Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498210

RESUMO

Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.


Assuntos
Cisteína Proteases/química , Inibidores de Cisteína Proteinase/química , Animais , Cistatinas/química , Cistatinas/metabolismo , Cistatinas/farmacologia , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Ligação Proteica , Securina/química , Securina/metabolismo , Securina/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/farmacologia
2.
Nature ; 532(7597): 131-4, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027290

RESUMO

Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaetomium/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Separase/química , Separase/metabolismo , Sequência de Aminoácidos , Ligação Competitiva/efeitos dos fármacos , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Segregação de Cromossomos , Cristalografia por Raios X , Modelos Moleculares , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteólise , Proteínas Proto-Oncogênicas/metabolismo , Securina/química , Securina/genética , Securina/metabolismo , Securina/farmacologia , Separase/antagonistas & inibidores , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Coesinas , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA