Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134517, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739960

RESUMO

Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.


Assuntos
Biodegradação Ambiental , Cádmio , Proteínas de Plantas , Sedum , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Sedum/metabolismo , Sedum/genética , Sedum/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética
2.
Environ Res ; 252(Pt 4): 119092, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729407

RESUMO

With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.


Assuntos
Cádmio , Ácido Salicílico , Sedum , Poluentes do Solo , Transcriptoma , Cádmio/toxicidade , Ácido Salicílico/metabolismo , Sedum/efeitos dos fármacos , Sedum/metabolismo , Sedum/genética , Sedum/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Transcriptoma/efeitos dos fármacos , Metabolômica , Estresse Oxidativo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos
3.
PLoS One ; 16(9): e0257172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492083

RESUMO

As an essential element, zinc (Zn) can improve or inhibit the growth of plants depending on its concentrations. In this study, the effects of 24-Epibrassinolide (EBR), one well-known steroid phytohormone regulating plant growth and alleviating abiotic stress damage, on morphological parameters and antioxidant capacities of Sedum lineare were investigated under different Zn doses. Compared to plants only exposed to Zn, simultaneously foliar application of 0.75 µM EBR significantly improved multiple morphological characteristics and such growth-improving effects were more significant at high Zn concentrations. At a detrimental 800 µM Zn, EBR benefitted plant growth most prominently, as shown by that the stem length, fresh weight and internode length were increased by 111%, 85% and 157%, respectively; than Zn solely treated plants. EBR spray also enhanced both the activities of antioxidant enzymes such as peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), and the contents of antioxidative agents including ascorbic acid (AsA) and glutathione (GSH), which in turn decreased the accumulation of reactive oxygen species (ROS) and alleviated the lipid peroxidation in plants. Thus, by demonstrating that EBR could help S. lineare resist high-zinc stress through strengthening the antioxidant system, this work provided a new idea for expanding the planting range of Crassulaceae plants in heavy metal contaminated soil for phytoremediation purpose in the future.


Assuntos
Antioxidantes/farmacologia , Brassinosteroides/farmacologia , Sedum/crescimento & desenvolvimento , Esteroides Heterocíclicos/farmacologia , Estresse Fisiológico , Zinco/toxicidade , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Sedum/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Superóxidos/metabolismo
4.
Sci Rep ; 11(1): 3023, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542339

RESUMO

The F-box genes, which form one of the largest gene families in plants, are vital for plant growth, development and stress response. However, F-box gene family in Sedum alfredii remains unknown. Comprehensive studies addressing their function responding to cadmium stress is still limited. In the present study, 193 members of the F-box gene (SaFbox) family were identified, which were classified into nine subfamilies. Most of the SaFboxs had highly conserved domain and motif. Various functionally related cis-elements involved in plant growth regulation, stress and hormone responses were located in the upstream regions of SaFbox genes. RNA-sequencing and co-expression network analysis revealed that the identified SaFbox genes would be involved in Cd stress. Expression analysis of 16 hub genes confirmed their transcription level in different tissues. Four hub genes (SaFbox40, SaFbox51, SaFbox136 and SaFbox170) were heterologously expressed in a Cd-sensitive yeast cell to assess their effects on Cd tolerance. The transgenic yeast cells carrying SaFbox40, SaFbox51, SaFbox136, or SaFbox170 were more sensitive and accumulated more cadmium under Cd stress than empty vector transformed control cells. Our results performed a comprehensive analysis of Fboxs in S. alfredii and identified their potential roles in Cd stress response.


Assuntos
Proteínas F-Box/genética , Sedum/genética , Poluentes do Solo/toxicidade , Transcriptoma/genética , Biodegradação Ambiental/efeitos dos fármacos , Cádmio/toxicidade , Proteínas F-Box/classificação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Sedum/efeitos dos fármacos , Sedum/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
5.
Ecotoxicol Environ Saf ; 205: 111152, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846297

RESUMO

Root exudates are the most direct manifestation of the response of plants changes in the external environment. Therefore, based on non-targeted gas chromatography-time-of-flight mass spectrometry and metabolomics, the response of Sedum plumbizincicola root exudates to Cd stress was used to reveal the possible mechanism of resistance to or accumulation of Cd. The results showed that Cd significantly changed the composition and contents of S. plumbizincicola root exudates. A total of 155 metabolites were identified in S. plumbizincicola root exudates, among which 33 showed significant differences under Cd stress, including organic acids, amino acids, lipids, and polyols. Cd stress suppressed organic acid metabolism and lipid metabolism in S. plumbizincicola and significantly affected amino acid metabolism. There were 16 metabolic pathways related to Cd stress, among which arginine and proline metabolism, valine, leucine, and isoleucine biosynthesis, glycine, serine, and threonine metabolism, glutathione metabolism, and purine metabolism were the key pathways with the highest correlation, and were closely related to the stress resistance of S. plumbizincicola.


Assuntos
Cádmio/toxicidade , Metaboloma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Exsudatos de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Sedum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Adaptação Fisiológica/efeitos dos fármacos , Bioacumulação/efeitos dos fármacos , Biodegradação Ambiental , Cádmio/metabolismo , Metabolômica , Raízes de Plantas/metabolismo , Sedum/metabolismo , Poluentes do Solo/análise
6.
Sheng Wu Gong Cheng Xue Bao ; 36(3): 529-540, 2020 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-32237546

RESUMO

To explore the effects of some chemical amendments on the plant growth and phytoextraction efficiencies of cadmium (Cd)/zinc (Zn) hyper accumulator Sedum plumbizincicola in acid soils with high aluminum (Al) toxicity, a greenhouse pot experiment was conducted. Different kinds and dosages of amendments including calciummagnesium-phosphorus fertilizer (CMP), magnesium carbonate (MgCO3), potassium dihydrogen phosphate (KH2POPO4 ) were added. The results showed that CMP and MgCO3 increased soil pH and decreased soil exchangeable Al concentration to some extent, while KH2PO4 reduced soil exchangeable Al concentration but had little effect on increasing soil pH. Proper application (9.39 mg/kg) of CMP could improve the biomass and Cd and Zn phytoextraction efficiencies by S. plumbizincicola but it would inhibit plant growth and phytoextraction performance when exceeding 9.39 mg/kg. MgCO3 addition enhanced plant metal uptake while KH2PO4 presented an opposite effect. It suggests that using CMP and MgCO3 could alleviate Al toxicity to S. plumbizincicola in acid soils and maintain relatively high metal extraction efficiency.


Assuntos
Alumínio , Cádmio , Fertilizantes , Sedum , Poluentes do Solo , Zinco , Alumínio/toxicidade , Biodegradação Ambiental , Cádmio/metabolismo , Sedum/efeitos dos fármacos , Sedum/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Zinco/metabolismo
7.
Sheng Wu Gong Cheng Xue Bao ; 36(3): 541-548, 2020 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-32237547

RESUMO

Hyperaccumulators can hyper-accumulate and -tolerate heavy metals, thus are not only an ideal model to explore the mechanisms of ion transport and toxicity tolerance, but also play an irreplaceable role in the development and application of phytoremediation. Sedum plumbizincicola is a recently identified cadmium (Cd)/zinc (Zn) hyperaccumulator in the Crassulaceae family in China. Here we report the construction and screening of its yeast-expressing cDNA library. We identified a metallothionein protein encoding gene SpMT2. SpMT2 is localized in yeast cytoplasm and expression of it in yeast specifically enhanced resistance to Cd. Further analysis showed that SpMT2 did not affect Cd absorption in yeast, but greatly inhibited Cd transport into vacuoles, indicating that SpMT2 may reduce Cd toxicity via chelation in cytoplasm. qRT-PCR analyses indicated that SpMT2 was highly expressed both in roots and shoots, and did not respond to Cd treatment. Taking together the results that SpMT2 was also cytoplasm-localized in plants, we proposed that SpMT2 may chelate/detoxify Cd and retain the complex in cytosol, which renders higher mobility of Cd thus promoting long-distance Cd transport in S. plumbizincicola.


Assuntos
Cádmio , Resistência a Medicamentos , Metaloproteinase 15 da Matriz , Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/toxicidade , China , Resistência a Medicamentos/genética , Metaloproteinase 15 da Matriz/genética , Metais Pesados/toxicidade , Sedum/efeitos dos fármacos , Sedum/genética , Zinco/toxicidade
8.
J Environ Manage ; 239: 287-298, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913479

RESUMO

Comparative impact of CO2 application and endophyte inoculation was investigated on the growth, rhizosphere characteristics, and cadmium (Cd) absorption of two ecotypes of Sedum alfredii Hance in response to Cd stress under hydroponic or rhizo-box culture conditions. The results showed that both CO2 application and endophyte inoculation significantly (P < 0.05) promoted plant growth (fresh weight and dry weight), improved root morphological properties (SRL, SRA, SRV, ARD and RTN) and exudation (pH, TOC, TN, soluble sugar and organic acids), changed Cd uptake and distribution of both ecotypes of S. alfredii. Meanwhile soil total and DTPA extractable Cd in rhizo-box decreased by biofortification treatments. Superposition biofortification exhibits utmost improvement for the above mentioned parameters, and has potential for enhancing phytoremediation efficiency of hyperaccumulator and sustaining regular growth of non-hyperaccumulator in Cd contaminated soils.


Assuntos
Cádmio/farmacologia , Dióxido de Carbono/metabolismo , Endófitos/metabolismo , Rizosfera , Sedum/metabolismo , Endófitos/efeitos dos fármacos , Hidroponia , Raízes de Plantas/química , Sedum/química , Sedum/efeitos dos fármacos , Solo/química
9.
Plant Mol Biol ; 99(4-5): 347-362, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30644059

RESUMO

KEY MESSAGE: We compared the transcriptomes of parenchymal and vascular cells of Sedum alfredii stem under Cd stress to reveal gene regulatory networks underlying Cd hyperaccumulation. Cadmium (Cd) hyperaccumulation in plants is a complex biological process controlled by gene regulatory networks. Efficient transport through vascular systems and storage by parenchymal cells are vital for Cd hyperaccumulation in the Cd hyperaccumulator Sedum alfredii, but the genes involved are poorly understood. We investigated the spatial gene expression profiles of transport and storage sites in S. alfredii stem using laser-capture microdissection coupled with RNA sequencing. Gene expression patterns in response to Cd were distinct in vascular and parenchymal cells, indicating functional divisions that corresponded to Cd transportation and storage, respectively. In vascular cells, plasma membrane-related terms enriched a large number of differentially-expressed genes (DEGs) for foundational roles in Cd transportation. Parenchymal cells contained considerable DEGs specifically concentrated on vacuole-related terms associated with Cd sequestration and detoxification. In both cell types, DEGs were classified into different metabolic pathways in a similar way, indicating the role of Cd in activating a systemic stress signalling network where ATP-binding cassette transporters and Ca2+ signal pathways were probably involved. This study identified site-specific regulation of transcriptional responses to Cd stress in S. alfredii and analysed a collection of genes that possibly function in Cd transportation and detoxification, thus providing systemic information and direction for further investigation of Cd hyperaccumulation molecular mechanisms.


Assuntos
Cádmio/toxicidade , Sedum/efeitos dos fármacos , Sedum/genética , Sedum/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/genética , Cádmio/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Redes e Vias Metabólicas , Floema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/efeitos dos fármacos , Análise de Sequência de RNA , Transdução de Sinais , Transcrição Gênica/genética
10.
Environ Sci Pollut Res Int ; 26(2): 1809-1820, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30456615

RESUMO

Plant uptake of cadmium (Cd) is affected by soil and environmental conditions. In this study, hydroponic experiments were conducted to investigate the effects of elevated CO2 coupled with inoculated endophytic bacteria M002 on morphological properties, gas exchange, photosynthetic pigments, chlorophyll fluorescence, and Cd uptake of S. alfredii. The results showed that bio-fortification processes (elevated CO2 and/or inoculated with endophytic bacteria) significantly (p < 0.05) promoted growth patterns, improved photosynthetic characteristics and increased Cd tolerance of both ecotypes of S. alfredii, as compared to normal conditions. Net photosynthetic rate (Pn) in intact leaves of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) were increased by 73.93 and 32.90%, respectively at the low Cd (2 µM), 84.41 and 57.65%, respectively at the high Cd level (10 µM). Superposition treatment increased Cd concentration in shoots and roots of HE, by 50.87 and 82.12%, respectively at the low Cd and 46.75 and 88.92%, respectively at the high Cd level. Besides, superposition treatment declined Cd transfer factor of NHE, by 0.85% at non-Cd rate, 17.22% at the low Cd and 22.26% at the high Cd level. These results indicate that elevated CO2 coupled with endophytic bacterial inoculation may effectively improve phytoremediation efficiency of Cd-contaminated soils by hyperaccumulator, and alleviate Cd toxicity to non-hyperaccumulator ecotype of Sedum alfredii.


Assuntos
Cádmio/farmacocinética , Dióxido de Carbono , Endófitos/fisiologia , Sedum/microbiologia , Sedum/fisiologia , Bacillus megaterium/fisiologia , Biodegradação Ambiental , Ecótipo , Hidroponia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Sedum/efeitos dos fármacos , Poluentes do Solo/farmacocinética , Distribuição Tecidual
11.
Sci Total Environ ; 650(Pt 2): 2761-2770, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373054

RESUMO

Understanding cadmium (Cd) tolerance and accumulation strategies of hyperaccumulators is crucial for promoting phytoremediation of polluted soils. Root resistance to Cd regulated by nitric oxide (NO) was investigated for the Cd hyperaccumulating ecotype (HE) of Sedum alfredii. Differed from that of its non-hyperaccumulating ecotype, Cd stress in HE roots triggered a strong NO burst mediated through both nitrate reductase and nitric oxide synthase. Elimination of endogenous NO did not affect Cd levels in roots, but greatly aggravated the metal toxicity, including increased reactive oxygen species (ROS) accumulation, oxidative damage and cell ultrastructure injury. Cadmium stress in HE triggered up-regulated SOD activities but down-regulated POD, CAT, and APX activities, which were significantly inverted by NO scavenger. The NO burst also expanded the glutathione (GSH) pool in HE roots by activation of GR, GSNOR, and γ-ECS, but had no effects on the ascorbate acid (AsA) recycle. Similar to that of NO, preferential localizations of ROS and GSH to meristem and cylinder were observed in root tips of HE. Cadmium uptake and translocation were not affected by the NO levels. These results suggest that NO burst activated a GSH-involved strategy, instead of altering Cd accumulation, to protect root tips of HE S. alfredii against Cd toxicity at early stage.


Assuntos
Cádmio/metabolismo , Glutationa/metabolismo , Óxido Nítrico/metabolismo , Sedum/efeitos dos fármacos , Sedum/metabolismo , Biodegradação Ambiental , China , Raízes de Plantas/metabolismo
12.
Environ Sci Pollut Res Int ; 25(22): 21844-21854, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29796886

RESUMO

Inoculation with endophytic bacterium has been considered as a prospective application to improve the efficiency of phytoextraction. In this study, the effect of Buttiauxella sp. SaSR13 (SaSR13), a novel endophytic bacterium isolated from the root of hyperaccumulator Sedum alfredii, on plant growth and cadmium (Cd) accumulation in S. alfredii was investigated. Laser scanning confocal microscopic (LSCM) images showed that SaSR13 was mainly colonized in the root elongation and mature zones. The inoculation with SaSR13 to Cd-treated plants significantly enhanced plant growth (by 39 and 42% for shoot and root biomass, respectively), chlorophyll contents (by 38%), and Cd concentration in the shoot and root (by 32 and 22%, respectively). SaSR13 stimulated the development of roots (increased root length, surface area, and root tips number) due to an increase in the indole-3-acid (IAA) concentrations and a decrease in the concentrations of superoxide anion (O2.-) in plants grown under Cd stress. Furthermore, inoculation with SaSR13 enhanced the release of root exudates, especially malic acid and oxalic acid, which might have facilitated the uptake of Cd by S. alfredii. It is suggested that inoculation with endophytic bacterium SaSR13 is a promising bioaugmentation method to enhance the Cd phytoextraction efficiency by S. alfredii.


Assuntos
Cádmio/farmacocinética , Enterobacteriaceae/fisiologia , Sedum/metabolismo , Sedum/microbiologia , Poluentes do Solo/farmacocinética , Biodegradação Ambiental , Biomassa , Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Exsudatos de Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Estudos Prospectivos , Sedum/efeitos dos fármacos
13.
New Phytol ; 215(2): 687-698, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28574163

RESUMO

Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.


Assuntos
Adenosina Trifosfatases/metabolismo , Cádmio/farmacocinética , Sedum/efeitos dos fármacos , Sedum/metabolismo , Zinco/farmacocinética , Adenosina Trifosfatases/genética , Cádmio/toxicidade , Clonagem Molecular , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Ecótipo , Regulação da Expressão Gênica de Plantas , Metais Pesados/farmacocinética , Metais Pesados/toxicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sedum/genética , Distribuição Tecidual , Zinco/toxicidade
14.
Plant Biotechnol J ; 14(6): 1470-83, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26801211

RESUMO

The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co-hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of miRNAs and their targets in the hyperaccumulating ecotype of S. alfredii. Here, we combined analyses of the transcriptomics, sRNAs and the degradome to generate a comprehensive resource focused on identifying key regulatory miRNA-target circuits under Cd stress. A total of 87 721 unigenes and 356 miRNAs were identified by deep sequencing, and 79 miRNAs were differentially expressed under Cd stress. Furthermore, 754 target genes of 194 miRNAs were validated by degradome sequencing. A gene ontology (GO) enrichment analysis of differential miRNA targets revealed that auxin, redox-related secondary metabolism and metal transport pathways responded to Cd stress. An integrated analysis uncovered 39 pairs of miRNA targets that displayed negatively correlated expression profiles. Ten miRNA-target pairs also exhibited negative correlations according to a real-time quantitative PCR analysis. Moreover, a coexpression regulatory network was constructed based on profiles of differentially expressed genes. Two hub genes, ARF4 (auxin response factor 4) and AAP3 (amino acid permease 3), which might play central roles in the regulation of Cd-responsive genes, were uncovered. These results suggest that comprehensive analyses of the transcriptomics, sRNAs and the degradome provided a useful platform for investigating Cd hyperaccumulation in S. alfredii, and may provide new insights into the genetic engineering of phytoremediation.


Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Sedum/metabolismo , Transcriptoma/efeitos dos fármacos , Transporte Biológico/genética , Cádmio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes , MicroRNAs/química , Sedum/efeitos dos fármacos , Sedum/genética , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
15.
Planta ; 243(3): 577-89, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26547194

RESUMO

MAIN CONCLUSION: The enhanced expression of a P 1B -type ATPase gene ( SaHMA3 ) is essential for Cd hyperaccumulation and hypertolerance in Sedum alfredii Hance. A functional understanding of the mechanism through which hyperaccumulator plants accumulate and tolerate extremely toxic metals is a prerequisite for the development of novel strategies for improving phytoremediation using engineered plants or natural hyperaccumulators as well as biofortification and food crop safety. Most hyperaccumulator species, however, are small and slow-growing, and their potential for large-scale decontamination of polluted soils is limited. Sedum alfredii Hance, the only one metal hyperaccumulator from the Crassulaceae family, is an ideal candidate for gaining a functional understanding of the intra-family hyperaccumulation mechanisms as well as their potential applications. In the present study, we isolated and functionally characterized a P1B-type ATPase gene (SaHMA3) from S. alfredii Hance. SaHMA3 alleles from a hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) were constitutively expressed in both shoot and root and encoded tonoplast-localized proteins, but showed differences in transport substrate specificity and expression level. SaHMA3 h from the HE plant was a Cd transporter. In contrast, SaHMA3n from NHE plants was able to transport both Zn and Cd. SaHMA3 showed a significantly higher constitutive expression level in HE plants than in NHE plants. Furthermore, the expression level of SaHMA3 in the shoots of HE plants was considerably higher than in the roots. Overexpression of SaHMA3h in tobacco plants significantly enhanced Cd tolerance and accumulation and greatly increased the root sequestration of Cd. In summary, our data suggested that SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator S. alfredii Hance.


Assuntos
Adenosina Trifosfatases/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas , Sedum/fisiologia , Zinco/toxicidade , Adenosina Trifosfatases/genética , Biodegradação Ambiental , Cádmio/metabolismo , Ecótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Sedum/efeitos dos fármacos , Zinco/metabolismo
16.
J Integr Plant Biol ; 57(7): 653-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25370532

RESUMO

The combined effects of elevated CO2 and cadmium (Cd) on photosynthetic rate, chlorophyll fluorescence and Cd accumulation in hyperaccumulator Sedum alfredii Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO2 concentration. Both pot and hydroponic experiments were conducted and the plants were grown under ambient (350 µL L(-1)) or elevated (800 µL L(-1)) CO2 . Elevated CO2 significantly (P < 0.05) increased Pn (105%-149%), Pnmax (38.8%-63.0%) and AQY (20.0%-34.8%) of S. alfredii in all the Cd treatments, but reduced chlorophyll concentration, dark respiration and photorespiration. After 10 days growth in medium with 50 µM Cd under elevated CO2 , PSII activities were significantly enhanced (P < 0.05) with Pm, Fv/Fm, Φ(II) and qP increased by 66.1%, 7.5%, 19.5% and 16.4%, respectively, as compared with ambient-grown plants. Total Cd uptake in shoot of S. alfredii grown under elevated CO2 was increased by 44.1%-48.5%, which was positively correlated with the increase in Pn. These results indicate that elevated CO2 promoted the growth of S. alfredii due to increased photosynthetic carbon uptake rate and photosynthetic light-use efficiency, and showed great potential to improve the phytoextraction of Cd by S. alfredii.


Assuntos
Cádmio/toxicidade , Dióxido de Carbono/farmacologia , Fotossíntese/efeitos dos fármacos , Sedum/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Fluorescência , Gases/metabolismo , Luz , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/efeitos da radiação , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/efeitos da radiação , Sedum/efeitos dos fármacos , Sedum/efeitos da radiação
17.
PLoS One ; 9(12): e115581, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25545686

RESUMO

Hydroponic experiments were conducted to investigate the variation of root exudates from the hyperaccumulator Sedum alfredii under the stress of cadmium (Cd). S. alfredii was cultured for 4 days in the nutrient solution spiked with CdCl2 at concentrations of 0, 5, 10, 40, and 400 µM Cd after the pre-culture. The root exudates were collected and analyzed by GC-MS, and 62 compounds were identified. Of these compounds, the orthogonal partial least-squares discrimination analysis (OPLS-DA) showed that there were a distinct difference among the root exudates with different Cd treatments and 20 compounds resulting in this difference were found out. Changing tendencies in the relative content of these 20 compounds under the different Cd treatments were analyzed. These results indicated that trehalose, erythritol, naphthalene, d-pinitol and n-octacosane might be closely related to the Cd stabilization, phosphoric acid, tetradecanoic acid, oxalic acid, threonic acid and glycine could be attributed to the Cd mobilization, and mannitol, oleic acid, 3-hydroxybutanoic acid, fructose, octacosanol and ribitol could copy well with the Cd stress.


Assuntos
Cloreto de Cádmio/toxicidade , Metaboloma/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Sedum/efeitos dos fármacos , Extratos Vegetais/química , Raízes de Plantas/metabolismo , Sedum/metabolismo , Estresse Fisiológico
18.
Int J Phytoremediation ; 16(5): 496-508, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24912231

RESUMO

In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14-0.16 L/mg and n values were 1.51-2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K > or = 1.49 L/mg and n > or = 3.59.


Assuntos
Cádmio/metabolismo , Sedum/metabolismo , Poluentes do Solo/metabolismo , Zinco/metabolismo , Animais , Biodegradação Ambiental , Cádmio/análise , Galinhas , Concentração de Íons de Hidrogênio , Esterco , Sedum/efeitos dos fármacos , Sedum/crescimento & desenvolvimento , Sementes , Solo/química , Poluentes do Solo/análise , Suínos , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zinco/análise
19.
Ecotoxicol Environ Saf ; 100: 159-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24239266

RESUMO

Sedum alfredii Hance is a promising cadmium (Cd) hyperaccumulating plant recently identified in China. However, the physiological and molecular mechanisms underlying Cd accumulation, which differentiate hyperaccumulating ecotype (HE) from non-hyperaccumulating ecotype (NHE) has not been elucidated yet. A hydroponic experiment was conducted to investigate the role of sulfur assimilation pathway in Cd hyperaccumulation by the S. alfredii Hance, by analyzing gene expression pattern in sulfur assimilation pathway and the concentration of some sulfur containing compounds. The results show that, sulfur assimilation pathway was affected by Cd differently in HE and NHE S. alfredii Hance. The gene expression pattern of sulfur assimilation pathway was regulated differently in HE and NHE plants, especially the nicotianamine synthase (NAS). NAS transcript levels in root of HE was 141-fold higher than NHE, while in shoots of HE only 0.31-fold higher than NHE. In HE roots, NAS expression level was maximum 3171-fold higher than shoots, while in NHE plants roots NAS expression level was maximum 45.3-fold higher than shoots. In HE plant roots, sulfur, cysteine and methionine concentrations increased 30%, 46% and 835% respectively, by Cd treatment, but in NHE plants roots, sulfur concentration increased less than 1%, cysteine and methionine concentrations decreased 78.5% and 13.3% respectively, by Cd. Cd exposure increased glutathione levels by 142% in HE but less than 10% in NHE plant roots.


Assuntos
Cádmio/metabolismo , Sedum/metabolismo , Cádmio/toxicidade , China , Ecótipo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Hidroponia , Raízes de Plantas/metabolismo , Sedum/efeitos dos fármacos , Sedum/genética , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Enxofre/metabolismo
20.
PLoS One ; 8(6): e64643, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23755133

RESUMO

The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≥ 2.0) and down-regulated (Fold Change

Assuntos
Cádmio/toxicidade , Perfilação da Expressão Gênica , Sedum/genética , Sedum/fisiologia , Estresse Fisiológico/genética , Ecótipo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Sedum/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA