Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447079

RESUMO

Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/genética , Selenocisteína/química , Selenocisteína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Selenoproteínas/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Aminoácidos , Glutationa , Enxofre , Mamíferos/genética , Mamíferos/metabolismo
2.
Arch Biochem Biophys ; 731: 109427, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36241082

RESUMO

Selenoprotein S (selenos) is a small, intrinsically disordered membrane protein that is associated with various cellular functions, such as inflammatory processes, cellular stress response, protein quality control, and signaling pathways. It is primarily known for its contribution to the ER-associated degradation (ERAD) pathway, which governs the extraction of misfolded proteins or misassembled protein complexes from the ER to the cytosol for degradation by the proteasome. However, selenos's other cellular roles in signaling are equally vital, including the control of transcription factors and cytokine levels. Consequently, genetic polymorphisms of selenos are associated with increased risk for diabetes, dyslipidemia, and cardiovascular diseases, while high expression levels correlate with poor prognosis in several cancers. Its inhibitory role in cytokine secretion is also exploited by viruses. Since selenos binds multiple protein complexes, however, its specific contributions to various cellular pathways and diseases have been difficult to establish. Thus, the precise cellular functions of selenos and their interconnectivity have only recently begun to emerge. This review aims to summarize recent insights into the structure, interactome, and cellular roles of selenos.


Assuntos
Proteínas de Membrana , Selenoproteínas , Selenoproteínas/química , Proteínas de Membrana/metabolismo , Citocinas
3.
Arch Biochem Biophys ; 730: 109421, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183842

RESUMO

Selenocysteine (Sec), the 21st genetically encoded amino acid, is structurally similar to cysteine (Cys) but with a sulfur to selenium replacement. This small change confers Sec with related chemical properties to Cys but often with enhanced reactivity. In organisms, Sec is present in selenoproteins taking on various roles such as cellular maintenance, immune response, hormone regulation, and oxidative stress. The detailed reactions of Sec in these functions remains unclear and has been a difficult question to answer. This is related to the low natural expression of selenoproteins and their complicated biosynthesis pathway. As a result, the focus in selenoprotein research has been on the expansion of tools and techniques to promote research in this area. Over the past two decades there has been immense progress in the development of selenoprotein expression systems, Sec-detection methods, and genomic databases. In this review we have compiled these tools systematically, highlighting their strengths and clarifying the limitations, as a resource for future selenoprotein research.


Assuntos
Selênio , Selenocisteína , Selenocisteína/genética , Selenocisteína/metabolismo , Cisteína , Aminoácidos , Selenoproteínas/química , Enxofre , Hormônios
4.
Free Radic Biol Med ; 190: 320-338, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35987423

RESUMO

Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.


Assuntos
Neoplasias , Tiorredoxina Dissulfeto Redutase , Humanos , Neoplasias/tratamento farmacológico , Selenocisteína/química , Selenoproteínas/química , Microambiente Tumoral
5.
Methods Enzymol ; 662: 143-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101208

RESUMO

Selenoproteins, which contain the 21st amino acid selenocysteine, play roles in maintaining cellular redox homeostasis. Many open questions remain in the field of selenoprotein biology, including the functions of a number of uncharacterized human selenoproteins, and the properties of selenocysteine compared to its analogous amino acid cysteine. The mechanism of selenocysteine incorporation involves an intricate machinery that deviates from the mechanism of incorporation for the canonical 20 amino acids. As a result, recombinant expression of selenoproteins has been historically challenging, and has hindered a deeper evaluation of selenoprotein biology. Genetic code expansion methods, which incorporate protected analogs of selenocysteine, allow the endogenous selenocysteine incorporation mechanism to be bypassed entirely to facilitate selenoprotein expression. Here we present a method for incorporating a photocaged selenocysteine amino acid (DMNB-Sec) into human selenoproteins directly in mammalian cells. This approach offers the opportunity to study human selenoproteins in their native cellular environment and should advance our understanding of selenoprotein biology.


Assuntos
Selenocisteína , Selenoproteínas , Animais , Cisteína/metabolismo , Código Genético , Humanos , Mamíferos/genética , Biossíntese de Proteínas , Selenocisteína/química , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo
6.
Methods Enzymol ; 662: 119-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101207

RESUMO

Cysteine thiyl radicals are implicated as cofactors in a variety of enzymatic transformations, as well as transient byproducts of oxidative stress, yet their reactivity has undermined their detailed study. Selenocysteine exhibits a lower corresponding selenyl radical reduction potential, thus taming this radical reactivity without significant steric perturbation, potentially affording a glimpse into otherwise fleeting events in thiyl radical catalysis. In this chapter, we describe a suite of fusion protein constructs for general and efficient production of site-specifically incorporated selenoproteins by a recently developed nonsense suppression technology. As a proof of concept, we produced NikJ, a member of the radical S-adenosyl methionine enzyme family involved in the biosynthesis of peptidyl nucleoside antibiotics. We place emphasis throughout the plasmid assembly, protein expression, and selenium quantitation on accommodating the structural and functional diversity of thiyl radical enzymes. The protocol produces NikJ with near quantitative selenocysteine insertion, 50% nonsense read-through, and facile protein purification.


Assuntos
Selenocisteína , Selenoproteínas , Cisteína/metabolismo , Proteômica , S-Adenosilmetionina/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo
7.
Methods Enzymol ; 662: 187-225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101210

RESUMO

Selenoproteins comprise a small group of selenocysteine (Sec) containing proteins, often involved in redox homeostasis. While Sec is functionally similar to cysteine (Cys), with both acting as protein-centered nucleophiles, chemoproteomic strategies employing electrophilic probes have often failed to rigorously identify Sec residues, due to their relatively low abundance with respect to Cys across a proteome. To improve the enrichment and detection of selenoproteins, herein we describe a chemoproteomic strategy that relies on the unique properties of Sec as compared to Cys, such as reduced pKa and the unique isotopic distribution of selenium. Low pH electrophilic probe labeling of mouse proteomes reduces Cys reactivity, resulting in increased identification of most soluble selenoproteins. This quantitative chemoproteomic platform provides a method to reliably measure changes in selenoprotein abundance across growth conditions as well as quantify inhibition by selenoprotein specific inhibitors, such as Auranofin.


Assuntos
Selênio , Selenocisteína , Animais , Cisteína/química , Concentração de Íons de Hidrogênio , Camundongos , Proteoma , Selenocisteína/química , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/metabolismo
8.
Methods Enzymol ; 662: 275-296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101215

RESUMO

Selenoprotein O is one of 25 human selenoproteins that incorporate the 21st amino acid selenocysteine. Recent studies have revealed a previously undocumented mechanism of redox regulation by which SelO protects cells from oxidative damage. SelO catalyzes the covalent addition of AMP from ATP to the hydroxyl side chain of protein substrates in a post translational modification known as AMPylation. Although AMPylation was discovered over 50 years ago, methods to detect and enrich substrates are limited. Here, we describe protocols to clone, purify, and identify the substrates of bacterial SelO using a biotinylated ATP analog. Identification of SelO substrates and the functional consequences of AMPylation will illuminate the significance of this evolutionarily conserved selenoprotein.


Assuntos
Processamento de Proteína Pós-Traducional , Selenoproteínas , Trifosfato de Adenosina/metabolismo , Humanos , Oxirredução , Estresse Oxidativo , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo
9.
Chemistry ; 28(16): e202200279, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35112407

RESUMO

Human SELENOF is an endoplasmic reticulum (ER) selenoprotein that contains the redox active motif CXU (C is cysteine and U is selenocysteine), resembling the redox motif of thiol-disulfide oxidoreductases (CXXC). Like other selenoproteins, the challenge in accessing SELENOF has somewhat limited its full biological characterization thus far. Here we present the one-pot chemical synthesis of the thioredoxin-like domain of SELENOF, highlighted by the use of Fmoc-protected selenazolidine, native chemical ligations and deselenization reactions. The redox potential of the CXU motif, together with insulin turbidimetric assay suggested that SELENOF may catalyze the reduction of disulfides in misfolded proteins. Furthermore, we demonstrate that SELENOF is not a protein disulfide isomerase (PDI)-like enzyme, as it did not enhance the folding of the two protein models; bovine pancreatic trypsin inhibitor and hirudin. These studies suggest that SELENOF may be responsible for reducing the non-native disulfide bonds of misfolded glycoproteins as part of the quality control system in the ER.


Assuntos
Selenoproteínas , Dissulfetos/química , Humanos , Oxirredução , Biossíntese de Proteínas , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/metabolismo
10.
J Mol Biol ; 434(8): 167199, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411545

RESUMO

The presence of selenocysteine in a protein confers many unique properties that make the production of recombinant selenoproteins desirable. Targeted incorporation of Sec into a protein of choice is possible by exploiting elongation factor Tu-dependent reassignment of UAG codons, a strategy that has been continuously improved by a variety of means. Improving selenoprotein yield by directed evolution requires selection and screening markers that are titratable, have a high dynamic range, enable high-throughput screening, and can discriminate against nonspecific UAG decoding. Current screening techniques are limited to a handful of reporters where a cysteine (Cys) or Sec residue normally affords activity. Unfortunately, these existing Cys/Sec-dependent reporters lack the dynamic range of more ubiquitous reporters or suffer from other limitations. Here we present a versatile strategy to adapt established reporters for specific Sec incorporation. Inteins are intervening polypeptides that splice themselves from the precursor protein in an autocatalytic splicing reaction. Using an intein that relies exclusively on Sec for splicing, we show that this intein cassette can be placed in-frame within selection and screening markers, affording reporter activity only upon successful intein splicing. Furthermore, because functional splicing can only occur when a catalytic Sec is present, the amount of synthesized reporter directly measures UAG-directed Sec incorporation. Importantly, we show that results obtained with intein-containing reporters are comparable to the Sec incorporation levels determined by mass spectrometry of isolated recombinant selenoproteins. This result validates the use of these intein-containing reporters to screen for evolved components of a translation system yielding increased selenoprotein amounts.


Assuntos
Genes Reporter , Inteínas , Mutagênese Sítio-Dirigida , Proteínas Recombinantes , Selenocisteína , Selenoproteínas , Códon de Terminação/genética , Códon de Terminação/metabolismo , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Inteínas/genética , Mutagênese Sítio-Dirigida/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/genética
11.
J Cell Biochem ; 123(3): 532-542, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935169

RESUMO

Selenium (Se) is incorporated into the body via the selenocysteine (Sec) biosynthesis pathway, which is critical in the synthesis of selenoproteins, such as glutathione peroxidases and thioredoxin reductases. Selenoproteins, which play a key role in several biological processes, including ferroptosis, drug resistance, endoplasmic reticulum stress, and epigenetic processes, are guided by Se uptake. In this review, we critically analyze the molecular mechanisms of Se metabolism and its potential as a therapeutic target for cancer. Sec insertion sequence binding protein 2 (SECISBP2), which is a positive regulator for the expression of selenoproteins, would be a novel prognostic predictor and an alternate target for cancer. We highlight strategies that attempt to develop a novel Se metabolism-based approach to uncover a new metabolic drug target for cancer therapy. Moreover, we expect extensive clinical use of SECISBP2 as a specific biomarker in cancer therapy in the near future. Of note, scientists face additional challenges in conducting successful research, including investigations on anticancer peptides to target SECISBP2 intracellular protein.


Assuntos
Neoplasias , Selênio , Proteínas de Transporte/metabolismo , Humanos , Redes e Vias Metabólicas , Neoplasias/tratamento farmacológico , Selênio/metabolismo , Selênio/uso terapêutico , Selenoproteínas/química , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
12.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681834

RESUMO

The selenoprotein family includes 25 members, many of which are antioxidant or redox regulating enzymes. A unique member of this family is Selenoprotein I (SELENOI), which does not catalyze redox reactions, but instead is an ethanolamine phosphotransferase (Ept). In fact, the characteristic selenocysteine residue that defines selenoproteins lies far outside of the catalytic domain of SELENOI. Furthermore, data using recombinant SELENOI lacking the selenocysteine residue have suggested that the selenocysteine amino acid is not directly involved in the Ept reaction. SELENOI is involved in two different pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, which are constituents of cellular membranes. Ethanolamine phospholipid synthesis has emerged as an important process for metabolic reprogramming that occurs in pluripotent stem cells and proliferating tumor cells, and this review discusses roles for upregulation of SELENOI during T cell activation, proliferation, and differentiation. SELENOI deficiency lowers but does not completely diminish de novo synthesis of PE and plasmenyl PE during T cell activation. Interestingly, metabolic reprogramming in activated SELENOI deficient T cells is impaired and this reduces proliferative capacity while favoring tolerogenic to pathogenic phenotypes that arise from differentiation. The implications of these findings are discussed related to vaccine responses, autoimmunity, and cell-based therapeutic approaches.


Assuntos
Etanolamina/metabolismo , Etanolaminofosfotransferase/fisiologia , Ativação Linfocitária , Fosfolipídeos/metabolismo , Selenoproteínas/fisiologia , Linfócitos T/fisiologia , Reprogramação Celular , Humanos , Fosfatidiletanolaminas/metabolismo , Selênio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/química , Regulação para Cima
13.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639150

RESUMO

This review presents the latest data on the importance of selenium nanoparticles in human health, their use in medicine, and the main known methods of their production by various methods. In recent years, a multifaceted study of nanoscale complexes in medicine, including selenium nanoparticles, has become very important in view of a number of positive features that make it possible to create new drugs based on them or significantly improve the properties of existing drugs. It is known that selenium is an essential trace element that is part of key antioxidant enzymes. In mammals, there are 25 selenoproteins, in which selenium is a key component of the active site. The important role of selenium in human health has been repeatedly proven by several hundred works in the past few decades; in recent years, the study of selenium nanocomplexes has become the focus of researchers. A large amount of accumulated data requires generalization and systematization in order to improve understanding of the key mechanisms and prospects for the use of selenium nanoparticles in medicine, which is the purpose of this review.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antineoplásicos/administração & dosagem , Antioxidantes/administração & dosagem , Nanomedicina , Nanopartículas/administração & dosagem , Selênio/administração & dosagem , Selenoproteínas/metabolismo , Animais , Humanos , Nanopartículas/química , Selênio/química , Selenoproteínas/química
14.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602807

RESUMO

Site-selective chemical bioconjugation reactions are enabling tools for the chemical biologist. Guided by a careful study of the selenomethionine (SeM) benzylation, we have refined the reaction to meet the requirements of practical protein bioconjugation. SeM is readily introduced through auxotrophic expression and exhibits unique nucleophilic properties that allow it to be selectively modified even in the presence of cysteine. The resulting benzylselenonium adduct is stable at physiological pH, is selectively labile to glutathione, and embodies a broadly tunable cleavage profile. Specifically, a 4-bromomethylphenylacetyl (BrMePAA) linker has been applied for efficient conjugation of complex organic molecules to SeM-containing proteins. This expansion of the bioconjugation toolkit has broad potential in the development of chemically enhanced proteins.


Assuntos
Glutationa/metabolismo , Selenometionina/química , Selenometionina/metabolismo , Selenoproteínas/metabolismo , Catálise , Selenoproteínas/química
15.
Chembiochem ; 22(8): 1480-1486, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33319405

RESUMO

The selenol group of selenocysteine is much more nucleophilic than the thiol group of cysteine. Selenocysteine residues in proteins thus offer reactive points for rapid post-translational modification. Herein, we show that selenoproteins can be expressed in high yield and purity by cell-free protein synthesis by global substitution of cysteine by selenocysteine. Complete alkylation of solvent-exposed selenocysteine residues was achieved in 10 minutes with 4-chloromethylene dipicolinic acid (4Cl-MDPA) under conditions that left cysteine residues unchanged even after overnight incubation. GdIII -GdIII distances measured by double electron-electron resonance (DEER) experiments of maltose binding protein (MBP) containing two selenocysteine residues tagged with 4Cl-MDPA-GdIII were indistinguishable from GdIII -GdIII distances measured of MBP containing cysteine reacted with 4Br-MDPA tags.


Assuntos
Proteínas Ligantes de Maltose/análise , Ácidos Picolínicos/química , Selenoproteínas/química , Estrutura Molecular , Selenoproteínas/síntese química
16.
Biochemistry ; 59(36): 3300-3315, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32845139

RESUMO

Selenocysteine (Sec) is the 21st proteogenic amino acid in the genetic code. Incorporation of Sec into proteins is a complex and bioenergetically costly process that evokes the following question: "Why did nature choose selenium?" An answer that has emerged over the past decade is that Sec confers resistance to irreversible oxidative inactivation by reactive oxygen species. Here, we explore the question of whether this concept can be broadened to include resistance to reactive electrophilic species (RES) because oxygen and related compounds are merely a subset of RES. To test this hypothesis, we inactivated mammalian thioredoxin reductase (Sec-TrxR), a mutant containing α-methylselenocysteine [(αMe)Sec-TrxR], and a cysteine ortholog TrxR (Cys-TrxR) with various electrophiles, including acrolein, 4-hydroxynonenal, and curcumin. Our results show that the acrolein-inactivated Sec-TrxR and the (αMe)Sec-TrxR mutant could regain 25% and 30% activity, respectively, when incubated with 2 mM H2O2 and 5 mM imidazole. In contrast, Cys-TrxR did not regain activity under the same conditions. We posit that Sec enzymes can undergo a repair process via ß-syn selenoxide elimination that ejects the electrophile, leaving the enzyme in the oxidized selenosulfide state. (αMe)Sec-TrxR was created by incorporating the non-natural amino acid (αMe)Sec into TrxR by semisynthesis and allowed for rigorous testing of our hypothesis. This Sec derivative enables higher resistance to both oxidative and electrophilic inactivation because it lacks a backbone Cα-H, which prevents loss of selenium through the formation of dehydroalanine. This is the first time this unique amino acid has been incorporated into an enzyme and is an example of state-of-the-art protein engineering.


Assuntos
Mutação , Selenocisteína/análogos & derivados , Selenoproteínas/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Cisteína/química , Humanos , Oxirredução , Óxidos de Selênio/química , Selenocisteína/química , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química , Tiorredoxinas/metabolismo
17.
Essays Biochem ; 64(1): 45-53, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31867620

RESUMO

Selenocysteine (Sec), the sulfur-to-selenium substituted variant of cysteine (Cys), is the defining entity of selenoproteins. These are naturally expressed in many diverse organisms and constitute a unique class of proteins. As a result of the physicochemical characteristics of selenium when compared with sulfur, Sec is typically more reactive than Cys while participating in similar reactions, and there are also some qualitative differences in the reactivities between the two amino acids. This minireview discusses the types of modifications of Sec in selenoproteins that have thus far been experimentally validated. These modifications include direct covalent binding through the Se atom of Sec to other chalcogen atoms (S, O and Se) as present in redox active molecular motifs, derivatization of Sec via the direct covalent binding to non-chalcogen elements (Ni, Mb, N, Au and C), and the loss of Se from Sec resulting in formation of dehydroalanine. To understand the nature of these Sec modifications is crucial for an understanding of selenoprotein reactivities in biological, physiological and pathophysiological contexts.


Assuntos
Selenocisteína/química , Selenoproteínas/metabolismo , Animais , Humanos , Processamento de Proteína Pós-Traducional , Selenoproteínas/química
18.
Acc Chem Res ; 52(10): 2832-2840, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31523956

RESUMO

Selenoproteins are the family of proteins that contain the amino acid selenocysteine. Many selenoproteins, including glutathione peroxidases and thioredoxin reductases, play a role in maintaining cellular redox homeostasis. There are a number of examples of homologues of selenoproteins that utilize cysteine residues, raising the question of why selenocysteines are utilized. One hypothesis is that incorporation of selenocysteine protects against irreversible overoxidation, typical of cysteine-containing homologues under high oxidative stress. Studies of selenocysteine function are hampered by challenges both in detection and in recombinant expression of selenoproteins. In fact, about half of the 25 known human selenoproteins remain uncharacterized. Historically, selenoproteins were first detected via labeling with radioactive 75Se or by use of inductively coupled plasma-mass spectrometry to monitor nonradioactive selenium. More recently, tandem mass-spectrometry techniques have been developed to detect selenocysteine-containing peptides. For example, the isotopic distribution of selenium has been used as a unique signature to identify selenium-containing peptides from unenriched proteome samples. Additionally, selenocysteine-containing proteins and peptides were selectively enriched using thiol-reactive electrophiles by exploiting the increased reactivity of selenols relative to thiols, especially under low pH conditions. Importantly, the reactivity-based enrichment of selenoproteins can differentiate between oxidized and reduced selenoproteins, providing insight into the activity state. These mass spectrometry-based selenoprotein detection approaches have enabled (1) production of selenoproteome expression atlases, (2) identification of aging-associated changes in selenoprotein expression, (3) characterization of selenocysteine reactivity across the selenoprotein family, and (4) interrogation of selenoprotein targets of small-molecule drugs. Further investigations of selenoprotein function would benefit from recombinant expression of selenoproteins. However, the endogenous mechanism of selenoprotein production makes recombinant expression challenging. Primarily, selenocysteine is biosynthesized on its own tRNA, is dependent on multiple enzymatic steps, and is highly sensitive to selenium concentrations. Furthermore, selenocysteine is encoded by the stop codon UGA, and suppression of that stop codon requires a selenocysteine insertion sequence element in the selenoprotein mRNA. In order to circumvent the low efficiency of the endogenous machinery, selenoproteins have been produced in vitro through native chemical ligation and expressed protein ligation. Attempts have also been made to engineer the endogenous machinery for increased efficiency, including recoding the selenocysteine codon, and engineering the tRNA and the selenocysteine insertion sequence element. Alternatively, genetic code expansion can be used to generate selenoproteins. This approach allows for selenoprotein production directly within its native cellular environment, while bypassing the endogenous selenocysteine incorporation machinery. Furthermore, by incorporating a caged selenocysteine by genetic code expansion, selenoprotein activity can be spatially and temporally controlled. Genetic code expansion has allowed for the expression and uncaging of human selenoproteins in E. coli and more recently in mammalian cells. Together, advances in selenoprotein detection and expression should enable a better understanding of selenoprotein function and provide insight into the necessity for selenocysteine production.


Assuntos
Proteômica/métodos , Selenoproteínas/metabolismo , Animais , Perfilação da Expressão Gênica , Humanos , Selenoproteínas/química , Selenoproteínas/genética
19.
J Am Soc Mass Spectrom ; 30(7): 1163-1168, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31001752

RESUMO

Many fundamental questions of astrophysics, biochemistry, and geology rely on the ability to accurately and precisely measure the mass and abundance of isotopes. Taken a step further, the capacity to perform such measurements on intact molecules provides insights into processes in diverse biological systems. Described here is the coupling of a combined atomic and molecular (CAM) ionization source, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma, with a commercially available ThermoScientific Fusion Lumos mass spectrometer. Demonstrated for the first time is the ionization and isotopically resolved fingerprinting of a long-postulated, but never mass-spectrometrically observed, bi-metallic complex Hg:Se-cysteine. Such a complex has been implicated as having a role in observations of Hg detoxification by selenoproteins/amino acids. Demonstrated as well is the ability to mass spectrometrically-resolve the geochronologically important isobaric 87Sr and 87Rb species (Δm ~ 0.3 mDa, mass resolution m/Δm ≈ 1,700,000). The mass difference in this case reflects the beta-decay of the 87Rb to the stable Sr isotope. These two demonstrations highlight what may be a significant change in bioinorganic and atomic mass spectrometry, with impact expected across a broad spectrum of the physical, biological, and geological sciences. Graphical Abstract "".


Assuntos
Espectrometria de Massas/instrumentação , Animais , Pressão Atmosférica , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Análise de Injeção de Fluxo/instrumentação , Humanos , Isótopos/análise , Mercúrio/análise , Selenocisteína/análise , Selenoproteínas/química
20.
Protein Sci ; 28(1): 41-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29451338

RESUMO

Dimedone is a widely used reagent to assess the redox state of cysteine-containing proteins as it will alkylate sulfenic acid residues, but not sulfinic acid residues. While it has been reported that dimedone can label selenenic acid residues in selenoproteins, we investigated the stability, and reversibility of this label in a model peptide system. We also wondered whether dimedone could be used to detect seleninic acid residues. We used benzenesulfinic acid, benzeneseleninic acid, and model selenocysteine-containing peptides to investigate possible reactions with dimedone. These peptides were incubated with H2 O2 in the presence of dimedone and then the reactions were followed by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). The native peptide, H-PTVTGCUG-OH (corresponding to the native amino acid sequence of the C-terminus of mammalian thioredoxin reductase), could not be alkylated by dimedone, but could be carboxymethylated with iodoacetic acid. However the "mutant peptide," H-PTVTGAUG-OH, could be labeled with dimedone at low concentrations of H2 O2 , but the reaction was reversible by addition of thiol. Due to the reversible nature of this alkylation, we conclude that dimedone is not a good reagent for detecting selenenic acids in selenoproteins. At high concentrations of H2 O2 , selenium was eliminated from the peptide and a dimeric form of dimedone could be detected using LCMS and 1 H NMR. The dimeric dimedone product forms as a result of a seleno-Pummerer reaction with Sec-seleninic acid. Overall our results show that the reaction of dimedone with oxidized cysteine residues is quite different from the same reaction with oxidized selenocysteine residues.


Assuntos
Cicloexanonas/química , Peptídeos/química , Selenocisteína/química , Selenoproteínas/química , Animais , Ácidos Carboxílicos/química , Camundongos , Compostos Organosselênicos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA