Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
mSystems ; 9(5): e0133823, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38591896

RESUMO

Methanococcus maripaludis utilizes selenocysteine- (Sec-) containing proteins (selenoproteins), mostly active in the organism's primary energy metabolism, methanogenesis. During selenium depletion, M. maripaludis employs a set of enzymes containing cysteine (Cys) instead of Sec. The genes coding for these Sec-/Cys-containing isoforms were the only genes known of which expression is influenced by the selenium status of the cell. Using proteomics and transcriptomics, approx. 7% and 12%, respectively, of all genes/proteins were found differentially expressed/synthesized in response to the selenium supply. Some of the genes identified involve methanogenesis, nitrogenase functions, and putative transporters. An increase of transcript abundance for putative transporters under selenium depletion indicated the organism's effort to tap into alternative sources of selenium. M. maripaludis is known to utilize selenite and dimethylselenide as selenium sources. To expand this list, a selenium-responsive reporter strain was assessed with nine other, environmentally relevant selenium species. While the effect of some was very similar to that of selenite, others were effectively utilized at lower concentrations. Conversely, selenate and seleno-amino acids were only utilized at unphysiologically high concentrations and two compounds were not utilized at all. To address the role of the selenium-regulated putative transporters, M. maripaludis mutant strains lacking one or two of the putative transporters were tested for the capability to utilize the different selenium species. Of the five putative transporters analyzed by loss-of-function mutagenesis, none appeared to be absolutely required for utilizing any of the selenium species tested, indicating they have redundant and/or overlapping specificities or are not dedicated selenium transporters. IMPORTANCE: While selenium metabolism in microorganisms has been studied intensively in the past, global gene expression approaches have not been employed so far. Furthermore, the use of different selenium sources, widely environmentally interconvertible via biotic and abiotic processes, was also not extensively studied before. Methanococcus maripaludis JJ is ideally suited for such analyses, thanks to its known selenium usage and available genetic tools. Thus, an overall view on the selenium regulon of M. maripaludis was obtained via transcriptomic and proteomic analyses, which inspired further experimentation. This led to demonstrating the use of selenium sources M. maripaludis was previously not known to employ. Also, an attempt-although so far unsuccessful-was made to pinpoint potential selenium transporter genes, in order to deepen our understanding of trace element utilization in this important model organism.


Assuntos
Mathanococcus , Proteômica , Selênio , Mathanococcus/metabolismo , Mathanococcus/genética , Selênio/metabolismo , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica em Archaea , Selenoproteínas/genética , Selenoproteínas/metabolismo
2.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447079

RESUMO

Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/genética , Selenocisteína/química , Selenocisteína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Selenoproteínas/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Aminoácidos , Glutationa , Enxofre , Mamíferos/genética , Mamíferos/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(11): e2321700121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442159

RESUMO

Ribosomes are often used in synthetic biology as a tool to produce desired proteins with enhanced properties or entirely new functions. However, repurposing ribosomes for producing designer proteins is challenging due to the limited number of engineering solutions available to alter the natural activity of these enzymes. In this study, we advance ribosome engineering by describing a novel strategy based on functional fusions of ribosomal RNA (rRNA) with messenger RNA (mRNA). Specifically, we create an mRNA-ribosome fusion called RiboU, where the 16S rRNA is covalently attached to selenocysteine insertion sequence (SECIS), a regulatory RNA element found in mRNAs encoding selenoproteins. When SECIS sequences are present in natural mRNAs, they instruct ribosomes to decode UGA codons as selenocysteine (Sec, U) codons instead of interpreting them as stop codons. This enables ribosomes to insert Sec into the growing polypeptide chain at the appropriate site. Our work demonstrates that the SECIS sequence maintains its functionality even when inserted into the ribosome structure. As a result, the engineered ribosomes RiboU interpret UAG codons as Sec codons, allowing easy and site-specific insertion of Sec in a protein of interest with no further modification to the natural machinery of protein synthesis. To validate this approach, we use RiboU ribosomes to produce three functional target selenoproteins in Escherichia coli by site-specifically inserting Sec into the proteins' active sites. Overall, our work demonstrates the feasibility of creating functional mRNA-rRNA fusions as a strategy for ribosome engineering, providing a novel tool for producing Sec-containing proteins in live bacterial cells.


Assuntos
Magnoliopsida , Selenocisteína , RNA Mensageiro/genética , RNA Ribossômico 16S , Selenoproteínas/genética , Ribossomos/genética , Códon de Terminação/genética , Escherichia coli/genética
4.
Ecotoxicol Environ Saf ; 272: 116028, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310824

RESUMO

Extensive application of lead (Pb) brought about environmental pollution and toxic reactions of organisms. Selenium (Se) has the effect of antagonizing Pb poisoning in humans and animals. However, it is still unclear how Pb causes brainstem toxicity. In the present study, we wanted to investigate whether Se can alleviate Pb toxicity in chicken brainstems by reducing apoptosis. One hundred and eighty chickens were randomly divided into four groups, namely the control group, the Se group, the Pb group, and the Se/Pb group. Morphological examination, ultrastructural observation, relative mRNA expressions of genes on heat shock proteins (HSPs); selenoproteins; inflammatory cytokines; and apoptosis-related factors were investigated. The results showed that Pb exposure led to tissue damage and apoptosis in chicken brainstems. Furthermore, an atypical expression of HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90); selenoprotein family glutathione peroxidase (GPx) 1, GPx2, GPx3, and GPx4), thioredoxin reductases (Txnrd) (Txnrd1, Txnrd2, and Txnrd3), dio selenoprotein famliy (diodothyronine deiodinases (Dio)1, Dio2, and Dio3), as well as other selenoproteins (selenoprotein (Sel)T, SelK, SelS, SelH, SelM, SelU, SelI, SelO, Selpb, selenoprotein n1 (Sepn1), Sepp1, Sepx1, Sepw1, 15-kDa selenoprotein (Sep15), and selenophosphate synthetases 2 (SPS2)); inflammatory cytokines (Interleukin 2 (IL-2), IL-4, IL-6, IL-12ß, IL-17, and Interferon-γ (IFN-γ)); and apoptosis-related genes (B-cell lymphoma-2 (Bcl-2), tumor protein 53 (p53), Bcl-2 Associated X (Bax), Cytochrome c (Cyt c), and Caspase-3) were identified. An inflammatory reaction and apoptosis were induced in chicken brainstems after exposure to Pb. Se alleviated the abnormal expression of HSPs, selenoproteins, inflammatory cytokines, and apoptosis in brainstem tissues of chickens treated with Pb. The results indicated that HSPs, selenoproteins, inflammatory, and apoptosis were involved in Se-resisted Pb poisoning. Overall, Se had resistance effect against Pb poisoning, and can be act as an antidote for Pb poisoning in animals.


Assuntos
Selênio , Humanos , Animais , Selênio/farmacologia , Galinhas/metabolismo , Citocinas/genética , Chumbo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Proto-Oncogênicas c-bcl-2
5.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338681

RESUMO

Selenium has been proven to influence several biological functions, showing to be an essential micronutrient. The functional studies demonstrated the benefits of a balanced selenium diet and how its deficiency is associated with diverse diseases, especially cancer and viral diseases. Selenium is an antioxidant, protecting the cells from damage, enhancing the immune system response, preventing cardiovascular diseases, and decreasing inflammation. Selenium can be found in its inorganic and organic forms, and its main form in the cells is the selenocysteine incorporated into selenoproteins. Twenty-five selenoproteins are currently known in the human genome: glutathione peroxidases, iodothyronine deiodinases, thioredoxin reductases, selenophosphate synthetase, and other selenoproteins. These proteins lead to the transport of selenium in the tissues, protect against oxidative damage, contribute to the stress of the endoplasmic reticulum, and control inflammation. Due to these functions, there has been growing interest in the influence of polymorphisms in selenoproteins in the last two decades. Selenoproteins' gene polymorphisms may influence protein structure and selenium concentration in plasma and its absorption and even impact the development and progression of certain diseases. This review aims to elucidate the role of selenoproteins and understand how their gene polymorphisms can influence the balance of physiological conditions. In this polymorphism review, we focused on the PubMed database, with only articles published in English between 2003 and 2023. The keywords used were "selenoprotein" and "polymorphism". Articles that did not approach the theme subject were excluded. Selenium and selenoproteins still have a long way to go in molecular studies, and several works demonstrated the importance of their polymorphisms as a risk biomarker for some diseases, especially cardiovascular and thyroid diseases, diabetes, and cancer.


Assuntos
Neoplasias , Selênio , Humanos , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Inflamação/genética , Neoplasias/genética , Biomarcadores
6.
J Agric Food Chem ; 72(1): 284-299, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109331

RESUMO

microRNA (miRNA) controls the post-transcriptional translation of mRNA to affect the expression of many genes participating in functional interaction pathways. Selenoproteins are characterized by their antioxidant activity, wherein selenoprotein T (SelT) is an essential membrane-bound selenoprotein serving as a guardian of intracellular homeostasis. During muscle development and regeneration, myoblasts enter the cell cycle and rapidly proliferate. However, the role of SelT in muscle development and selenium (Se) deficiency-induced muscle damage remains poorly investigated. This study established Se deficient broiler models, chicken embryos models, and cultured chicken primary myoblasts in vitro. We showed that Se deficiency induced skeletal muscle damage in broilers, promoted miR-365-3p expression, and downregulated the level of SelT, significantly. The absence of SelT led to the accumulation of mitochondrial superoxide and downregulated mitochondrial dynamics gene expression, which, in turn, induced the disruption of mitochondria potential and blocked the oxidative phosphorylation (OXPHOS) process. Limited ATP production rate caused by mitochondrial ROS overproduction went along with cell cycle arrest, cell proliferation slowness, and myocyte apoptosis increase. Using Mito-TEMPO for mitochondrial ROS elimination could effectively mitigate the above adverse reactions and significantly restore the proliferation potential of myoblasts. Moreover, we identified miR-365-3p, a miRNA that targeted SelT mRNA to inhibit myoblast proliferation by disrupting intracellular redox balance. The omics analysis results showed that Se deficiency led to the significant enrichment of "cell cycle", "oxidative stress response", and "oxidative phosphorylation" pathway genes. Finally, we proved that the effect of the miR-365-3p/SelT signaling axis on muscle development did exist in the chicken embryo stage. In summary, our findings revealed that miR-365-3p was involved in broiler skeletal muscle damage in Se deficiency by targeting SelT, and SelT, serving as an intracellular homeostasis guardian, resisted mitochondrial oxidative stress, and protected ATP generation, promoting myoblast proliferation and inhibiting apoptosis. This study provides an attractive target for the cultivated meat industry and regenerative medicine.


Assuntos
MicroRNAs , Selênio , Embrião de Galinha , Animais , Galinhas/genética , Galinhas/metabolismo , Espécies Reativas de Oxigênio , Selênio/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Dieta , Selenoproteínas/genética , Selenoproteínas/metabolismo , RNA Mensageiro , Proliferação de Células , Apoptose , Mioblastos/metabolismo , Trifosfato de Adenosina
7.
Nat Commun ; 14(1): 7994, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042913

RESUMO

Aortic aneurysms, which may dissect or rupture acutely and be lethal, can be a part of multisystem disorders that have a heritable basis. We report four patients with deficiency of selenocysteine-containing proteins due to selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2) mutations who show early-onset, progressive, aneurysmal dilatation of the ascending aorta due to cystic medial necrosis. Zebrafish and male mice with global or vascular smooth muscle cell (VSMC)-targeted disruption of Secisbp2 respectively show similar aortopathy. Aortas from patients and animal models exhibit raised cellular reactive oxygen species, oxidative DNA damage and VSMC apoptosis. Antioxidant exposure or chelation of iron prevents oxidative damage in patient's cells and aortopathy in the zebrafish model. Our observations suggest a key role for oxidative stress and cell death, including via ferroptosis, in mediating aortic degeneration.


Assuntos
Aneurisma Aórtico , Peixe-Zebra , Humanos , Masculino , Camundongos , Animais , Selenocisteína , Músculo Liso Vascular/metabolismo , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Selenoproteínas/genética , Miócitos de Músculo Liso/metabolismo
8.
Free Radic Biol Med ; 209(Pt 2): 381-393, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37923090

RESUMO

Selenium (Se) may help prevent breast cancer (BC) development. Owing to limited observational evidence, we investigated whether prediagnostic Se status and/or variants in the selenoprotein genes are associated with BC risk in a large European cohort. Se status was assessed by plasma measures of Se and its major circulating proteins, selenoprotein P (SELENOP) and glutathione peroxidase 3 (GPX3), in matched BC case-control pairs (2208 for SELENOP; 1785 for GPX3 and Se) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). Single nucleotide polymorphisms (SNPs, n = 452) in 55 selenoprotein and Se metabolic pathway genes and an additional 18 variants previously associated with Se concentrations were extracted from existing genotyping data within EPIC for 1564 case-control pairs. Multivariable-adjusted logistic regression models were used to calculate the odds ratios (ORs) and 95 % confidence intervals (CIs) of the association between Se status markers, SNP variants and BC risk. Overall, there was no statistically significant association of Se status with BC risk. However, higher GPX3 activity was associated with lower risk of premenopausal BC (4th versus 1st quartile, OR = 0.54, 95 % CI: 0.30-0.98, Ptrend = 0.013). While none of the genetic variant associations (P ≤ 0.05) retained significance after multiple testing correction, rs1004243 in the SELENOM selenoprotein gene and two SNPs in the related antioxidant TXN2 gene (rs4821494 and rs5750261) were associated with respective lower and higher risks of BC at a significance threshold of P ≤ 0.01. Fourteen SNPs in twelve Se pathway genes (P ≤ 0.01) in interaction with Se status were also associated with BC risk. Higher Se status does not appear to be associated with BC risk, although activity of the selenoenzyme GPX3 may be inversely associated with premenopausal BC risk, and SNPs in the Se pathway alone or in combination with suboptimal Se status may influence BC risk.


Assuntos
Neoplasias da Mama , Selênio , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Estudos de Coortes , Estudos Prospectivos , Selenoproteínas/genética , Selenoproteína P/genética
9.
J Transl Med ; 21(1): 658, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741974

RESUMO

INTRODUCTION: Low serum selenium and altered tumour RNA expression of certain selenoproteins are associated with a poor breast cancer prognosis. Selenoprotein expression stringently depends on selenium availability, hence circulating selenium may interact with tumour selenoprotein expression. However, there is no matched analysis to date. METHODS: This study included 1453 patients with newly diagnosed breast cancer from the multicentric prospective Sweden Cancerome Analysis Network - Breast study. Total serum selenium, selenoprotein P and glutathione peroxidase 3 were analysed at time of diagnosis. Bulk RNA-sequencing was conducted in matched tumour tissues. Fully adjusted Cox regression models with an interaction term were employed to detect dose-dependent interactions of circulating selenium with the associations of tumour selenoprotein mRNA expression and mortality. RESULTS: 237 deaths were recorded within ~ 9 years follow-up. All three serum selenium biomarkers correlated positively (p < 0.001). All selenoproteins except for GPX6 were expressed in tumour tissues. Single cell RNA-sequencing revealed a heterogeneous expression pattern in the tumour microenvironment. Circulating selenium correlated positively with tumour SELENOW and SELENON expression (p < 0.001). In fully adjusted models, the associations of DIO1, DIO3 and SELENOM with mortality were dose-dependently modified by serum selenium (p < 0.001, p = 0.020, p = 0.038, respectively). With increasing selenium, DIO1 and SELENOM associated with lower, whereas DIO3 expression associated with higher mortality. Association of DIO1 with lower mortality was only apparent in patients with high selenium [above median (70.36 µg/L)], and the HR (95%CI) for one-unit increase in log(FPKM + 1) was 0.70 (0.50-0.98). CONCLUSIONS: This first unbiased analysis of serum selenium with the breast cancer selenotranscriptome identified an effect-modification of selenium on the associations of DIO1, SELENOM, and DIO3 with prognosis. Selenium substitution in patients with DIO1-expressing tumours merits consideration to improve survival.


Assuntos
Neoplasias da Mama , Selênio , Humanos , Feminino , Selênio/metabolismo , Estudos Prospectivos , Neoplasias da Mama/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo , RNA , Microambiente Tumoral
10.
Poult Sci ; 102(11): 103053, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716231

RESUMO

Skeletal muscle satellite cells (SMSCs), known as muscle stem cells, play an important role in muscle embryonic development, post-birth growth, and regeneration after injury. Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident selenoprotein, is known to regulate calcium ion (Ca2+) flux and ER stress (ERS). SELENOK deficiency is involved in dietary selenium deficiency-induced muscle injury, but the regulatory mechanisms of SELENOK in SMSCs development remain poorly explored in chicken. Here, we established a SELENOK deficient model to explore the role of SELENOK in SMSCs. SELENOK knockdown inhibited SMSCs proliferation and differentiation by regulating the protein levels of paired box 7 (Pax7), myogenic factor 5 (Myf5), CyclinD1, myogenic differentiation (MyoD), and Myf6. Further analysis exhibited that SELENOK knockdown markedly activated the ERS signaling pathways, which ultimately induced apoptosis in SMSCs. SELENOK knockdown-induced ERS is related with ER Ca2+ ([Ca2+]ER) overload via decreasing the protein levels of STIM2, Orai1, palmitoylation of inositol 1,4,5-trisphosphate receptor 1 (IP3R1), phospholamban (PLN), and plasma membrane Ca2+-ATPase (PMCA) while increasing the protein levels of sarco/endoplasmic Ca2+-ATPase 1 (SERCA1) and Na+/Ca2+ exchanger 1 (NCX1). Moreover, thimerosal, an activator of IP3R1, reversed the overload of [Ca2+]ER, ERS, and subsequent apoptosis caused by SELENOK knockdown. These findings indicated that SELENOK knockdown triggered ERS driven by intracellular Ca2+ dyshomeostasis and further induced apoptosis, which ultimately inhibited SMSCs proliferation and differentiation.


Assuntos
Cálcio , Células Satélites de Músculo Esquelético , Animais , Cálcio/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Galinhas/metabolismo , Estresse do Retículo Endoplasmático , Cálcio da Dieta , Apoptose , Adenosina Trifosfatases , Selenoproteínas/genética , Selenoproteínas/metabolismo
11.
Trends Cancer ; 9(12): 1006-1018, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37716885

RESUMO

In the past two decades significant progress has been made in uncovering the biological function of selenium. Selenium, an essential trace element, is required for the biogenesis of selenocysteine which is then incorporated into selenoproteins. These selenoproteins have emerged as central regulators of cellular antioxidant capacity and maintenance of redox homeostasis. This review provides a comprehensive examination of the multifaceted functions of selenoproteins with a particular emphasis on their contributions to cellular antioxidant capacity. Additionally, we highlight the promising potential of targeting selenoproteins and the biogenesis of selenocysteine as avenues for therapeutic intervention in cancer. By understanding the intricate relationship between selenium, selenoproteins, and reactive oxygen species (ROS), insights can be gained to develop therapies that exploit the inherent vulnerabilities of cancer cells.


Assuntos
Neoplasias , Selênio , Humanos , Antioxidantes , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Oxirredução , RNA de Transferência , Homeostase , Neoplasias/genética
12.
Mol Carcinog ; 62(12): 1803-1816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555760

RESUMO

The levels of the SELENOF selenoprotein are dramatically reduced in prostate cancer compared to adjacent benign tissue and reducing SELENOF in prostate epithelial cells results in the acquisition of features of the transformed phenotype. It was hypothesized that the aberrant increase in the eiF4a3 translation factor, which has an established role in RNA splicing and the regulation of selenoprotein translation, contributes to the lower levels of SELENOF. Using the available databases, eIF4a3 messenger RNA (mRNA) levels are elevated in prostate cancer compared to normal tissue as is the hypomethylation of the corresponding gene. Using a prostate cancer tissue microarray, we established that eiF4a3 levels are higher in prostate cancer tissue. Ectopic expression of eIF4a3 in prostate cancer cells reduced SELENOF levels and attenuated the readthrough of the UGA codon using a specialized reporter construct designed to examine UGA decoding, with the opposite effects observed using eIF4a3 knock-down constructs. Direct binding of eIF4a3 to the regulatory regions of SELENOF mRNA was established with pull-down experiments. Lastly, we show that an eIF4a3 inhibitor, eIF4a3-IN-2, increases SELENOF levels, UGA readthrough, and reduces binding of eIF4a3 to the SELENOF mRNA 3'-UTR in exposed cells. These data establish eIF4a3 as a likely prostate cancer oncogene and a regulator of SELENOF translation.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Selenoproteínas/genética , Neoplasias da Próstata/genética , Códon de Terminação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
J Agric Food Chem ; 71(25): 9896-9907, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37306234

RESUMO

Cadmium (Cd) is a hazardous environmental metal that poses a global public health concern due to its high toxic potential. Nanoselenium (Nano-Se) is a nanoform of elemental Se that is widely used to antagonize heavy metal toxicity owing to its high safety margin with low doses. However, the role of Nano-Se in relieving Cd-induced brain damage is unclear. For this study, Cd-exposure-induced cerebral damage was established by using a chicken model. Administration of Nano-Se with Cd significantly decreased the Cd-mediated elevation of cerebral ROS, MDA, and H2O2 levels as well as markedly increased the Cd-mediated reduced activities of antioxidant biomarkers (GPX, T-SOD, CAT, and T-AOC). Accordingly, co-treatment with Nano-Se significantly reduced Cd-mediated increased Cd accumulation and recovered the Cd-induced biometal imbalance, notably Se and Zn. Nano-Se downregulated the Cd-induced upregulation of ZIP8, ZIP10, ZNT3, ZNT5, and ZNT6 and upregulated the Cd-mediated decreased expressions of ATOX1 and XIAP. Nano-Se also increased the Cd-mediated decreased mRNA levels of MTF1 and its target genes MT1 and MT2. Surprisingly, co-treatment with Nano-Se regulated the Cd-induced increased total protein level of MTF1 by reducing its expression. Moreover, altered selenoproteins regulation was recovered after co-treatment with Nano-Se as evidenced by increased expression levels of antioxidant selenoproteins (GPx1-4 and SelW) and Se transport-related selenoproteins (SepP1 and SepP2). The histopathological evaluation and Nissl staining of the cerebral tissues also supported that Nano-Se markedly reduced the Cd-induced microstructural alterations and well preserved the normal histological architectures of the cerebral tissue. Overall, the results of this research reveal that Nano-Se may be beneficial in mitigating Cd-induced cerebral injury in the brains of chickens. This present study provides a basis for preclinical research for its usefulness as a potential therapeutic for the treatment of neurodegeneration in the heavy-metal-induced neurotoxicity.


Assuntos
Antioxidantes , Selênio , Animais , Antioxidantes/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Selênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Galinhas/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Estresse Oxidativo
14.
J Zhejiang Univ Sci B ; 24(5): 406-417, 2023 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37190890

RESUMO

The aim of this study was to investigate the role of selenoprotein M (SelM) in endoplasmic reticulum stress and apoptosis in nickel-exposed mouse hearts and to explore the detoxifying effects of melatonin. At 21 d after intraperitoneal injection of nickel chloride (NiCl2) and/or melatonin into male wild-type (WT) and SelM knockout (KO) C57BL/6J mice, NiCl2 was found to induce changes in the microstructure and ultrastructure of the hearts of both WT and SelM KO mice, which were caused by oxidative stress, endoplasmic reticulum stress, and apoptosis, as evidenced by decreases in malondialdehyde (MDA) content and total antioxidant capacity (T-AOC) activity. Changes in the messenger RNA (mRNA) and protein expression of genes related to endoplasmic reticulum stress (activating transcription factor 4 (ATF4), inositol-requiring protein 1 (IRE1), c-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP)) and apoptosis (B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), Caspase-3, Caspase-9, and Caspase-12) were also observed. Notably, the observed damage was worse in SelM KO mice. Furthermore, melatonin alleviated the heart injury caused by NiCl2 in WT mice but could not exert a good protective effect in the heart of SelM KO mice. Overall, the findings suggested that the antioxidant capacity of SelM, as well as its modulation of endoplasmic reticulum stress and apoptosis, plays important roles in nickel-induced heart injury.


Assuntos
Coração , Melatonina , Níquel , Selenoproteínas , Animais , Masculino , Camundongos , Antioxidantes/farmacologia , Apoptose , Estresse do Retículo Endoplasmático , Melatonina/farmacologia , Camundongos Endogâmicos C57BL , Níquel/efeitos adversos , Selenoproteínas/genética , Coração/efeitos dos fármacos
15.
J Trace Elem Med Biol ; 79: 127204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244044

RESUMO

BACKGROUND: Selenium (Se) functions through selenoproteins and is essential to growth and metabolism of vertebrates. The present study was conducted to identify twelve selenoproteins genes (selenoe, selenof, selenoh, selneoi, selenom, selenok, selneon, selenoo, selenot, selenos, selenou and msrb1) from yellow catfish. Their mRNA expression patterns, as well as their response to dietary oxidized fish oils and Se addition were explored. METHODS: We use 3'and 5' RACE PCR to clone full-length cDNA sequence of twelve selenoprotein genes from yellow catfish. Their mRNA expression patterns were assessed via quantitative real-time PCR. Yellow catfish were fed diet adequate Se+ fresh fish oil, adequate Se+ oxidized fish oil, high Se+ fresh fish oil and high Se+ oxidized fish oil, respectively, for 10 weeks. Their kidney, heart, brain and testis were used to assess the mRNA expression of twelve selenoprotein. RESULTS: Twelve selenoprotein genes had similar domains with mammals and the other fish. Their mRNAs were expressed widely in eleven tissues but varied with the tissues. Dietary oxidized fish oils and Se addition influenced their mRNA abundances of twelve selenoproteins in a tissue-dependent manner. CONCLUSION: Our study demonstrated the characterization and expression of twelve selenoproteins, and elucidated their responses in yellow catfish fed diets varying in oxidized fish oils and Se addition, which increased our knowledge into the biological function and regulatory mechanism of Se and selenoproteins in fish.


Assuntos
Peixes-Gato , Selênio , Masculino , Animais , Selênio/farmacologia , Selênio/metabolismo , Óleos de Peixe/metabolismo , Peixes-Gato/genética , Fígado/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Dieta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
16.
Biomolecules ; 13(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36979420

RESUMO

SELENOF, previously known as SEP15, is a selenoprotein that contains selenium in the form of the amino acid selenocysteine. Like other selenoproteins, the role for SELENOF in carcinogenesis has been investigated due to its altered expression compared to the corresponding normal tissue, its molecular function, and the association of genetic variations in the SELENOF gene to cancer risk or outcome. This review summarizes SELENOF's discovery, structure, cellular localization, and expression. SELENOF belongs to a new family of thioredoxin-like proteins. Published data summarized here indicate a likely role for SELENOF in redox protein quality control, and in the regulation of lipids, glucose, and energy metabolism. Current evidence indicates that loss of SELENOF contributes to the development of prostate and breast cancer, while its loss may be protective against colon cancer. Additional investigation into SELENOF's molecular mechanisms and its impact on cancer is warranted.


Assuntos
Neoplasias , Selênio , Humanos , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Oxirredução , Próstata/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Feminino
17.
Environ Sci Pollut Res Int ; 30(12): 34270-34281, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36504304

RESUMO

Nickel (Ni) is a heavy metal element and a pollutant that threatens the organism's health. Melatonin (Mel) is an antioxidant substance that can be secreted by the organism and has a protective effect against heavy metals. Selenoprotein M (SelM) is a selenoprotein widely distributed of the body, and its role is to protect these tissues from oxidative damage. To study the mechanism of Ni, Mel, and SelM in mouse spleen, 80 SelM+/+ wild-type and 80 SelM-/- homozygous mice were divided into 8 groups with 20 mice in each group. The Ni group was intragastric at a concentration of 10 mg/kg, while the Mel group was intragastric at 2 mg/kg. Mice were injected with 0.1 mL/10 g body weight for 21 days. Histopathological and ultrastructural observations showed the changes in Ni, such as the destruction of white and red pulp and the appearance of pyroptosomes. SelM knockout showed more severe injury, while Mel could effectively interfere with Ni-induced spleen toxicity. The results of antioxidant capacity determination showed that Ni could cause oxidative stress in the spleen, and Mel could also effectively reduce oxidative stress. Finally, Ni exposure increased the expression levels of the pyroptotic genes, including apoptosis-associated speck protein (ASC), absent in melanoma-2 (AIM2), NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), Caspase-1, interleukin- (IL-) 18, and IL-1ß (p < 0.05). Loss of SelM significantly increased these (p < 0.05), while Mel decreased the alleviated impact of Ni. In conclusion, the loss of SelM aggravated Ni-induced pyroptosis of the spleen via activating oxidative stress, which was alleviated by Mel, but the effect of Mel was not obvious in the absence of SelM, which reflected the important role of SelM in Ni-induced pyroptosis.


Assuntos
Antioxidantes , Piroptose , Animais , Camundongos , Antioxidantes/metabolismo , Níquel/toxicidade , Níquel/metabolismo , Baço/metabolismo , Estresse Oxidativo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Selenoproteínas/farmacologia
18.
Redox Biol ; 59: 102571, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36516721

RESUMO

Macrophages play a pivotal role in mediating inflammation and subsequent resolution of inflammation. The availability of selenium as a micronutrient and the subsequent biosynthesis of selenoproteins, containing the 21st amino acid selenocysteine (Sec), are important for the physiological functions of macrophages. Selenoproteins regulate the redox tone in macrophages during inflammation, the early onset of which involves oxidative burst of reactive oxygen and nitrogen species. SELENOW is a highly expressed selenoprotein in bone marrow-derived macrophages (BMDMs). Beyond its described general role as a thiol and peroxide reductase and as an interacting partner for 14-3-3 proteins, its cellular functions, particularly in macrophages, remain largely unknown. In this study, we utilized Selenow knock-out (KO) murine bone marrow-derived macrophages (BMDMs) to address the role of SELENOW in inflammation following stimulation with bacterial endotoxin lipopolysaccharide (LPS). RNAseq-based temporal analyses of expression of selenoproteins and the Sec incorporation machinery genes suggested no major differences in the selenium utilization pathway in the Selenow KO BMDMs compared to their wild-type counterparts. However, selective enrichment of oxidative stress-related selenoproteins and increased ROS in Selenow-/- BMDMs indicated anomalies in redox homeostasis associated with hierarchical expression of selenoproteins. Selenow-/- BMDMs also exhibited reduced expression of arginase-1, a key enzyme associated with anti-inflammatory (M2) phenotype necessary to resolve inflammation, along with a significant decrease in efferocytosis of neutrophils that triggers pathways of resolution. Parallel targeted metabolomics analysis also confirmed an impairment in arginine metabolism in Selenow-/- BMDMs. Furthermore, Selenow-/- BMDMs lacked the ability to enhance characteristic glycolytic metabolism during inflammation. Instead, these macrophages atypically relied on oxidative phosphorylation for energy production when glucose was used as an energy source. These findings suggest that SELENOW expression in macrophages may have important implications on cellular redox processes and bioenergetics during inflammation and its resolution.


Assuntos
Selênio , Selenoproteína W , Camundongos , Animais , Selenoproteína W/genética , Selenoproteína W/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Macrófagos/metabolismo , Oxirredução , Inflamação/genética
19.
Arch Biochem Biophys ; 733: 109470, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442530

RESUMO

Selenoproteins are a ubiquitous class of proteins defined by having a selenocysteine amino acid residue. While many of the selenoproteins have been well characterized with important roles in oxidation-reduction reactions and hormone synthesis among others, there exist some whose biological roles are not as well understood as denoted by the "SELENO" root. In this study, we explored associations between the reported RNA levels of "SELENO" proteins and clear cell renal cell carcinoma (ccRCC), the most common subtype of renal carcinoma in the US. Utilizing The Cancer Genome Atlas (TCGA) alongside other in silico tools, we discovered higher mRNA expression of Selenoprotein I, T, and P was associated with better overall survival outcomes and differential expression of other selenoproteins based on tumor stage. Additionally, we uncovered relative hypomethylation among selenoproteins in primary ccRCC tumor samples compared to normal tissue. Network and enrichment analysis showed numerous genes through which selenoproteins may modulate cancer progression and outcomes such as DERL1, PNPLA2/3, MIEN1, and FOXO1 which have been well-described in other cancers. In light of our findings highlighting an association of selenoprotein methylation and expression patterns with ccRCC outcome, further wet lab research is warranted.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Metilação , Selenoproteínas/genética , Selenoproteínas/metabolismo , Selenocisteína/metabolismo , Neoplasias Renais/genética , Proteínas de Neoplasias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
20.
Redox Biol ; 59: 102592, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586222

RESUMO

INTRODUCTION: Selenium (Se) is an essential trace element that exerts its effects mainly as the proteinogenic amino acid selenocysteine within a small set of selenoproteins. Among all family members, selenoprotein P (SELENOP) constitutes a particularly interesting protein as it serves as a biomarker and serum Se transporter from liver to privileged tissues. SELENOP expression is tightly regulated by dietary Se intake, inflammation, hypoxia and certain substances, but a systematic drug screening has hitherto not been performed. METHODS: A compound library of 1861 FDA approved clinically relevant drugs was systematically screened for interfering effects on SELENOP expression in HepG2 cells using a validated ELISA method. Dilution experiments were conducted to characterize dose-responses. A most potent SELENOP inhibitor was further characterized by RNA-seq analysis to assess effect-associated biochemical pathways. RESULTS: Applying a 2-fold change threshold, 236 modulators of SELENOP expression were identified. All initial hits were replicated as biological triplicates and analyzed for effects on cell viability. A set of 38 drugs suppressed SELENOP expression more than three-fold, among which were cancer drugs, immunosuppressants, anti-infectious drugs, nutritional supplements and others. Considering a 90% cell viability threshold, resveratrol, vidofludimus, and antimony potassium-tartrate were the most potent substances with suppressive effects on extracellular SELENOP concentrations. Resveratrol suppressed SELENOP levels dose-dependently in a concentration range from 0.8 µM to 50.0 µM, without affecting cell viability, along with strong effects on key genes controlling metabolic pathways and vesicle trafficking. CONCLUSION: The results highlight an unexpected direct effect of the plant stilbenoid resveratrol, known for its antioxidative and health-promoting effects, on the central Se transport protein. The suppressive effects on SELENOP may increase liver Se levels and intracellular selenoprotein expression, thereby conferring additional protection to hepatocytes at the expense of systemic Se transport. Further physiological effects from this interaction require analyses in vivo and by clinical studies.


Assuntos
Selênio , Selenoproteína P , Selenoproteína P/genética , Resveratrol/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fígado/metabolismo , Selenoproteínas/genética , Selênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA