Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.850
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3873, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719882

RESUMO

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Assuntos
Envelhecimento , MicroRNAs , Neuroglia , Fatores de Transcrição , Humanos , Neuroglia/metabolismo , Neuroglia/citologia , Envelhecimento/genética , Envelhecimento/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Senescência Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Adulto , Redes Reguladoras de Genes , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731817

RESUMO

MCPH1 has been identified as the causal gene for primary microcephaly type 1, a neurodevelopmental disorder characterized by reduced brain size and delayed growth. As a multifunction protein, MCPH1 has been reported to repress the expression of TERT and interact with transcriptional regulator E2F1. However, it remains unclear whether MCPH1 regulates brain development through its transcriptional regulation function. This study showed that the knockout of Mcph1 in mice leads to delayed growth as early as the embryo stage E11.5. Transcriptome analysis (RNA-seq) revealed that the deletion of Mcph1 resulted in changes in the expression levels of a limited number of genes. Although the expression of some of E2F1 targets, such as Satb2 and Cdkn1c, was affected, the differentially expressed genes (DEGs) were not significantly enriched as E2F1 target genes. Further investigations showed that primary and immortalized Mcph1 knockout mouse embryonic fibroblasts (MEFs) exhibited cell cycle arrest and cellular senescence phenotype. Interestingly, the upregulation of p19ARF was detected in Mcph1 knockout MEFs, and silencing p19Arf restored the cell cycle and growth arrest to wild-type levels. Our findings suggested it is unlikely that MCPH1 regulates neurodevelopment through E2F1-mediated transcriptional regulation, and p19ARF-dependent cell cycle arrest and cellular senescence may contribute to the developmental abnormalities observed in primary microcephaly.


Assuntos
Pontos de Checagem do Ciclo Celular , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina , Camundongos Knockout , Microcefalia , Animais , Camundongos , Senescência Celular/genética , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patologia , Pontos de Checagem do Ciclo Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fibroblastos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672501

RESUMO

The formation of bone outside the normal skeleton, or heterotopic ossification (HO), occurs through genetic and acquired mechanisms. Fibrodysplasia ossificans progressiva (FOP), the most devastating genetic condition of HO, is due to mutations in the ACVR1/ALK2 gene and is relentlessly progressive. Acquired HO is mostly precipitated by injury or orthopedic surgical procedures but can also be associated with certain conditions related to aging. Cellular senescence is a hallmark of aging and thought to be a tumor-suppressive mechanism with characteristic features such as irreversible growth arrest, apoptosis resistance, and an inflammatory senescence-associated secretory phenotype (SASP). Here, we review possible roles for cellular senescence in HO and how targeting senescent cells may provide new therapeutic approaches to both FOP and acquired forms of HO.


Assuntos
Senescência Celular , Miosite Ossificante , Ossificação Heterotópica , Humanos , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Ossificação Heterotópica/metabolismo , Senescência Celular/genética , Miosite Ossificante/genética , Miosite Ossificante/patologia , Miosite Ossificante/metabolismo , Animais , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo
4.
Front Cell Infect Microbiol ; 14: 1379962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655281

RESUMO

The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.


Assuntos
Retrovirus Endógenos , Retrovirus Endógenos/genética , Retrovirus Endógenos/fisiologia , Humanos , Animais , Diferenciação Celular , Interações Hospedeiro-Patógeno/genética , Interações entre Hospedeiro e Microrganismos/genética , Infecções por Retroviridae/virologia , Senescência Celular/genética , Provírus/genética , Provírus/fisiologia , Evolução Molecular
5.
J Transl Med ; 22(1): 372, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637790

RESUMO

BACKGROUND: The primary goal of this work is to identify biomarkers associated with lung squamous cell carcinoma and assess their potential for early detection of lymph node metastasis. METHODS: This study investigated gene expression in lymph node metastasis of lung squamous cell carcinoma using data from the Cancer Genome Atlas and R software. Protein-protein interaction networks, hub genes, and enriched pathways were analyzed. ZNF334 and TINAGL1, two less explored genes, were further examined through in vitro, ex vivo, and in vivo experiments to validate the findings from bioinformatics analyses. The role of ZNF334 and TINAGL1 in senescence induction was assessed after H2O2 and UV induced senescence phenotype determined using ß-galactosidase activity and cell cycle status assay. RESULTS: We identified a total of 611 up- and 339 down-regulated lung squamous cell carcinoma lymph node metastasis-associated genes (FDR < 0.05). Pathway enrichment analysis highlighted the central respiratory pathway within mitochondria for the subnet genes and the nuclear DNA-directed RNA polymerases for the hub genes. Significantly down regulation of ZNF334 gene was associated with malignancy lymph node progression and senescence induction has significantly altered ZNF334 expression (with consistency in bioinformatics, in vitro, ex vivo, and in vivo results). Deregulation of TINAGL1 expression with inconsistency in bioinformatics, in vitro (different types of lung squamous cancer cell lines), ex vivo, and in vivo results, was also associated with malignancy lymph node progression and altered in senescence phenotype. CONCLUSIONS: ZNF334 is a highly generalizable gene to lymph node metastasis of lung squamous cell carcinoma and its expression alter certainly under senescence conditions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Metástase Linfática/genética , Peróxido de Hidrogênio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Pulmão/patologia , Senescência Celular/genética , Proteínas de Transporte
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 279-289, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645862

RESUMO

Objective: To identify inflamm-aging related biomarkers in osteoarthritis (OA). Methods: Microarray gene profiles of young and aging OA patients were obtained from the Gene Expression Omnibus (GEO) database and aging-related genes (ARGs) were obtained from the Human Aging Genome Resource (HAGR) database. The differentially expressed genes of young OA and older OA patients were screened and then intersected with ARGs to obtain the aging-related genes of OA. Enrichment analysis was performed to reveal the potential mechanisms of aging-related markers in OA. Three machine learning methods were used to identify core senescence markers of OA and the receiver operating characteristic (ROC) curve was used to assess their diagnostic performance. Peripheral blood mononuclear cells were collected from clinical OA patients to verify the expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Results: A total of 45 senescence-related markers were obtained, which were mainly involved in the regulation of cellular senescence, the cell cycle, inflammatory response, etc. Through the screening with the three machine learning methods, 5 core senescence biomarkers, including FOXO3, MCL1, SIRT3, STAG1, and S100A13, were obtained. A total of 20 cases of normal controls and 40 cases of OA patients, including 20 cases in the young patient group and 20 in the elderly patient group, were enrolled. Compared with those of the young patient group, C-reactive protein (CRP), interleukin (IL)-6, and IL-1ß levels increased and IL-4 levels decreased in the elderly OA patient group (P<0.01); FOXO3, MCL1, and SIRT3 mRNA expression decreased and STAG1 and S100A13 mRNA expression increased (P<0.01). Pearson correlation analysis demonstrated that the selected markers were associated with some indicators, including erythrocyte sedimentation rate (ESR), IL-1ß, IL-4, CRP, and IL-6. The area under the ROC curve of the 5 core aging genes was always greater than 0.8 and the C-index of the calibration curve in the nomogram prediction model was 0.755, which suggested the good calibration ability of the model. Conclusion: FOXO3, MCL1, SIRT3, STAG1, and S100A13 may serve as novel diagnostic biomolecular markers and potential therapeutic targets for OA inflamm-aging.


Assuntos
Envelhecimento , Biomarcadores , Biologia Computacional , Aprendizado de Máquina , Osteoartrite , Humanos , Osteoartrite/genética , Osteoartrite/diagnóstico , Osteoartrite/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Biologia Computacional/métodos , Envelhecimento/genética , Inflamação/genética , Inflamação/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Senescência Celular/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo , Perfilação da Expressão Gênica , Idoso , Masculino
7.
BMC Cancer ; 24(1): 451, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605343

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the prevailing histological subtype of renal cell carcinoma and has unique metabolic reprogramming during its occurrence and development. Cell senescence is one of the newly identified tumor characteristics. However, there is a dearth of methodical and all-encompassing investigations regarding the correlation between the broad-ranging alterations in metabolic processes associated with aging and ccRCC. We utilized a range of analytical methodologies, such as protein‒protein interaction network analysis and least absolute shrinkage and selection operator (LASSO) regression analysis, to form and validate a risk score model known as the senescence-metabolism-related risk model (SeMRM). Our study demonstrated that SeMRM could more precisely predict the OS of ccRCC patients than the clinical prognostic markers in use. By utilizing two distinct datasets of ccRCC, ICGC-KIRC (the International Cancer Genome Consortium) and GSE29609, as well as a single-cell dataset (GSE156632) and real patient clinical information, and further confirmed the relationship between the senescence-metabolism-related risk score (SeMRS) and ccRCC patient progression. It is worth noting that patients who were classified into different subgroups based on the SeMRS exhibited notable variations in metabolic activity, immune microenvironment, immune cell type transformation, mutant landscape, and drug responsiveness. We also demonstrated that PTGER4, a key gene in SeMRM, regulated ccRCC cell proliferation, lipid levels and the cell cycle in vivo and in vitro. Together, the utilization of SeMRM has the potential to function as a dependable clinical characteristic to increase the accuracy of prognostic assessment for patients diagnosed with ccRCC, thereby facilitating the selection of suitable treatment strategies.


Assuntos
Carcinoma de Células Renais , Senescência Celular , Neoplasias Renais , Reprogramação Metabólica , Receptores de Prostaglandina E Subtipo EP4 , Humanos , Carcinoma de Células Renais/genética , Senescência Celular/genética , Análise de Sequência de RNA , Microambiente Tumoral/genética
8.
Cell Rep ; 43(4): 114044, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568812

RESUMO

We identify a senescence restriction point (SeRP) as a critical event for cells to commit to senescence. The SeRP integrates the intensity and duration of oncogenic stress, keeps a memory of previous stresses, and combines oncogenic signals acting on different pathways by modulating chromatin accessibility. Chromatin regions opened upon commitment to senescence are enriched in nucleolar-associated domains, which are gene-poor regions enriched in repeated sequences. Once committed to senescence, cells no longer depend on the initial stress signal and exhibit a characteristic transcriptome regulated by a transcription factor network that includes ETV4, RUNX1, OCT1, and MAFB. Consistent with a tumor suppressor role for this network, the levels of ETV4 and RUNX1 are very high in benign lesions of the pancreas but decrease dramatically in pancreatic ductal adenocarcinomas. The discovery of senescence commitment and its chromatin-linked regulation suggests potential strategies for reinstating tumor suppression in human cancers.


Assuntos
Senescência Celular , Cromatina , Humanos , Cromatina/metabolismo , Senescência Celular/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fatores de Transcrição/metabolismo , Camundongos , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Oncogenes
9.
Mol Med ; 30(1): 54, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649802

RESUMO

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Assuntos
Bleomicina , Senescência Celular , Reparo do DNA , Rad51 Recombinase , Bleomicina/efeitos adversos , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Animais , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Humanos , Camundongos , Reparo do DNA/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Células A549 , Dano ao DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos
10.
Placenta ; 150: 39-51, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588616

RESUMO

INTRODUCTION: Preeclampsia (PE) is a severe obstetric complication closely associated with placental dysfunction. Placental mesenchymal stem/stromal cells (PMSCs) modulate placental development while PE PMSCs are excessively senescent to disturb placental function. Nevertheless, the senescence mechanism of PE PMSCs remains unclear. METHODS: PE-related single-cell RNA sequencing datasets (GSE173193), data of chip detection (GSE99007) and bulk transcriptome RNA sequencing datasets (GSE75010) were extracted from the GEO database. Firstly, the functional enrichment analyses of the differentially expressed genes (DEGs) in PMSCs were conducted. Then, the clusters of PE PMSCs were distinguished according to the expressions of senescence-related genes (SRGs) by consensus clustering analysis. Cell cycle analysis, senescence ß-galactosidase, Transwell, and tube formation were conducted. Next, the expressions of the senescence-associated secretory phenotype (SASPs) were displayed. The characteristic genes of PE were screened by the least absolute shrinkage and selection operator analysis. CTSZ was suppressed in PMSCs and the cellular senescence levels were evaluated. RESULTS: In this study, The DEGs in PMSCs were closely associated with cellular senescence. The score of SRGs was significantly higher and most of the SASPs were abnormally expressed in the senescent group. Seven characteristic genes of PE were identified, thereinto, CTSZ reduction may accelerate the senescence in PMSCs in vitro. DISCUSSION: Combined with bioinformatic analysis and lab experiments, our study emphatically revealed the abnormal cellular senescence in PE PMSCs, in which CTSZ, one of the PE characteristic genes, regulated the cellular senescence levels in PMSCs. These findings might help to deepen the understanding of the senescence mechanism of PMSCs in PE.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais , Placenta , Pré-Eclâmpsia , Humanos , Feminino , Senescência Celular/genética , Células-Tronco Mesenquimais/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Placenta/metabolismo , Placenta/patologia , Análise de Célula Única , Análise de Sequência de RNA , Adulto
11.
Exp Gerontol ; 188: 112391, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437929

RESUMO

Diabetic retinopathy (DR) is the most common ocular fundus disease in diabetic patients. Chronic hyperglycemia not only promotes the development of diabetes and its complications, but also aggravates the occurrence of senescence. Previous studies have shown that DR is associated with senescence, but the specific mechanism has not been fully elucidated. Here, we first detected the differentially expressed genes (DEGs) and cellular senescence level of db/db mouse retinas by bulk RNA sequencing. Then, we used single-cell sequencing (scRNA-seq) to identify the main cell types in the retina and analyzed the DEGs in each cluster. We demonstrated that p53 expression was significantly increased in retinal endothelial cell cluster of db/db mice. Inhibition of p53 can reduce the expression of SA-ß-Gal and the senescence-associated secretory phenotype (SASP) in HRMECs. Finally, we found that p53 can promote FoxO3a ubiquitination and degradation by increasing the expression of the ubiquitin-conjugating enzyme UBE2L6. Overall, our results demonstrate that p53 can accelerate the senescence process of endothelial cells and aggravate the development of DR. These data reveal new targets and insights that may be used to treat DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Humanos , Camundongos , Senescência Celular/genética , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
12.
Cells ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534394

RESUMO

This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Senescência Celular/genética , Células Cultivadas , Radiação Ionizante
13.
Aging (Albany NY) ; 16(5): 4904-4919, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460957

RESUMO

Stem cell therapy requires massive-scale homogeneous stem cells under strict qualification control. However, Prolonged ex vivo expansion impairs the biological functions and results in senescence of mesenchymal stem cells (MSCs). We investigated the function of CTDSPL in the premature senescence process of MSCs and clarified that miR-18a-5p played a prominent role in preventing senescence of long-term cultured MSCs and promoting the self-renewal ability of MSCs. Over-expression of CTDSPL resulted in an enlarged morphology, up-regulation of p16 and accumulation of SA-ß-gal of MSCs. The reduced phosphorylated RB suggested cell cycle arrest of MSCs. All these results implied that CTDSPL induced premature senescence of MSCs. We further demonstrated that miR-18a-5p was a putative regulator of CTDSPL by luciferase reporter assay. Inhibition of miR-18a-5p promoted the expression of CTDSPL and induced premature senescence of MSCs. Continuous overexpression of miR-18a-5p improved self-renewal of MSCs by reducing ROS level, increased expression of Oct4 and Nanog, and promoted growth rate and differentiation capability. We reported for the first time that the dynamic interaction of miR-18a-5p and CTDSPL is crucial for stem cell senescence.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Senescência Celular/genética , Regulação para Cima , Células-Tronco Mesenquimais/metabolismo
14.
Cell Rep ; 43(3): 113912, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446659

RESUMO

In this study, we explore the dynamic process of colorectal cancer progression, emphasizing the evolution toward a more metastatic phenotype. The term "evolution" as used in this study specifically denotes the phenotypic transition toward a higher metastatic potency from well-formed glandular structures to collective invasion, ultimately resulting in the development of cancer cell buddings at the invasive front. Our findings highlight the spatial correlation of this evolution with tumor cell senescence, revealing distinct types of senescent tumor cells (types I and II) that play different roles in the overall cancer progression. Type I senescent tumor cells (p16INK4A+/CXCL12+/LAMC2-/MMP7-) are identified in the collective invasion region, whereas type II senescent tumor cells (p16INK4A+/CXCL12+/LAMC2+/MMP7+), representing the final evolved form, are prominently located in the partial-EMT region. Importantly, type II senescent tumor cells associate with local invasion and lymph node metastasis in colorectal cancer, potentially affecting patient prognosis.


Assuntos
Neoplasias Colorretais , Metaloproteinase 7 da Matriz , Humanos , Metaloproteinase 7 da Matriz/genética , Senescência Celular/genética , Fenótipo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
15.
Aging Cell ; 23(4): e14154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553952

RESUMO

Cellular senescence is a state of permanent growth arrest. It can be triggered by telomere shortening (replicative senescence) or prematurely induced by stresses such as DNA damage, oncogene overactivation, loss of tumor suppressor genes, oxidative stress, tissue factors, and others. Advances in techniques and experimental designs have provided new evidence about the biology of senescent cells (SnCs) and their importance in human health and disease. This review aims to describe the main aspects of SnCs phenotype focusing on alterations in subcellular compartments like plasma membrane, cytoskeleton, organelles, and nuclei. We also discuss the heterogeneity, dynamics, and plasticity of SnCs' phenotype, including the SASP, and pro-survival mechanisms. We advance on the multiple layers of phenotypic heterogeneity of SnCs, such as the heterogeneity between inducers, tissues and within a population of SnCs, discussing the relevance of these aspects to human health and disease. We also raise the main challenges as well alternatives to overcome them. Ultimately, we present open questions and perspectives in understanding the phenotype of SnCs from the perspective of basic and applied questions.


Assuntos
Senescência Celular , Encurtamento do Telômero , Humanos , Senescência Celular/genética , Fenótipo , Células Cultivadas , Estresse Oxidativo
16.
Nat Aging ; 4(3): 295-308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438628

RESUMO

Loss of stem cell regenerative potential underlies aging of all tissues. Somatic mosaicism, the emergence of cellular patchworks within tissues, increases with age and has been observed in every organ yet examined. In the hematopoietic system, as in most tissues, stem cell aging through a variety of mechanisms occurs in lockstep with the emergence of somatic mosaicism. Here, we draw on insights from aging hematopoiesis to illustrate fundamental principles of stem cell aging and somatic mosaicism. We describe the generalizable changes intrinsic to aged stem cells and their milieu that provide the backdrop for somatic mosaicism to emerge. We discuss genetic and nongenetic mechanisms that can result in tissue somatic mosaicism and existing methodologies to detect such clonal outgrowths. Finally, we propose potential avenues to modify mosaicism during aging, with the ultimate aim of increasing tissue resiliency.


Assuntos
Senescência Celular , Mosaicismo , Mutação , Senescência Celular/genética , Células-Tronco
17.
PeerJ ; 12: e16935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435998

RESUMO

Background: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with high heterogeneity, poor prognosis, and a low 10-year survival rate of less than 50%. Although cellular senescence displays extensive effects on cancer, the comprehensions of cellular senescence-related characteristics in TNBC patients remains obscure. Method: Single-cell RNA sequencing (scRNA-seq) data were analyzed by Seurat package. Scores for cellular senescence-related pathways were computed by single-sample gene set enrichment analysis (ssGSEA). Subsequently, unsupervised consensus clustering was performed for molecular cluster identification. Immune scores of patients in The Cancer Genome Atlas (TCGA) dataset and associated immune cell scores were calculated using Estimation of STromal and Immune cells in MAlignantTumours using Expression data (ESTIMATE) and Microenvironment Cell Populations-counter (MCP-counter), Tumor Immune Estimation Resource (TIMER) and Estimating the Proportion of Immune and Cancer cells (EPIC) methods, respectively. Immunotherapy scores were assessed using TIDE. Furthermore, feature genes were identified by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses; these were used to construct a risk model. Additionally, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and transwell assay were conducted for in vitro validation of hub genes. Result: TNBC was classified into three subtypes based on cellular senescence-related pathways as clusters 1, 2, and 3. Specifically, cluster 1 showed the best prognosis, followed by cluster 2 and cluster 3. The levels of gene expression in cluster 2 were the lowest, whereas these were the highest in cluster 3. Moreover, clusters 1 and 3 showed a high degree of immune infiltration. TIDE scores were higher for cluster 3, suggesting that immune escape was more likely in patients with the cluster 3 subtype who were less likely to benefit from immunotherapy. Next, the TNBC risk model was constructed and validated. RT-qPCR revealed that prognostic risk genes (MMP28, ACP5 and KRT6A) were up-regulated while protective genes (CT83) were down-regulated in TNBC cell lines, validating the results of the bioinformatics analysis. Meanwhile, cellular experiments revealed that ACP5 could promote the migration and invasion abilities in two TNBC cell lines. Finally, we evaluated the validity of prognostic models for assessing TME characteristics and TNBC chemotherapy response. Conclusion: In conclusion, these findings help to assess the efficacy of targeted therapies in patients with different molecular subtypes, have practical applications for subtype-specific treatment of TNBC patients, and provide information on prognostic factors, as well as guidance for the revelation of the molecular mechanisms by which senescence-associated genes influence TNBC progression.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Senescência Celular/genética , Mama , Agressão , Bioensaio , Microambiente Tumoral/genética
18.
Arch Toxicol ; 98(5): 1499-1513, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480537

RESUMO

Cell senescence genes play a vital role in the pathogenesis of colorectal cancer, a process that may involve the triggering of genetic variations and reversible phenotypes caused by epigenetic modifications. However, the specific regulatory mechanisms remain unclear. Using CellAge and The Cancer Genome Atlas databases and in-house RNA-seq data, DNA methylation-modified cellular senescence genes (DMCSGs) were validated by Support Vector Machine and correlation analyses. In 1150 cases and 1342 controls, we identified colorectal cancer risk variants in DMCSGs. The regulatory effects of gene, variant, and DNA methylation were explored through dual-luciferase and 5-azacytidine treatment experiments, complemented by multiple database analyses. Biological functions of key gene were evaluated via cell proliferation assays, SA-ß-gal staining, senescence marker detection, and immune infiltration analyses. The genetic variant rs4558926 in the downstream of TACC3 was significantly associated with colorectal cancer risk (OR = 1.35, P = 3.22 × 10-4). TACC3 mRNA expression increased due to rs4558926 C > G and decreased DNA methylation levels. The CpG sites in the TACC3 promoter region were regulated by rs4558926. TACC3 knockdown decreased proliferation and senescence in colorectal cancer cells. In addition, subjects with high-TACC3 expression presented an immunosuppressive microenvironment. These findings provide insights into the involvement of genetic variants of cellular senescence genes in the development and progression of colorectal cancer.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Epigênese Genética , Proteínas Associadas aos Microtúbulos , Humanos , Proteínas de Ciclo Celular/genética , Senescência Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG , DNA , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Microambiente Tumoral
19.
Int J Biol Sci ; 20(5): 1763-1777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481803

RESUMO

N6-methyladenosine (m6A), the most prevalent posttranscriptional RNA modification, involved in various diseases and cellular processes. However, the underlying mechanisms of m6A regulation in skin aging are still not fully understood. In this study, proteomics analysis revealed a significant correlation between Wilms' tumor 1-associating protein (WTAP) expression and cellular senescence. Next, upregulated WTAP was detected in aging skin tissues and senescent human dermal fibroblasts (HDFs). Functionally, overexpressed WTAP induced senescence and knockdown of WTAP rescued senescence of HDFs. Mechanistically, WTAP directly targeted ELF3 and promoted its expression in an m6A-dependent manner. Exogenous-ELF3 overexpression evidently reversed shWTAP-suppressed fibroblast senescence. Furthermore, ELF3 induced IRF8-mediated senescence-associated secretory phenotype (SASP) by binding to the (-817 to -804) site of the IRF8 promoter directly. In vivo, overexpression of WTAP evidently increased senescence cells in skin and induced skin aging. In summary, these findings revealed the critical role of WTAP-mediated m6A modification in skin aging and identified ELF3 as an important target of m6A modification in HDFs senescence, providing a new idea for delaying the aging process.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Humanos , Adenosina , Proteínas de Ciclo Celular , Senescência Celular/genética , Proteínas de Ligação a DNA , Fatores Reguladores de Interferon , Proteínas Proto-Oncogênicas c-ets , RNA , Fatores de Processamento de RNA , Fatores de Transcrição
20.
Gene ; 911: 148319, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428622

RESUMO

AIMS: Cellular senescence in type 2 diabetes mellitus (T2DM) has received widespread attention. However, the cellular senescence molecules involved in T2DM are unclear. Furthermore, there are no consistent biomarkers for cellular senescence in T2DM. Therefore, this study aimed to identify cellular senescence molecules in T2DM and investigate their expression in peripheral blood mononuclear cells of individuals with T2DM. METHODS: Patients with T2DM (n = 40) and healthy controls (n = 40) were enrolled. We used different databases to identify cellular senescence molecules in T2DM and confirmed the obtained genes and lncRNA using real-time PCR. RESULTS: Bioinformatics analysis indicated that CDKN2A and CDKN2B genes, and long noncoding RNA ANRIL are the most effective cellular senescence molecules in T2DM. Furthermore, CDKN2A and ANRIL expression decreased in individuals with T2DM. CONCLUSIONS: Cellular senescence may have a protective effect against T2DM. In addition, the cellular senescence molecules CDKN2A and ANRIL may be potential biomarkers of cellular senescence in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Diabetes Mellitus Tipo 2/genética , Leucócitos Mononucleares , Biomarcadores , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA