SCTR crystal structure and homology models revealed similar binding interactions. Based on active pharmacophores of KSD179019, several derivatives were designed and sythesized. SAR studies revealed that KSD179019 is the most effective SCTR modulator and chosen for further biological evaluation, including drug like properties and anti-hypertensive effect. KSD179019 not only has a similar blood pressure lowering effect as SCT peptide, but more importantly, it has a much longer half-life (∼8 h) and can be taken orally. Preliminary preclinical studies revealed extended bioavailability and low toxicity of this compound.


Assuntos
Anti-Hipertensivos , Secretina , Animais , Anti-Hipertensivos/farmacologia , Morfolinas , Peptídeos , Purinas , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais , Secretina/metabolismo , Água
7.
Mol Pharmacol ; 101(6): 400-407, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351821

RESUMO

Class B1 G protein-coupled receptors are activated by peptides, with amino-terminal regions critical for biologic activity. Although high resolution structures exist, understanding of key features of the peptide activation domain that drive signaling is limited. In the secretin receptor (SecR) structure, interactions are observed between peptide residues His1 and Ser2 and seventh transmembrane segment (TM7) receptor residue E373. We interrogated these interactions using systematic structure-activity analysis of peptide and receptor. His1 was critical for binding and cAMP responses, but its orientation was not critical, and substitution could independently modify affinity and efficacy. Ser2 was also critical, with all substitutions reducing peptide affinity and functional responses proportionally. Mutation of E373 to conserved acidic Asp (E373D), uncharged polar Gln (E373Q), or charge-reversed basic Arg (E373R) did not alter receptor expression, with all exhibiting secretin-dependent cAMP accumulation. All position 373 mutants displayed reduced binding affinities and cAMP potencies for many peptide analogs, although relative effects of position 1 peptides were similar whereas position 2 peptides exhibited substantial differences. The peptide including basic Lys in position 2 was active at SecR having acidic Glu in position 373 and at E373D while exhibiting minimal activity at those receptors in which an acidic residue is absent in this position (E373Q and E373R). In contrast, the peptide including acidic Glu in position 2 was equipotent with secretin at E373R while being much less potent than secretin at wild-type SecR and E373D. These data support functional importance of a charge-charge interaction between the amino-terminal region of secretin and the top of TM7. SIGNIFICANCE STATEMENT: This work refines our molecular understanding of the activation mechanisms of class B1 G protein-coupled receptors. The amino-terminal region of secretin interacts with the seventh transmembrane segment of its receptor with structural specificity and with a charge-charge interaction helping to drive functional activation.


Assuntos
Receptores Acoplados a Proteínas G , Secretina , Sequência de Aminoácidos , Mutagênese , Peptídeos/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais , Secretina/química , Secretina/genética , Secretina/metabolismo , Relação Estrutura-Atividade
8.
Nat Commun ; 11(1): 4137, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811827

RESUMO

The class B secretin GPCR (SecR) has broad physiological effects, with target potential for treatment of metabolic and cardiovascular disease. Molecular understanding of SecR binding and activation is important for its therapeutic exploitation. We combined cryo-electron microscopy, molecular dynamics, and biochemical cross-linking to determine a 2.3 Å structure, and interrogate dynamics, of secretin bound to the SecR:Gs complex. SecR exhibited a unique organization of its extracellular domain (ECD) relative to its 7-transmembrane (TM) core, forming more extended interactions than other family members. Numerous polar interactions formed between secretin and the receptor extracellular loops (ECLs) and TM helices. Cysteine-cross-linking, cryo-electron microscopy multivariate analysis and molecular dynamics simulations revealed that interactions between peptide and receptor were dynamic, and suggested a model for initial peptide engagement where early interactions between the far N-terminus of the peptide and SecR ECL2 likely occur following initial binding of the peptide C-terminus to the ECD.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Receptores dos Hormônios Gastrointestinais/química , Secretina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Linhagem Celular , Cricetinae , Microscopia Crioeletrônica , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Insetos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos/genética , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/ultraestrutura , Secretina/metabolismo
9.
Anticancer Res ; 40(8): 4215-4221, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32727747

RESUMO

BACKGROUND: Secretin-induced duodenal aspiration (SIDA) of pancreatic duct fluid has been proposed for pancreatic neoplasm screening in very high-risk patients. We sought to determine the clinical yield and safety of commercially-analyzed SIDA samples in patients at moderately elevated risk. PATIENTS AND METHODS: A prospectively maintained institutional database of pancreatic fluid DNA profiles was retrospectively reviewed. RESULTS: Fifty-seven patients underwent SIDA testing, most commonly for intraductal papillary mucinous neoplasms (n=43) and not otherwise specified solitary cysts (n=9). SIDA mutation yield was low compared to 37 concomitant endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) samples of pancreatic fluid: KRAS (2.5% vs. 40.0%), GNAS (2.6% vs. 11.1%) and allelic loss of heterozygosity (3.1% vs. 0%). Patients undergoing SIDA alone experienced no complications while 3 patients with concomitant EUS-FNA had post-procedural pancreatitis. CONCLUSION: The genetic yield of commercially-analyzed SIDA samples was relatively low in a moderately elevated risk cohort. SIDA testing may have a better safety profile than EUS-FNA.


Assuntos
Duodeno/metabolismo , Testes Genéticos/métodos , Suco Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Secretina/genética , Idoso , DNA/genética , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Secretina/metabolismo
10.
Biochem Pharmacol ; 177: 113929, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32217097

RESUMO

The secretin receptor is a prototypic class B GPCR with substantial and broad pharmacologic importance. The aim of this project was to develop a high affinity selective antagonist as a new and important pharmacologic tool and to aid stabilization of this receptor in an inactive conformation for ultimate structural characterization. Amino-terminal truncation of the natural 27-residue ligand reduced biological activity, but also markedly reduced binding affinity. This was rationally and experimentally overcome with lactam stabilization of helical structure and with replacement of residues with natural and unnatural amino acids. A key new step in this effort was the replacement of peptide residue Leu22 with L-cyclohexylalanine (Cha) to enhance potential hydrophobic interactions with receptor residues Leu31, Val34, and Phe92 that were predicted from molecular modeling. Alanine-replacement mutagenesis of these residues markedly affected ligand binding and biological activity. The optimal antagonist ligand, (Y10,c[E16,K20],I17,Cha22,R25)sec(6-27), exhibited high binding affinity (4 nM), similar to natural secretin, and exhibited no demonstrable biological activity to stimulate cAMP accumulation, intracellular calcium mobilization, or ß-arrestin-2 translocation. It acts as an orthosteric competitive antagonist, predicted to bind within the peptide-binding groove in the receptor extracellular domain. The analogous peptide that was one residue longer, retaining Thr5, exhibited partial agonist activity, while further truncation of even a single residue (Phe6) reduced binding affinity. This sec(6-27)-based peptide will be an important new tool for pharmacological and structural studies.


Assuntos
Desenho de Fármacos , Peptídeos/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Receptores dos Hormônios Gastrointestinais/química , Secretina/análogos & derivados , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Receptores da Calcitonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/metabolismo
11.
Biosci Biotechnol Biochem ; 84(5): 936-942, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31916916

RESUMO

Endocrine cells in the gastrointestinal tract secrete multiple hormones to maintain homeostasis in the body. In the present study, we generated intestinal organoids from the duodenum, jejunum, and ileum of Neurogenin 3 (Ngn3)-EGFP mice and examined how enteroendocrine cells (EECs) within organoid cultures resemble native epithelial cells in the gut. Transcriptome analysis of EGFP-positive cells from Ngn3-EGFP organoids showed gene expression pattern comparable to EECs in vivo. We also compared mRNAs of five major hormones, namely, ghrelin (Ghrl), cholecystokinin (Cck), Gip, secretin (Sct), and glucagon (Gcg) in organoids and small intestine along the longitudinal axis and found that expression patterns of these hormones in organoids were similar to those in native tissues. These findings suggest that an intestinal organoid culture system can be utilized as a suitable model to study enteroendocrine cell functions in vitro.


Assuntos
Duodeno/citologia , Células Enteroendócrinas/metabolismo , Íleo/citologia , Jejuno/citologia , Organoides/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Colecistocinina/genética , Colecistocinina/metabolismo , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Grelina/genética , Grelina/metabolismo , Glucagon/genética , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , Secretina/genética , Secretina/metabolismo , Transdução de Sinais , Transcriptoma
12.
FASEB J ; 33(9): 10269-10279, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31251081

RESUMO

Primary biliary cholangitis (PBC) primarily targets cholangiocytes and is characterized by liver fibrosis and biliary proliferation. Activation of the secretin (Sct)/secretin receptor (SR) axis, expressed only by cholangiocytes, increases biliary proliferation, liver fibrosis, and bicarbonate secretion. We evaluated the effectiveness of SR antagonist treatment for early-stage PBC. Male and female dominant-negative TGF-ß receptor II (dnTGF-ßRII) (model of PBC) and wild-type mice at 12 wk of age were treated with saline or the SR antagonist, Sec 5-27, for 1 wk. dnTGF-ßRII mice expressed features of early-stage PBC along with enhanced Sct/SR axis activation and Sct secretion. dnTGF-ßRII mice had increased biliary proliferation or senescence, inflammation, and liver fibrosis. In dnTGF-ßRII mice, there was increased microRNA-125b/TGF-ß1/TGF-ß receptor 1/VEGF-A signaling. Human early-stage PBC patients had an increase in hepatobiliary Sct and SR expression and serum Sct levels. Increased biliary Sct/SR signaling promotes biliary and hepatic damage during early-stage PBC.-Kennedy, L., Francis, H., Invernizzi, P., Venter, J., Wu, N., Carbone, M., Gershwin, M. E., Bernuzzi, F., Franchitto, A., Alvaro, D., Marzioni, M., Onori, P., Gaudio, E., Sybenga, A., Fabris, L., Meng, F., Glaser, S., Alpini, G. Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in early-stage primary biliary cholangitis.


Assuntos
Doenças Biliares/patologia , Inflamação/patologia , Cirrose Hepática Biliar/complicações , Cirrose Hepática/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/metabolismo , Animais , Doenças Biliares/etiologia , Doenças Biliares/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais/genética , Secretina/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
13.
J Mol Neurosci ; 68(3): 494-503, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30874970

RESUMO

Secretin (SCT) is involved in a variety of physiological processes and has been implicated in preventing apoptosis during brain development. However, little is known about the molecular mechanism underlying its neuroprotective effects. The B cell lymphoma 2 (Bcl-2) family proteins, such as Bcl-2 and Bcl-xL, determine the commitment of neurons to apoptosis. In SCT knockout mice, we found reduced transcript levels of anti-apoptotic genes Bcl-2 and Bcl-xL, but not of pro-apoptotic gene Bax, in the developing cerebellum. SCT treatment on ex vivo cultured cerebellar slices triggered a time-dependent increase of Bcl-2 and Bcl-xL expression. This SCT-induced transcriptional regulation of Bcl-2 and Bcl-xL was dependent on the cyclic AMP (cAMP) response element-binding protein (CREB), which is a key survival factor at the convergence of multiple signaling cascades. We further demonstrated that activation of CREB by SCT was mediated by cAMP/protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) cascades. These findings, collectively, provide an uncharacterized signaling cascade for SCT-mediated neuronal survival, in which SCT promotes the key anti-apoptotic elements Bcl-2 and Bcl-xL in the intrinsic death pathway through PKA- and ERK-regulated CREB phosphorylation.


Assuntos
Apoptose , Cerebelo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Secretina/metabolismo , Proteína bcl-X/metabolismo , Animais , Cerebelo/crescimento & desenvolvimento , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Secretina/genética , Transdução de Sinais , Proteína bcl-X/genética
14.
EcoSal Plus ; 8(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30767847

RESUMO

The type II secretion system (T2SS) delivers toxins and a range of hydrolytic enzymes, including proteases, lipases, and carbohydrate-active enzymes, to the cell surface or extracellular space of Gram-negative bacteria. Its contribution to survival of both extracellular and intracellular pathogens as well as environmental species of proteobacteria is evident. This dynamic, multicomponent machinery spans the entire cell envelope and consists of a cytoplasmic ATPase, several inner membrane proteins, a periplasmic pseudopilus, and a secretin pore embedded in the outer membrane. Despite the trans-envelope configuration of the T2S nanomachine, proteins to be secreted engage with the system first once they enter the periplasmic compartment via the Sec or TAT export system. Thus, the T2SS is specifically dedicated to their outer membrane translocation. The many sequence and structural similarities between the T2SS and type IV pili suggest a common origin and argue for a pilus-mediated mechanism of secretion. This minireview describes the structures, functions, and interactions of the individual T2SS components and the general architecture of the assembled T2SS machinery and briefly summarizes the transport and function of a growing list of T2SS exoproteins. Recent advances in cryo-electron microscopy, which have led to an increased understanding of the structure-function relationship of the secretin channel and the pseudopilus, are emphasized.


Assuntos
Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/metabolismo , Adenosina Trifosfatases/metabolismo , Microscopia Crioeletrônica , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Proteínas de Membrana/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Ligação Proteica , Secretina/metabolismo
15.
FASEB J ; 33(4): 5389-5398, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30702925

RESUMO

With an increasing body of evidence regarding GPCR oligomerization and its clinical implications over the last decade, the modulation and dynamics of GPCR homo- and hetero-oligomers has more recently become an area of intense research focus. Previously, our lab showed in vitro heteromer formation between angiotensin II receptor type 1 subtype a (AT1aR) and secretin receptor (SCTR), which is involved in in vivo control of hyperosmolality-induced water drinking behavior. Because the secretin (SCT)/SCTR axis is crucial to the central actions of angiotensin II (ANGII) and both SCT and ANGII are capable of triggering vasopressin (Vp) release from hypothalamus, we investigated here the in vivo role of SCTR-AT1aR heteromer in regulating Vp release in hypothalamus using transmembrane peptides as tools. We showed that SCTR-AT1aR heteromer mediates stimulatory actions of both SCT and ANGII in hypothalamic Vp expression and release as well as neuronal activities via the immediate early gene cFos. The results from this study not only are consistent with our hypothesis that SCT and ANGII interact at the receptor level to mediate their water homeostatic activities but also provide evidence for in vivo functions of cross-class GPCR heteromers.-Mak, S. O. K., Zhang, L., Chow, B. K. C. In vivo actions of SCTR/AT1aR heteromer in controlling Vp expression and release via cFos/cAMP/CREB pathway in magnocellular neurons of PVN.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais/fisiologia , Angiotensina II/metabolismo , Animais , Genes fos/genética , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/metabolismo , Vasopressinas/metabolismo
16.
J Mol Neurosci ; 68(3): 485-493, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882022

RESUMO

Secretin is a polypeptide hormone initially identified for its gastrointestinal functions. However, emerging evidences show wide distribution of secretin and secretin receptor across various brain regions from cerebral cortex, hippocampus, hypothalamus to cerebellum. In this mini review, we will firstly describe the region-specific expression pattern of secretin and secretin receptor in the brain, followed by a summary of central physiological and neurological functions mediated by secretin. Using genetic manipulation and pharmaceutical approaches, one can elucidate the role of secretin in mediating various neurological functions from simple behaviors, such as water and food intake, to more complex functions including emotion, motor, and learning or memory. At last, current weakness and future perspectives of secretin in the central nervous system will be discussed, aiming to provide the potency of using secretin or its analog for treating various neurological disorders.


Assuntos
Cerebelo/metabolismo , Hipotálamo/metabolismo , Secretina/metabolismo , Córtex Sensório-Motor/metabolismo , Animais , Cerebelo/fisiologia , Cognição , Emoções , Humanos , Hipotálamo/fisiologia , Movimento , Secretina/genética , Córtex Sensório-Motor/fisiologia
17.
Lab Invest ; 98(11): 1449-1464, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29977037

RESUMO

Secretin receptor (SR), only expressed by cholangiocytes, plays a key role in the regulation of biliary damage and liver fibrosis. The aim of this study was to determine the effects of genetic depletion of SR in Mdr2-/- mice on intrahepatic biliary mass, liver fibrosis, senescence, and angiogenesis. 12 wk SR-/-, Mdr2-/-, and SR-/-/Mdr2-/- mice with corresponding wild-type mice were used for the in vivo studies. Immunohistochemistry or immunofluorescence was performed in liver sections for (i) biliary expression of SR; (ii) hematoxylin and eosin; (iii) intrahepatic biliary mass by CK-19; (iv) fibrosis by Col1a1 and α-SMA; (v) senescence by SA-ß-gal and p16; and (vi) angiogenesis by VEGF-A and CD31. Secretin (Sct) and TGF-ß1 levels were measured in serum and cholangiocyte supernatant by ELISA. In total liver, isolated cholangiocytes or HSCs, we evaluated the expression of fibrosis markers (FN-1 and Col1a1); senescence markers (p16 and CCL2); microRNA 125b and angiogenesis markers (VEGF-A, VEGFR-2, CD31, and vWF) by immunoblots and/or qPCR. In vitro, we measured the paracrine effect of cholangiocyte supernatant on the expression of senescent and fibrosis markers in human hepatic stellate cells (HHSteCs). The increased level of ductular reaction, fibrosis, and angiogenesis in Mdr2-/- mice was reduced in SR-/-/Mdr2-/- mice. Enhanced senescence levels in cholangiocytes from Mdr2-/- mice were reversed to normal in SR-/-/Mdr2-/- mice. However, senescence was decreased in HSCs from Mdr2-/- mice but returned to normal values in SR-/-/Mdr2-/- mice. In vitro treatment of HHSteCs with supernatant from cholangiocyte lacking SR (containing lower biliary levels of Sct-dependent TGF-ß1) have decreased fibrotic reaction and increased cellular senescence. Sct-induced TGF-ß1 secretion was mediated by microRNA 125b. Our data suggest that differential modulation of angiogenesis-dependent senescence of cholangiocytes and HSCs may be important for the treatment of liver fibrosis in cholangiopathies.


Assuntos
Senescência Celular , Colangite Esclerosante/metabolismo , Cirrose Hepática/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/patologia , Masculino , Camundongos Knockout , MicroRNAs/metabolismo , Neovascularização Fisiológica , Comunicação Parácrina , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
18.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt B): 1262-1269, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28648950

RESUMO

Cholangiocytes, epithelial cells that line the biliary epithelium, are the primary target cells for cholangiopathies including primary sclerosing cholangitis and primary biliary cholangitis. Quiescent cholangiocytes respond to biliary damage and acquire an activated neuroendocrine phenotype to maintain the homeostasis of the liver. The typical response of cholangiocytes is proliferation leading to bile duct hyperplasia, which is a characteristic of cholestatic liver diseases. Current studies have identified various signaling pathways that are associated with cholangiocyte proliferation/loss and liver fibrosis in cholangiopathies using human samples and rodent models. Although recent studies have demonstrated that extracellular vesicles and microRNAs could be mediators that regulate these messenger/receptor axes, further studies are required to confirm their roles. This review summarizes current studies of biliary response and cholangiocyte proliferation during cholestatic liver injury with particular emphasis on the secretin/secretin receptor axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.


Assuntos
Ductos Biliares/patologia , Proliferação de Células , Colestase/etiologia , Células Epiteliais/patologia , Cirrose Hepática/etiologia , Animais , Ductos Biliares/citologia , Ductos Biliares/metabolismo , Colestase/patologia , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Hiperplasia/etiologia , Hiperplasia/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , MicroRNAs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/metabolismo , Transdução de Sinais/genética
19.
Eur Radiol ; 28(4): 1495-1503, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29134356

RESUMO

OBJECTIVES: Secretin-stimulated magnetic resonance imaging (s-MRI) is the best validated radiological modality assessing pancreatic secretion. The purpose of this study was to compare volume output measures from secretin-stimulated transabdominal ultrasonography (s-US) to s-MRI for the diagnosis of exocrine pancreatic failure in cystic fibrosis (CF). METHODS: We performed transabdominal ultrasonography and MRI before and at timed intervals during 15 minutes after secretin stimulation in 21 CF patients and 13 healthy controls. To clearly identify the subjects with reduced exocrine pancreatic function, we classified CF patients as pancreas-sufficient or -insufficient by secretin-stimulated endoscopic short test and faecal elastase. RESULTS: Pancreas-insufficient CF patients had reduced pancreatic secretions compared to pancreas-sufficient subjects based on both imaging modalities (p < 0.001). Volume output estimates assessed by s-US correlated to that of s-MRI (r = 0.56-0.62; p < 0.001). Both s-US (AUC: 0.88) and s-MRI (AUC: 0.99) demonstrated good diagnostic accuracy for exocrine pancreatic failure. CONCLUSIONS: Pancreatic volume-output estimated by s-US corresponds well to exocrine pancreatic function in CF patients and yields comparable results to that of s-MRI. s-US provides a simple and feasible tool in the assessment of pancreatic secretion. KEY POINTS: • Cystic fibrosis patients with affected pancreas have reduced pancreatic secretions. • Secretin-stimulated sonography is a simple and feasible method to assess pancreatic output. • Secretin-simulated MRI is a more precise method to assess pancreatic secretions. • The sonographic and MRI methods yielded comparable pancreatic secretory output estimates.


Assuntos
Fibrose Cística/diagnóstico , Insuficiência Pancreática Exócrina/metabolismo , Imageamento por Ressonância Magnética/métodos , Pâncreas Exócrino/diagnóstico por imagem , Suco Pancreático/metabolismo , Secretina/metabolismo , Ultrassonografia/métodos , Adulto , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Endoscopia , Insuficiência Pancreática Exócrina/diagnóstico , Insuficiência Pancreática Exócrina/etiologia , Feminino , Humanos , Masculino , Pâncreas Exócrino/metabolismo
20.
Diabetologia ; 61(2): 413-423, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28948296

RESUMO

AIMS/HYPOTHESIS: Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted postprandially from enteroendocrine K cells, but despite therapeutically interesting effects, GIP physiology in humans remains incompletely understood. Progress in this field could be facilitated by a suitable GIP receptor antagonist. For the first time in humans, we investigated the antagonistic properties of the naturally occurring GIP(3-30)NH2 in in vivo and in in vitro receptor studies. METHODS: In transiently transfected COS-7 cells, GIP(3-30)NH2 was evaluated with homologous receptor binding and receptor activation (cAMP accumulation) studies at the glucagon-like peptide 1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucagon, secretin and growth hormone-releasing hormone (GHRH) receptors. Ten healthy men (eligibility criteria: age 20-30 years, HbA1c less than 6.5% [48 mmol/mol] and fasting plasma glucose [FPG] less than 7 mmol/l) were included in the clinical study. Data were collected as plasma and serum samples from a cubital vein cannula. As primary outcome, insulin secretion and glucose requirements were evaluated together with in a randomised, four-period, crossover design by infusing GIP(3-30)NH2 (800 pmol kg-1 min-1), GIP (1.5 pmol kg-1 min-1), a combination of these or placebo during hyperglycaemic clamp experiments. The content of the infusions were blinded to the study participants and experimental personnel. No study participants dropped out. RESULTS: GIP(3-30)NH2 neither bound, stimulated nor antagonised a series of related receptors in vitro. The elimination plasma half-life of GIP(3-30)NH2 in humans was 7.6 ± 1.4 min. Markedly larger amounts of glucose were required to maintain the clamp during GIP infusion compared with the other days. GIP-induced insulin secretion was reduced by 82% (p < 0.0001) during co-infusion with GIP(3-30)NH2, and the need for glucose was reduced to placebo levels. There were no effects of GIP(3-30)NH2 alone or of GIP with or without GIP(3-30)NH2 on plasma glucagon, GLP-1, somatostatin, triacylglycerols, cholesterol, glycerol or NEFA. GIP(3-30)NH2 administration was well tolerated and without side effects. CONCLUSIONS/INTERPRETATION: We conclude that GIP(3-30)NH2 is an efficacious and specific GIP receptor antagonist in humans suitable for studies of GIP physiology and pathophysiology. TRIAL REGISTRATION: ClinicalTrials.gov registration no. NCT02747472. FUNDING: The study was funded by Gangstedfonden, the European Foundation for the Study of Diabetes, and Aase og Ejnar Danielsens fond.


Assuntos
Polipeptídeo Inibidor Gástrico/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Adulto , Animais , Glicemia/efeitos dos fármacos , Células COS , Chlorocebus aethiops , Estudos Cross-Over , Método Duplo-Cego , Polipeptídeo Inibidor Gástrico/metabolismo , Glucagon/metabolismo , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Humanos , Insulina/metabolismo , Masculino , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Secretina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA