Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447079

RESUMO

Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/genética , Selenocisteína/química , Selenocisteína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Selenoproteínas/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Aminoácidos , Glutationa , Enxofre , Mamíferos/genética , Mamíferos/metabolismo
2.
Neurotoxicology ; 101: 26-35, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272071

RESUMO

Selenium (Se) is required for synthesis of selenocysteine (Sec), an amino acid expressed in the active sites of Se-dependent enzymes (selenoenzymes), including forms with essential functions in fetal development, brain activities, thyroid hormone metabolism, calcium regulation, and to prevent or reverse oxidative damage. Homeostatic mechanisms normally ensure the brain is preferentially supplied with Se to maintain selenoenzymes, but high methylmercury (CH3Hg) exposures irreversibly inhibit their activities and impair Sec synthesis. Due to Hg's high affinity for sulfur, CH3Hg initially binds with the cysteine (Cys) moieties of thiomolecules which are selenoenzyme substrates. These CH3Hg-Cys adducts enter selenoenzyme active sites and transfer CH3Hg to Sec, thus irreversibly inhibiting their activities. High CH3Hg exposures are uniquely able to induce a conditioned Se-deficiency that impairs synthesis of brain selenoenzymes. Since the fetal brain lacks Se reserves, it is far more vulnerable to CH3Hg exposures than adult brains. This prompted concerns that maternal exposures to CH3Hg present in seafood might impair child neurodevelopment. However, typical varieties of ocean fish contain far more Se than CH3Hg. Therefore, eating them should augment Se-status and thus prevent Hg-dependent loss of fetal selenoenzyme activities. To assess this hypothesis, umbilical cord blood and placental tissue samples were collected following delivery of a cohort of 100 babies born on Oahu, Hawaii. Dietary food frequency surveys of the mother's last month of pregnancy identified groups with no (0 g/wk), low (0-12 g/wk), or high (12 + g/wk) levels of ocean fish consumption. Maternal seafood consumption increased Hg contents in fetal tissues and resulted in ∼34% of cord blood samples exceeding the EPA Hg reference level of 5.8 ppb (0.029 µM). However, Se concentrations in these tissues were orders of magnitude higher and ocean fish consumption caused cord blood Se to increase ∼9.4 times faster than Hg. Therefore, this study supports the hypothesis that maternal consumption of typical varieties of ocean fish provides substantial amounts of Se that protect against Hg-dependent losses in Se bioavailability. Recognizing the pivotal nature of the Hg:Se relationship provides a consilient perspective of seafood benefits vs. risks and clarifies the reasons for the contrasting findings of certain early studies.


Assuntos
Mercúrio , Selênio , Adulto , Animais , Criança , Humanos , Feminino , Gravidez , Saúde da Criança , Placenta/metabolismo , Alimentos Marinhos/análise , Peixes/metabolismo , Selenocisteína/metabolismo , Cisteína
3.
Psychopharmacology (Berl) ; 241(2): 379-399, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38019326

RESUMO

BACKGROUND: Ischemic stroke still ranks as the most fatal disease worldwide. Blood-brain barrier (BBB) is a promising therapeutic target for protection. Brain microvascular endothelial cell is a core component of BBB, the barrier function maintenance of which can ameliorate ischemic injury and improve neurological deficit. Se-methyl L-selenocysteine (SeMC) has been shown to exert cardiovascular protection. However, the protection of SeMC against ischemic stroke remains to be elucidated. This research was designed to explore the protection of SeMC from the perspective of BBB protection. METHODS: To simulate cerebral ischemic injury, C57BL/6J mice were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R), and bEnd.3 was exposed to oxygen-glucose deprivation/reoxygenation (OGD/R). After the intervention of SeMC, the barrier function and the expression of tight junction and ferroptosis-associated proteins were determined. For mechanism exploration, LY294002 (Akt inhibitor) was introduced both in vivo and in vitro. RESULTS: SeMC lessened the brain infarct volume and attenuated the leakage of BBB in mice. In vitro, SeMC improved cell viability and maintained the barrier function of bEnd.3 cells. The protection of SeMC was accompanied with ferroptosis inhibition and tight junction protein upregulation. Mechanism studies revealed that the effect of SeMC was reversed by LY294002, indicating that the protection of SeMC against ischemic stroke was mediated by the Akt signal pathway. CONCLUSION: These results suggested that SeMC exerted protection against ischemic stroke, which might be attributed to activating the Akt/GSK3ß signaling pathway and increasing the nuclear translocation of Nrf2 and ß-catenin, subsequently maintaining the integrity of BBB.


Assuntos
Isquemia Encefálica , Ferroptose , AVC Isquêmico , Traumatismo por Reperfusão , Ratos , Camundongos , Animais , Barreira Hematoencefálica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Endoteliais/metabolismo , Junções Íntimas/metabolismo , Selenocisteína/metabolismo , Selenocisteína/farmacologia , Selenocisteína/uso terapêutico , Regulação para Cima , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , AVC Isquêmico/metabolismo
4.
Eur J Med Chem ; 265: 116044, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38145603

RESUMO

Ferroptosis is a form of non-apoptotic cell death, regulated by phospholipid hydroperoxide glutathione peroxidase 4 (GPX4), a selenoprotein with a selenocysteine residue (sec) in the active site. GPX4 is a promising target for cancer cells in therapy-resistant conditions via ferroptosis, which can reduce the level of lipid reactive oxygen species (ROS). So far, all existing GPX4 inhibitors covalently bind to GPX4 via a reactive alkyl chloride moiety or masked nitrile-oxide electrophiles with poor selectivity and pharmacokinetic properties and most were obtained by cell phenotype-based screening. Lacking of effective high-throughput screening methods for GPX4 protein limits the discovery of GPX4 inhibitors. Here, we report a fluorescence polarization (FP)-based high throughput screening (HTS) assay for GPX4-U46C-C10A-C66A in vitro, and found Metamizole sodium from our in-house compound library inhibits GPX4-U46C-C10A-C66A enzyme activity. Structure-activity relationships (SAR) demonstrated the importance of sulfonyl group on interaction between Metamizole sodium and GPX4-U46C-C10A-C66A. Our FP assay could be an effective tool for discovery of GPX4 inhibitors and Metamizole sodium was a potential inhibitor for GPX4 in vitro.


Assuntos
Dipirona , Ensaios de Triagem em Larga Escala , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Selenocisteína/metabolismo , Relação Estrutura-Atividade , Glutationa Peroxidase/metabolismo
5.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895024

RESUMO

Selenoproteins are a group of proteins containing selenium in the form of selenocysteine (Sec, U) as the 21st amino acid coded in the genetic code. Their synthesis depends on dietary selenium uptake and a common set of cofactors. Selenoproteins accomplish diverse roles in the body and cell processes by acting, for example, as antioxidants, modulators of the immune function, and detoxification agents for heavy metals, other xenobiotics, and key compounds in thyroid hormone metabolism. Although the functions of all this protein family are still unknown, several disorders in their structure, activity, or expression have been described by researchers. They concluded that selenium or cofactors deficiency, on the one hand, or the polymorphism in selenoproteins genes and synthesis, on the other hand, are involved in a large variety of pathological conditions, including type 2 diabetes, cardiovascular, muscular, oncological, hepatic, endocrine, immuno-inflammatory, and neurodegenerative diseases. This review focuses on the specific roles of selenoproteins named after letters of the alphabet in medicine, which are less known than the rest, regarding their implications in the pathological processes of several prevalent diseases and disease prevention.


Assuntos
Diabetes Mellitus Tipo 2 , Selênio , Humanos , Selênio/metabolismo , Selenoproteínas/metabolismo , Selenocisteína/metabolismo , Antioxidantes
6.
Metallomics ; 15(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37898555

RESUMO

Using high pressure liquid chromatography (HPLC) coupled with selenium-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (Orbitrap MS/MS) detection, we previously found that far more selenium (Se) is present as selenosugar (seleno-N-acetyl galactosamine) in Se-adequate turkey liver than is present as selenocysteine (Sec) in true selenoproteins, and that selenosugars account for half of the Se in high-Se turkey liver. To expand these observations to mammals, we studied Se metabolism in rats fed graded levels of selenite from 0 to 5 µg Se/g for 4 wk. In Se-adequate (0.24 µg Se/g) rats, 43% of liver Se was present as Sec, 32% was present as selenosugars, and 22% as inorganic Se bound to protein. In liver of rats fed 5 µg Se/g as selenite, the quantity of Sec remained at the Se-adequate plateau (11% of total Se), 22% was present as low molecular weight (LMW) selenosugars with substantial additional selenosugars linked to protein, but 64% was present as inorganic Se bound to protein. No selenomethionine was found at any level of selenite supplementation. Below the Se requirement, Se is preferentially incorporated into Sec-selenoproteins. Above the dietary Se requirement, selenosugars become by far the major LMW water soluble Se species in liver, and levels of selenosugar-decorated proteins are far higher than Sec-selenoproteins, making these selenosugar-decorated proteins the major Se-containing protein species in liver with high Se supplementation. This accumulation of selenosugars linked to cysteines on proteins or the build-up of inorganic Se bound to protein may underlie Se toxicity at the molecular level.


Assuntos
Selênio , Ratos , Animais , Selênio/metabolismo , Ácido Selenioso/metabolismo , Selenocisteína/metabolismo , Espectrometria de Massas em Tandem , Selenoproteínas/metabolismo , Fígado/metabolismo , Suplementos Nutricionais , Mamíferos/metabolismo
7.
Trends Cancer ; 9(12): 1006-1018, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37716885

RESUMO

In the past two decades significant progress has been made in uncovering the biological function of selenium. Selenium, an essential trace element, is required for the biogenesis of selenocysteine which is then incorporated into selenoproteins. These selenoproteins have emerged as central regulators of cellular antioxidant capacity and maintenance of redox homeostasis. This review provides a comprehensive examination of the multifaceted functions of selenoproteins with a particular emphasis on their contributions to cellular antioxidant capacity. Additionally, we highlight the promising potential of targeting selenoproteins and the biogenesis of selenocysteine as avenues for therapeutic intervention in cancer. By understanding the intricate relationship between selenium, selenoproteins, and reactive oxygen species (ROS), insights can be gained to develop therapies that exploit the inherent vulnerabilities of cancer cells.


Assuntos
Neoplasias , Selênio , Humanos , Antioxidantes , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Oxirredução , RNA de Transferência , Homeostase , Neoplasias/genética
8.
J Biol Chem ; 299(8): 105009, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406814

RESUMO

Selenoprotein P (SeP, encoded by the SELENOP gene) is a plasma protein that contains selenium in the form of selenocysteine residues (Sec, a cysteine analog containing selenium instead of sulfur). SeP functions for the transport of selenium to specific tissues in a receptor-dependent manner. Apolipoprotein E receptor 2 (ApoER2) has been identified as a SeP receptor. However, diverse variants of ApoER2 have been reported, and the details of its tissue specificity and the molecular mechanism of its efficiency remain unclear. In the present study, we found that human T lymphoma Jurkat cells have a high ability to utilize selenium via SeP, while this ability was low in human rhabdomyosarcoma cells. We identified an ApoER2 variant with a high affinity for SeP in Jurkat cells. This variant had a dissociation constant value of 0.67 nM and a highly glycosylated O-linked sugar domain. Moreover, the acidification of intracellular vesicles was necessary for selenium transport via SeP in both cell types. In rhabdomyosarcoma cells, SeP underwent proteolytic degradation in lysosomes and transported selenium in a Sec lyase-dependent manner. However, in Jurkat cells, SeP transported selenium in Sec lyase-independent manner. These findings indicate a preferential selenium transport pathway involving SeP and high-affinity ApoER2 in a Sec lyase-independent manner. Herein, we provide a novel dynamic transport pathway for selenium via SeP.


Assuntos
Liases , Selênio , Humanos , Liases/metabolismo , Selênio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteína P/genética , Selenoproteína P/metabolismo , Selenoproteínas , Células Jurkat
9.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446894

RESUMO

Selenium is a main group element and an essential trace element in human health. It was discovered in selenocysteine (SeC) by Stadtman in 1974. SeC is an encoded natural amino acid hailed as the 21st naturally occurring amino acid (U) present in several enzymes and which exquisitely participates in redox biology. As it turns out, selenium bears a U-shaped toxicity curve wherein too little of the nutrient present in biology leads to disorders; concentrations that are too great, on the other hand, pose toxicity to biological systems. In light of many excellent previous reviews and the corpus of literature, we wanted to offer this current review, in which we present aspects of the clinical and biological literature and justify why we should further investigate Se-containing species in biological and medicinal contexts, especially small molecule-containing species in biomedical research and clinical medicine. Of central interest is how selenium participates in biological signaling pathways. Several clinical medical cases are recounted; these reports are mainly pertinent to human cancer and changes in pathology and cases in which the patients are often terminal. Selenium was an option chosen in light of earlier chemotherapeutic treatment courses which lost their effectiveness. We describe apoptosis, and also ferroptosis, and senescence clearly in the context of selenium. Other contemporary issues in research also compelled us to form this review: issues with CoV-2 SARS infection which abound in the literature, and we described findings with human patients in this context. Laboratory scientific studies and clinical studies dealing with two main divisions of selenium, organic (e.g., methyl selenol) or inorganic selenium (e.g., sodium selenite), are discussed. The future seems bright with the research and clinical possibilities of selenium as a trace element, whose recent experimental clinical treatments have so far involved dosing simply and inexpensively over a set of days, amounts, and time intervals.


Assuntos
COVID-19 , Selênio , Oligoelementos , Humanos , Selênio/farmacologia , Selênio/metabolismo , Oxirredução , Selenocisteína/metabolismo , Estresse Oxidativo , Apoptose , Transdução de Sinais
10.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373256

RESUMO

Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Glutationa Peroxidase/metabolismo , Enxofre , Mamíferos/metabolismo
11.
J Am Chem Soc ; 145(18): 10167-10177, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37104670

RESUMO

Radical S-adenosyl-l-methionine (SAM) enzymes leverage the properties of one or more iron- and sulfide-containing metallocenters to catalyze complex and radical-mediated transformations. By far the most populous superfamily of radical SAM enzymes are those that, in addition to a 4Fe-4S cluster that binds and activates the SAM cofactor, also bind one or more additional auxiliary clusters (ACs) of largely unknown catalytic significance. In this report we examine the role of ACs in two RS enzymes, PapB and Tte1186, that catalyze formation of thioether cross-links in ribosomally synthesized and post-translationally modified peptides (RiPPs). Both enzymes catalyze a sulfur-to-carbon cross-link in a reaction that entails H atom transfer from an unactivated C-H to initiate catalysis, followed by formation of a C-S bond to yield the thioether. We show that both enzymes tolerate substitution of SeCys instead of Cys at the cross-linking site, allowing the systems to be subjected to Se K-edge X-ray spectroscopy. The EXAFS data show a direct interaction with the Fe of one of the ACs in the Michaelis complex, which is replaced with a Se-C interaction under reducing conditions that lead to the product complex. Site-directed deletion of the clusters in Tte1186 provide evidence for the identity of the AC. The implications of these observations in the context of the mechanism of these thioether cross-linking enzymes are discussed.


Assuntos
Selenocisteína , Especificidade por Substrato , Selenocisteína/química , Selenocisteína/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Metionina/metabolismo , Processamento de Proteína Pós-Traducional , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Estrutura Terciária de Proteína , Modelos Moleculares
12.
J Nutr ; 153(11): 3164-3172, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963501

RESUMO

Selenoprotein I (SELENOI) has been demonstrated to be an ethanolamine phosphotransferase (EPT) characterized by a nonselenoenzymatic domain and to be involved in the main synthetic branch of phosphatidylethanolamine (PE) in the endoplasmic reticulum. Therefore, defects of SELENOI may affect the health status through the multiple functions of PE. On the other hand, selenium (Se) is covalently incorporated into SELENOI as selenocysteine (Sec) in its peptide, which forms a Sec-centered domain as in the other members of the selenoprotein family. Unlike other selenoproteins, Sec-containing SELENOI was formed at a later stage of animal evolution, and the high conservation of the structural domain for PE synthesis across a wide range of species suggests the importance of EPT activity in supporting the survival and evolution of organisms. A variety of factors, such as species characteristics (age and sex), diet and nutrition (dietary Se and fat intakes), SELENOI-specific properties (tissue distribution and rank in the selenoproteome), etc., synergistically regulate the expression of SELENOI in a tentatively unclear interaction. The N- and C-terminal domains confer 2 distinct biochemical functions to SELENOI, namely PE regulation and antioxidant potential, which may allow it to be involved in numerous physiological processes, including neurological diseases (especially hereditary spastic paraplegia), T cell activation, tumorigenesis, and adipocyte differentiation. In this review, we summarize advances in the biology and roles of SELENOI, shedding light on the precise regulation of SELENOI expression and PE homeostasis by dietary Se intake and pharmaceutical or transgenic approaches to modulate the corresponding pathological status.


Assuntos
Antioxidantes , Selênio , Animais , Biologia , Etanolaminas , Fosfotransferases , Selênio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Humanos
13.
Appl Microbiol Biotechnol ; 107(9): 2843-2854, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941436

RESUMO

Seleno-methylselenocysteine (SeMCys) is an effective component for selenium supplementation with anti-carcinogenic potential and can ameliorate neuropathology and cognitive deficits. In this study, we aimed to engineer Bacillus subtilis 168 for the microbial production of SeMCys. First, the accumulation of intracellular selenocysteine (SeCys) as the precursor of SeMCys was enhanced through overexpression of serine O-acetyltransferase, which was desensitized against feedback inhibition by cysteine. Next, the S-adenosylmethionine (SAM) synthetic pathway was optimized to improve methyl donor availability through expression of S-adenosylmethionine synthetase. Further, SeMCys was successfully produced through expression of the selenocysteine methyltransferase in SeCys and SAM-producing strain. The increased expression level of selenocysteine methyltransferase benefited the SeMCys production. Finally, all the heterologous genes were integrated into the genome of B. subtilis, and the strain produced SeMCys at a titer of 18.4 µg/L in fed-batch culture. This is the first report on the metabolic engineering of B. subtilis for microbial production of SeMCys and provides a good starting point for future pathway engineering to achieve the industrial-grade production of SeMCys. KEY POINTS: • Expression of the feedback-insensitive serine O-acetyltransferase provided B. subtilis the ability of accumulating SeCys. • SAM production was enhanced through expressing S-adenosylmethionine synthetase in B. subtilis. • Expression of selenocysteine methyltransferase in SeCys and SAM-accumulating strain facilitated SeMCys production.


Assuntos
Bacillus subtilis , Selenocisteína , Selenocisteína/genética , Selenocisteína/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Serina O-Acetiltransferase/metabolismo , Metionina Adenosiltransferase/metabolismo , Engenharia Metabólica , S-Adenosilmetionina/metabolismo
14.
Arch Biochem Biophys ; 733: 109470, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442530

RESUMO

Selenoproteins are a ubiquitous class of proteins defined by having a selenocysteine amino acid residue. While many of the selenoproteins have been well characterized with important roles in oxidation-reduction reactions and hormone synthesis among others, there exist some whose biological roles are not as well understood as denoted by the "SELENO" root. In this study, we explored associations between the reported RNA levels of "SELENO" proteins and clear cell renal cell carcinoma (ccRCC), the most common subtype of renal carcinoma in the US. Utilizing The Cancer Genome Atlas (TCGA) alongside other in silico tools, we discovered higher mRNA expression of Selenoprotein I, T, and P was associated with better overall survival outcomes and differential expression of other selenoproteins based on tumor stage. Additionally, we uncovered relative hypomethylation among selenoproteins in primary ccRCC tumor samples compared to normal tissue. Network and enrichment analysis showed numerous genes through which selenoproteins may modulate cancer progression and outcomes such as DERL1, PNPLA2/3, MIEN1, and FOXO1 which have been well-described in other cancers. In light of our findings highlighting an association of selenoprotein methylation and expression patterns with ccRCC outcome, further wet lab research is warranted.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Metilação , Selenoproteínas/genética , Selenoproteínas/metabolismo , Selenocisteína/metabolismo , Neoplasias Renais/genética , Proteínas de Neoplasias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
15.
Biochem Biophys Res Commun ; 637: 23-31, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375247

RESUMO

Thioredoxin (Trx) and glutathione disulfide (GSSG), are regenerated in reduced state by thioredoxin reductase (TrxR) and glutathione reductase (GR) respectively. A novel protein thioredoxin glutathione reductase (TGR) capable of reducing Trx as well as GSSG, linking two redox systems, has only been reported so far from parasitic flat worms and mammals. For the first time, we report a multifunctional antioxidant enzyme TGR from the nonparasitic, nonmammalian cnidarian Hydra vulgaris (HvTGR) which is a selenoprotein with unusual fusion of a TrxR domain with glutaredoxin (Grx) domain. We have cloned and sequenced HvTGR which encodes a polypeptide of 73 kDa. It contains conserved sequence CPYC of Grx domain, and CVNVGC and GCUG domains of thioredoxin reductase. Phylogenetic analysis revealed HvTGR to be closer to TGR from mammals rather than to TGR from parasitic helminths. We then subcloned HvTGR in plasmid pSelExpress-1 and expressed it in HEK293T cells to ensure selenocysteine incorporation. Purified HvTGR showed Grx, glutathione reductase and TrxR activities. Both thioredoxin and GSSG disulfide reductase activities were inhibited by 1-Chloro-2,4-dinitrobenzene (DNCB) supporting the existence of an essential selenocysteine residue. HvTGR expression was induced in response to H2O2 in Hydra. Interestingly, inhibition of HvTGR by DNCB, inhibited regeneration in Hydra indicating its involvement in other cellular processes.


Assuntos
Hydra , Tiorredoxina Dissulfeto Redutase , Animais , Humanos , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Hydra/genética , Hydra/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Dissulfeto de Glutationa/metabolismo , Peróxido de Hidrogênio , Filogenia , Dinitroclorobenzeno , Células HEK293 , Glutationa/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Oxirredução , Antioxidantes/metabolismo , Mamíferos/metabolismo
16.
Arch Biochem Biophys ; 732: 109465, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379313

RESUMO

There is an urgent need for new and improved therapeutic strategies in breast cancer, which is the most common malignancy affecting women in the United States and worldwide. Selenium (Se) is an essential trace element of the human diet and plays a critical role in many aspects of human health. Clinical and epidemiological studies summarized here clearly demonstrate that Se status correlates with breast cancer survival. As a result, one way to curb breast cancer mortality would be via Se supplementation, especially in patients with severely deplete Se status. Se manifests its biological activity through incorporation into selenoproteins as selenocysteine. However, a better understanding of tissue-specific mechanisms and roles for selenoproteins in general is required. Additionally, many human selenoproteins harbor single nucleotide polymorphisms, which impact protein expression and activity and have been associated with cancer susceptibility or impacting survival. Increasing evidence indicates that these genetic variations impinge on the interactions between Se and breast cancer. This highlights the importance of integrating the Se status with genetic factors to fully define the benefit of Se in breast cancer. While Se supplementation would clearly benefit a subset of patients, this requires first the identification of at-risk patients and warrants validation through intervention trials.


Assuntos
Neoplasias da Mama , Selênio , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Polimorfismo de Nucleotídeo Único
17.
Arch Biochem Biophys ; 732: 109451, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36334799

RESUMO

The contribution of selenium and selenoproteins in prostate cancer etiology remains elusive, potentially due to insufficient information regarding the biochemical pathways in which they are involved. There are twenty-five human selenocysteine-containing proteins or selenoproteins as well as a smaller class of selenium-containing proteins that do not include selenocysteine, and their cancer-associated aberrations, both genetic and functional, have evoked special interest, although their contribution to the metabolic reprogramming of prostate cancers remains has not been extensively studied. While benign prostate tissue exhibits a glycolytic phenotype, neoplastic events restore the truncated tricarboxylic acid cycle and enhance oxidative phosphorylation. Two selenium-containing proteins, selenium binding protein 1 and selenoprotein F, affect prostate cancer phenotypes by modulating tumor cell metabolic profiles with significant effects on mitochondrial biology, including oxidative phosphorylation and ATP synthesis. One of the pathways affected by both proteins is the activation of adenosine monophosphate kinase and its downstream signaling with concomitant induction of glycolysis. This review focuses on highlighting the role of these two proteins in modulating the bioenergetic profile of prostate cancer and in maintaining the metabolic plasticity of these cells rendering growth advantage and possible therapeutic resistance.


Assuntos
Neoplasias da Próstata , Proteínas de Ligação a Selênio , Selênio , Selenoproteínas , Humanos , Masculino , Metabolismo Energético , Neoplasias da Próstata/patologia , Proteínas de Ligação a Selênio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo
18.
Biomolecules ; 12(11)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358931

RESUMO

A potential target of precision nutrition in cancer therapeutics is the micronutrient selenium (Se). Se is metabolized and incorporated as the amino acid selenocysteine (Sec) into 25 human selenoproteins, including glutathione peroxidases (GPXs) and thioredoxin reductases (TXNRDs), among others. Both the processes of Se and Sec metabolism for the production of selenoproteins and the action of selenoproteins are utilized by cancer cells from solid tumors as a protective mechanism against oxidative damage and to resist ferroptosis, an iron-dependent cell death mechanism. Protection against ferroptosis in cancer cells requires sustained production of the selenoprotein GPX4, which involves increasing the uptake of Se, potentially activating Se metabolic pathways such as the trans-selenation pathway and the TXNRD1-dependent decomposition of inorganic selenocompounds to sustain GPX4 synthesis. Additionally, endoplasmic reticulum-resident selenoproteins also affect apoptotic responses in the presence of selenocompounds. Selenoproteins may also help cancer cells adapting against increased oxidative damage and the challenges of a modified nutrient metabolism that result from the Warburg switch. Finally, cancer cells may also rewire the selenoprotein hierarchy and use Se-related machinery to prioritize selenoproteins that are essential to the adaptations against ferroptosis and oxidative damage. In this review, we discuss both the evidence and the gaps in knowledge on how cancer cells from solid tumors use Se, Sec, selenoproteins, and the Se-related machinery to promote their survival particularly via resistance to ferroptosis.


Assuntos
Ferroptose , Neoplasias , Selênio , Humanos , Selenocisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Neoplasias/patologia
19.
Ecotoxicol Environ Saf ; 247: 114217, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306613

RESUMO

Excessively high concentrations of selenium (Se) in soil are toxic to crop plants, and inoculation with arbuscular mycorrhizal fungi (AMF) can reverse Se stress in maize (Zea mays L.). To investigate the underlying mechanisms, maize seedlings were treated with sodium selenate (5 mg Se[VI] kg-1) and/or AMF (Funneliformis mosseae and Claroideoglomus etunicatum). Dual RNA sequencing in mycorrhiza and 16 S ribosomal DNA sequencing in soil were performed. The results showed that Se(VI) application alone decreased plant dry weight, but increased plant Se concentration, total Se content (mainly selenocysteine), and root superoxide content. Inoculation with either F. mosseae or C. etunicatum increased plant dry weight, decreased Se accumulation and selenocysteine proportion, enhanced root peroxidase activity, and alleviated oxidative stress in Se(VI)-treated plants. Inoculation also downregulated the expression of genes encoding Se transporters, assimilation enzymes, and cysteine-rich receptor-like kinases in Se(VI)-stressed plants, similar to plant-pathogen interaction and glutathione metabolism related genes. Conversely, genes encoding selenium-binding proteins and those related to phenylpropanoid biosynthesis were upregulated in inoculated plants under Se(VI) stress. Compared with Se(VI)-free plants, Se tolerance index, symbiotic feedback percentage on plant dry weight, and root colonization rate were all increased in inoculated plants under Se(VI) stress, corresponding to upregulated expression of 'key genes' in symbiosis. AMF inoculation increased bacterial diversity, decreased the relative abundances of selenobacteria related to plant Se absorption (e.g., Proteobacteria and Firmicutes), and improved bacterial network complexity in Se(VI)-stressed soils. We suggest that stress-mediated enhancement of mycorrhizal symbiosis contributed to plant Se(VI) tolerance, whereas AMF-mediated reshaping of soil bacterial community structure prevented excessive Se accumulation in maize.


Assuntos
Microbiota , Micorrizas , Selênio , Micorrizas/química , Zea mays/metabolismo , Solo/química , Ácido Selênico/metabolismo , DNA Ribossômico , RNA/metabolismo , Selenocisteína/metabolismo , Raízes de Plantas/metabolismo , Microbiota/genética , Plantas , Selênio/metabolismo , Análise de Sequência de DNA
20.
Arch Biochem Biophys ; 730: 109421, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183842

RESUMO

Selenocysteine (Sec), the 21st genetically encoded amino acid, is structurally similar to cysteine (Cys) but with a sulfur to selenium replacement. This small change confers Sec with related chemical properties to Cys but often with enhanced reactivity. In organisms, Sec is present in selenoproteins taking on various roles such as cellular maintenance, immune response, hormone regulation, and oxidative stress. The detailed reactions of Sec in these functions remains unclear and has been a difficult question to answer. This is related to the low natural expression of selenoproteins and their complicated biosynthesis pathway. As a result, the focus in selenoprotein research has been on the expansion of tools and techniques to promote research in this area. Over the past two decades there has been immense progress in the development of selenoprotein expression systems, Sec-detection methods, and genomic databases. In this review we have compiled these tools systematically, highlighting their strengths and clarifying the limitations, as a resource for future selenoprotein research.


Assuntos
Selênio , Selenocisteína , Selenocisteína/genética , Selenocisteína/metabolismo , Cisteína , Aminoácidos , Selenoproteínas/química , Enxofre , Hormônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA