Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.609
Filtrar
1.
Commun Biol ; 7(1): 562, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734709

RESUMO

MiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1. MSCs-exo plus miR-140-3p mimic (Exo) and antibiotic imipenem/cilastatin (ABX) improve survival, weight, and cognitive impairment in cecal ligation and puncture (CLP) mice. Exo and ABX inhibit high mobility group box 1 (HMGB1), IBA-1, interleukin (IL)-1ß, IL-6, iNOS, TNF-α, p65/p-p65, NLRP3, Caspase 1, and GSDMD-N levels. In addition, Exo upregulates S-lactoylglutathione levels in the hippocampus of CLP mice. Our data further demonstrates that Exo and S-lactoylglutathione increase GSH levels in LPS-induced HMC3 cells and decrease LD and GLO2 levels, inhibiting inflammatory responses and pyroptosis. These findings suggest that MSCs-exo-mediated delivery of miR-140-3p ameliorates cognitive impairment in mice with SAE by HMGB1 and S-lactoylglutathione metabolism, providing potential therapeutic targets for the clinical treatment of SAE.


Assuntos
Disfunção Cognitiva , Exossomos , Proteína HMGB1 , Células-Tronco Mesenquimais , MicroRNAs , Encefalopatia Associada a Sepse , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Animais , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/genética , Camundongos , Exossomos/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Sepse/genética , Sepse/metabolismo , Sepse/complicações , Modelos Animais de Doenças
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731929

RESUMO

Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt ß-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.


Assuntos
Cardiomiopatias , Sepse , Sepse/complicações , Sepse/metabolismo , Humanos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Animais , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitofagia , Metabolismo Energético , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose , Trifosfato de Adenosina/metabolismo
3.
Respir Res ; 25(1): 201, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725041

RESUMO

Growth differentiation factor 15 (GDF15) as a stress response cytokine is involved in the development and progression of several diseases associated with metabolic disorders. However, the regulatory role and the underlying mechanisms of GDF15 in sepsis remain poorly defined. Our study analyzed the levels of GDF15 and its correlations with the clinical prognosis of patients with sepsis. In vivo and in vitro models of sepsis were applied to elucidate the role and mechanisms of GDF15 in sepsis-associated lung injury. We observed strong correlations of plasma GDF15 levels with the levels of C-reactive protein (CRP), procalcitonin (PCT), lactate dehydrogenase (LDH), and lactate as well as Sequential Organ Failure Assessment (SOFA) scores in patients with sepsis. In the mouse model of lipopolysaccharide-induced sepsis, recombinant GDF15 inhibited the proinflammatory responses and alleviated lung tissue injury. In addition, GDF15 decreased the levels of cytokines produced by alveolar macrophages (AMs). The anti-inflammatory effect of glycolysis inhibitor 2-DG on AMs during sepsis was mediated by GDF15 via inducing the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) and the expression of activating transcription factor 4 (ATF4). Furthermore, we explored the mechanism underlying the beneficial effects of GDF15 and found that GDF15 inhibited glycolysis and mitogen-activated protein kinases (MAPK)/nuclear factor-κB (NF-κB) signaling via promoting AMPK phosphorylation. This study demonstrated that GDF15 inhibited glycolysis and NF-κB/MAPKs signaling via activating AMP-activated protein kinase (AMPK), thereby alleviating the inflammatory responses of AMs and sepsis-associated lung injury. Our findings provided new insights into novel therapeutic strategies for treating sepsis.


Assuntos
Proteínas Quinases Ativadas por AMP , Glicólise , Fator 15 de Diferenciação de Crescimento , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Sepse , Fator 15 de Diferenciação de Crescimento/metabolismo , Animais , Camundongos , Sepse/metabolismo , Sepse/tratamento farmacológico , Masculino , Glicólise/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Lesão Pulmonar/metabolismo , Feminino , Pessoa de Meia-Idade
4.
Nat Commun ; 15(1): 4340, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773142

RESUMO

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Assuntos
Proteínas Reguladoras de Apoptose , Modelos Animais de Doenças , Lipopolissacarídeos , MAP Quinase Quinase Quinases , Macrófagos , Sepse , Animais , Sepse/imunologia , Sepse/tratamento farmacológico , Sepse/metabolismo , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Camundongos Endogâmicos C57BL , Fosforilação , Humanos , Ubiquitinação , Zearalenona/análogos & derivados , Zearalenona/farmacologia , Zearalenona/administração & dosagem , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Inflamação/metabolismo , Inflamação/patologia , Monoéster Fosfórico Hidrolases/metabolismo , Camundongos Knockout , Lactonas , Resorcinóis
5.
Int J Med Sci ; 21(6): 983-993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774750

RESUMO

Previous studies have highlighted the protective effects of pyruvate kinase M2 (PKM2) overexpression in septic cardiomyopathy. In our study, we utilized cardiomyocyte-specific PKM2 knockout mice to further investigate the role of PKM2 in attenuating LPS-induced myocardial dysfunction, focusing on mitochondrial biogenesis and prohibitin 2 (PHB2). Our findings confirmed that the deletion of PKM2 in cardiomyocytes significantly exacerbated LPS-induced myocardial dysfunction, as evidenced by impaired contractile function and relaxation. Additionally, the deletion of PKM2 intensified LPS-induced myocardial inflammation. At the molecular level, LPS triggered mitochondrial dysfunction, characterized by reduced ATP production, compromised mitochondrial respiratory complex I/III activities, and increased ROS production. Intriguingly, the absence of PKM2 further worsened LPS-induced mitochondrial damage. Our molecular investigations revealed that LPS disrupted mitochondrial biogenesis in cardiomyocytes, a disruption that was exacerbated by the absence of PKM2. Given that PHB2 is known as a downstream effector of PKM2, we employed PHB2 adenovirus to restore PHB2 levels. The overexpression of PHB2 normalized mitochondrial biogenesis, restored mitochondrial integrity, and promoted mitochondrial function. Overall, our results underscore the critical role of PKM2 in regulating the progression of septic cardiomyopathy. PKM2 deficiency impeded mitochondrial biogenesis, leading to compromised mitochondrial integrity, increased myocardial inflammation, and impaired cardiac function. The overexpression of PHB2 mitigated the deleterious effects of PKM2 deletion. This discovery offers a novel insight into the molecular mechanisms underlying septic cardiomyopathy and suggests potential therapeutic targets for intervention.


Assuntos
Cardiomiopatias , Camundongos Knockout , Mitocôndrias Cardíacas , Miócitos Cardíacos , Proibitinas , Piruvato Quinase , Sepse , Animais , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/etiologia , Camundongos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Sepse/metabolismo , Sepse/patologia , Sepse/genética , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Humanos , Biogênese de Organelas , Lipopolissacarídeos/toxicidade , Masculino , Modelos Animais de Doenças
6.
Front Immunol ; 15: 1365174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774873

RESUMO

Introduction: Sepsis remains a major source of morbidity and mortality in neonates, and characterization of immune regulation in the neonatal septic response remains limited. HVEM is a checkpoint regulator which can both stimulate or inhibit immune responses and demonstrates altered expression after sepsis. We hypothesized that signaling via HVEM would be essential for the neonatal response to sepsis, and that therefore blockade of this pathway would improve survival to septic challenge. Methods: To explore this, neonatal mice were treated with cecal slurry (CS), CS with Anti-HVEM antibody (CS-Ab) or CS with isotype (CS-IT) and followed for 7-day survival. Mice from all treatment groups had thymus, lung, kidney and peritoneal fluid harvested, weighed, and stained for histologic evaluation, and changes in cardiac function were assessed with echocardiography. Results: Mortality was significantly higher for CS-Ab mice (72.2%) than for CS-IT mice (22.2%). CS resulted in dysregulated alveolar remodeling, but CS-Ab lungs demonstrated significantly less dysfunctional alveolar remodeling than CS alone (MCL 121.0 CS vs. 87.6 CS-Ab), as well as increased renal tubular vacuolization. No morphologic differences in alveolar septation or thymic karyorrhexis were found between CS-Ab and CS-IT. CS-Ab pups exhibited a marked decrease in heart rate (390.3 Sh vs. 342.1 CS-Ab), stroke volume (13.08 CS-IT vs. 8.83 CS-Ab) and ultimately cardiac output (4.90 Sh vs. 3.02 CS-Ab) as well as a significant increase in ejection fraction (73.74 Sh vs. 83.75 CS-Ab) and cardiac strain (40.74 Sh vs. 51.16 CS-Ab) as compared to CS-IT or Sham animals. Discussion: While receptor ligation of aspects of HVEM signaling, via antibody blockade, appears to mitigate aspects of lung injury and thymic involution, stimulatory signaling via HVEM still seems to be necessary for vascular and hemodynamic resilience and overall neonatal mouse survival in response to this experimental polymicrobial septic insult. This dissonance in the activity of anti-HVEM neutralizing antibody in neonatal animals speaks to the differences in how septic cardiac dysfunction should be considered and approached in the neonatal population.


Assuntos
Animais Recém-Nascidos , Sepse Neonatal , Transdução de Sinais , Animais , Camundongos , Sepse Neonatal/imunologia , Sepse Neonatal/mortalidade , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Modelos Animais de Doenças , Feminino , Cardiopatias/etiologia , Cardiopatias/imunologia , Pulmão/imunologia , Pulmão/patologia , Sepse/imunologia , Sepse/metabolismo
7.
Biochem Biophys Res Commun ; 718: 150083, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735138

RESUMO

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), represent critical clinical syndromes with multifactorial origins, notably stemming from sepsis within intensive care units (ICUs). Despite their high mortality rates, no selective cure is available beside ventilation support. Apoptosis plays a complex and pivotal role in the pathophysiology of acute lung injury. Excessive apoptosis of alveolar epithelial and microvascular endothelial cells can lead to disruption of lung epithelial barrier integrity, impairing the body's ability to exchange blood and gas. At the same time, apoptosis of damaged or dysfunctional cells, including endothelial and epithelial cells, can help maintain tissue integrity and accelerate recovery from organ pro-inflammatory stress. The balance between pro-survival and pro-apoptotic signals in lung injury determines patient outcomes, making the modulation of apoptosis an area of intense research in the quest for more effective therapies. Here we found that protein tyrosine phosphatase receptor type O (PTPRO), a poorly understood receptor-like protein tyrosine phosphatase, is consistently upregulated in multiple tissue types of mice under septic conditions and in the lung alveolar epithelial cells. PTPRO reduction by its selective short-interfering RNA (siRNA) leads to excessive apoptosis in lung alveolar epithelial cells without affecting cell proliferation. Consistently PTPRO overexpression by a DNA construct attenuates apoptotic signaling induced by LPS. These effects of PTPTO on cellular apoptosis are dependent on an ErbB2/PI3K/Akt/NFκB signaling pathway. Here we revealed a novel regulatory pathway of cellular apoptosis by PTPRO in lung alveolar epithelial cells during sepsis.


Assuntos
Células Epiteliais Alveolares , Apoptose , Lipopolissacarídeos , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores , Apoptose/efeitos dos fármacos , Animais , Lipopolissacarídeos/farmacologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Camundongos , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Camundongos Endogâmicos C57BL , Humanos , Masculino , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Transdução de Sinais/efeitos dos fármacos , Sepse/metabolismo , Sepse/patologia
8.
Cytokine ; 179: 156637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723454

RESUMO

Sepsis is understood as the result of initiating systemic inflammation derived from an inadequate host response against pathogens. In its acute phase, sepsis is marked by an exacerbated reaction to infection, tissue damage, organ failure, and metabolic dysfunction. Among these, hypoglycemia, characterized by disorders of the gluconeogenesis pathway, is related to one of the leading causes of mortality in septic patients. Recent research has investigated the involvement of sympathetic efferent neuroimmune pathways during systemic inflammation. These pathways can be stimulated by several centrally administered drugs, including Angiotensin-(1-7) (Ang-(1-7)). Therefore, the present study aims to evaluate the effects of central treatment with Ang-(1-7) on hypoglycemia during endotoxemia. For this, male Wistar Hannover rats underwent stereotaxic surgery for intracerebroventricular (i.c.v.) administration of Ang-(1-7) and cannulation of the jugular vein for lipopolysaccharide (LPS) injection. Our results demonstrate that LPS was capable of inducing hypoglycemia and that prior central treatment with Ang-(1-7) attenuated this effect. Our data also show that Ang-(1-7) reduced plasma concentrations of TNF-α, IL-1ß, IL-6, and nitric oxide, in addition to the decrease and increase of hepatic IL-6 and IL-10 respectively, in animals subjected to systemic inflammation by LPS, resulting in the reduction of systemic and hepatic inflammation, thus attenuating the deleterious effects of LPS on phosphoenolpyruvate carboxykinase protein content. In summary, the data suggest that central treatment with Ang-(1-7) attenuates hypoglycemia induced by endotoxemia, probably through anti-inflammatory action, leading to reestablishing hepatic gluconeogenesis.


Assuntos
Angiotensina I , Hipoglicemia , Lipopolissacarídeos , Fragmentos de Peptídeos , Ratos Wistar , Sepse , Animais , Angiotensina I/farmacologia , Masculino , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Fragmentos de Peptídeos/farmacologia , Hipoglicemia/tratamento farmacológico , Hipoglicemia/metabolismo , Ratos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Óxido Nítrico/metabolismo , Hepatite/tratamento farmacológico , Hepatite/metabolismo , Endotoxemia/tratamento farmacológico , Citocinas/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicemia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Front Immunol ; 15: 1373876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715602

RESUMO

Objective: The objective of this study was to investigate the impact of electro-acupuncture (EA) on sepsis-related intestinal injury and its relationship with macrophage polarization. Methods: A sepsis model was established using cecal ligation and puncture (CLP) to assess the effectiveness of EA. The extent of pathological injury was evaluated using Chiu's score, the expression of ZO-1 and Ocludin, and the impact on macrophage polarization was examined through flow cytometry and immunofluorescence staining. The expression of spermidine, one type of polyamine, and ornithine decarboxylase (ODC) was measured using ELISA and PCR. Once the efficacy was determined, a polyamine depletion model was created, and the role of polyamines was reassessed by evaluating efficacy and observing macrophage polarization. Results: EA treatment reduced the Chiu's score and increased the expression of ZO-1 and Ocludin in the intestinal tissue of septic mice. It inhibited the secretion of IL-1ß and TNF-α, promoted the polarization of M2-type macrophages, increased the secretion of IL-10, and upregulated the expression of Arg-1, spermidine, and ODC. However, after depleting polyamines, the beneficial effects of EA on alleviating intestinal tissue damage and modulating macrophage polarization disappeared. Conclusion: The mechanism underlying the alleviation of intestinal injury associated with CLP-induced sepsis by EA involves with the promotion of M2-type macrophage polarization mediated by spermidine expression.


Assuntos
Modelos Animais de Doenças , Eletroacupuntura , Macrófagos , Poliaminas , Sepse , Animais , Sepse/terapia , Sepse/metabolismo , Sepse/imunologia , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Eletroacupuntura/métodos , Poliaminas/metabolismo , Masculino , Ativação de Macrófagos , Intestinos/patologia , Intestinos/imunologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 319-326, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710516

RESUMO

Objective To investigate the impact of the cannabinoid receptor agonist arachidonyl-2'-chloroethylamide (ACEA) on cognitive function in mice with sepsis-associated encephalopathy (SAE). Methods C57BL/6 mice were randomly divided into artificial cerebrospinal fluid (ACSF) and lipopolysaccharide (LPS) groups. The SAE model was established by intraventricular injection of LPS. The severity of sepsis in mice was assessed by sepsis severity score (MSS) and body mass changes. Behavioral paradigms were used to evaluate motor ability (open field test) and cognitive function (contextual fear conditioning test, Y-maze test). To evaluate the effects of ACEA intervention on SAE, mice were randomly assigned to ACSF group, ACEA intervention combined with ACSF group, LPS group, and ACEA intervention combined with LPS group. The dosage of ACEA intervention was 1.5 mg/kg. Real-time quantitative PCR was used to measure the mRNA expression levels of interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α) in mouse hippocampal tissues. Western blot analysis was used to assess the protein levels of IL-6 and TNF-α in the hippocampus. Nissl staining was performed to examine neuronal damage in the CA1 region of the mouse hippocampus. Behavioral paradigms were again employed to evaluate motor ability and cognitive function. Results Three days after intraventricular LPS injection, mice exhibited significant cognitive dysfunction, confirming SAE modeling. Compared to the control group, the LPS group showed significant increases in mRNA of inflammatory factors such as IL-6, TNF-α, and IL-1ß, together with significant increases in IL-6 and TNF-α protein levels in the hippocampus, a decrease in Nissl bodies in the CA1 region, and significant cognitive dysfunction. Compared to the LPS group, the ACEA intervention group showed a significant decrease in the mRNA of IL-6, TNF-α, and IL-1ß, a significant reduction in IL-6 and TNF-α protein levels, an increase in Nissl bodies, and improved cognitive function. Conclusion ACEA improves cognitive function in SAE mice by inhibiting the expression levels of inflammatory factors IL-6 and TNF-α.


Assuntos
Ácidos Araquidônicos , Camundongos Endogâmicos C57BL , Encefalopatia Associada a Sepse , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Camundongos , Masculino , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Lipopolissacarídeos/efeitos adversos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/agonistas , Cognição/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo
11.
Wiad Lek ; 77(3): 497-505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38691792

RESUMO

OBJECTIVE: Aim: The aim of this research is to clarify the potential effect of CDDO-EA against experimentally sepsis induced lung injury in mice. PATIENTS AND METHODS: Materials and Methods: Mice have divided into four groups: Sham group CLP group, Vehicle-treatment group, CDDO-EA-treated group: mice in this group received CDDO-EA 2mg/kg intraperitoneally, 1hr before CLP, then the animals were sacrificed 24hr after CLP. After exsAngpuinations, tissue samples of lung were collected, followed by markers measurement including, TNF-α, IL-1ß, VEGF, MPO, caspase11, Angp-1and Angp-2 by ELISA, gene expression of TIE2 and VE-cadherin by qRT-PCR, in addition to histopathological study. RESULTS: Results: A significant elevation (p<0.05) in TNF-α, IL-1ß, MPO, ANGP-2, VEGF, CASPASE 11 in CLP and vehicle groups when compared with sham group. CDDO-EA group showed significantly lower levels p<0.05, level of ANGP-1 was significantly lower p<0.05 in the CLP and vehicle groups as compared with the sham group. Quantitative real-time PCR demonstrated a significant decrement in mRNA expression of TIE2&ve-cadherin genes p<0.05 in sepsis & vehicle. CONCLUSION: Conclusions: CDDO-EA has lung protective effects due to its anti-inflammatory and antiAngpiogenic activity, additionally, CDDO-EA showes a lung protective effect as they affect tissue mRNA expression of TIE2 and cadherin gene. Furthermore, CDDO-EA attenuate the histopathological changes that occur during polymicrobial sepsis thereby lung protection effect.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Endotoxemia , Sepse , Animais , Camundongos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Endotoxemia/metabolismo , Sepse/complicações , Sepse/metabolismo , Masculino , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Interleucina-1beta/metabolismo
12.
Immun Inflamm Dis ; 12(5): e1229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775678

RESUMO

BACKGROUND: Dioscin has many pharmacological effects; however, its role in sepsis-induced cardiomyopathy (SIC) is unknown. Accordingly, we concentrate on elucidating the mechanism of Dioscin in SIC rat model. METHODS: The SIC rat and H9c2 cell models were established by lipopolysaccharide (LPS) induction. The heart rate (HR), left ventricle ejection fraction (LVEF), mean arterial blood pressure (MAP), and heart weight index (HWI) of rats were evaluated. The myocardial tissue was observed by hematoxylin and eosin staining. 4-Hydroxy-2-nonenal (4-HNE) level in myocardial tissue was detected by immunohistochemistry. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities in serum samples of rats and H9c2 cells were determined by colorimetric assay. Bax, B-cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), phosphorylated-p65 (p-p65), and p65 levels in myocardial tissues of rats and treated H9c2 cells were measured by quantitative real-time PCR and Western blot. Viability and reactive oxygen species (ROS) accumulation of treated H9c2 cells were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and dihydroethidium staining assays. RESULTS: Dioscin decreased HR and HWI, increased LVEF and MAP, alleviated the myocardial tissue damage, and reduced 4-HNE level in SIC rats. Dioscin reversed LPS-induced reduction on SOD, CAT, GSH, and Bcl-2 levels, and increment on Bax and TLR4 levels in rats and H9c2 cells. Overexpressed TLR4 attenuated the effects of Dioscin on promoting viability, as well as dwindling TLR4, ROS and MyD88 levels, and p-p65/p65 value in LPS-induced H9c2 cells. CONCLUSION: Protective effects of Dioscin against LPS-induced SIC are achieved via regulation of TLR4/MyD88/p65 signal pathway.


Assuntos
Cardiomiopatias , Diosgenina , Fator 88 de Diferenciação Mieloide , Sepse , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Ratos , Fator 88 de Diferenciação Mieloide/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/prevenção & controle , Linhagem Celular , Ratos Sprague-Dawley , Fator de Transcrição RelA/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Lipopolissacarídeos , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos
13.
Sci Transl Med ; 16(744): eadg5768, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657024

RESUMO

Sepsis is a life-threatening disease caused by a dysregulated host response to infection, resulting in 11 million deaths globally each year. Vascular endothelial cell dysfunction results in the loss of endothelial barrier integrity, which contributes to sepsis-induced multiple organ failure and mortality. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their ephrin ligands play a key role in vascular endothelial barrier disruption but are currently not a therapeutic target in sepsis. Using a cecal ligation and puncture (CLP) mouse model of sepsis, we showed that prophylactic or therapeutic treatment of mice with EphA4-Fc, a decoy receptor and pan-ephrin inhibitor, resulted in improved survival and a reduction in vascular leak, lung injury, and endothelial cell dysfunction. EphA2-/- mice also exhibited reduced mortality and pathology after CLP compared with wild-type mice. Proteomics of plasma samples from mice with sepsis after CLP revealed dysregulation of a number of Eph/ephrins, including EphA2/ephrin A1. Administration of EphA4-Fc to cultured human endothelial cells pretreated with TNF-α or ephrin-A1 prevented loss of endothelial junction proteins, specifically VE-cadherin, with maintenance of endothelial barrier integrity. In children admitted to hospital with fever and suspected infection, we observed that changes in EphA2/ephrin A1 in serum samples correlated with endothelial and organ dysfunction. Targeting Eph/ephrin signaling may be a potential therapeutic strategy to reduce sepsis-induced endothelial dysfunction and mortality.


Assuntos
Células Endoteliais , Efrinas , Sepse , Transdução de Sinais , Animais , Sepse/complicações , Sepse/metabolismo , Sepse/patologia , Humanos , Células Endoteliais/metabolismo , Camundongos , Efrinas/metabolismo , Camundongos Endogâmicos C57BL , Receptores da Família Eph/metabolismo , Ceco/patologia , Masculino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Modelos Animais de Doenças
14.
Int Immunopharmacol ; 133: 112153, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678669

RESUMO

LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.


Assuntos
Flavonas , Lipopolissacarídeos , Fator de Transcrição STAT1 , Fator de Transcrição STAT3 , Proteína 3 Supressora da Sinalização de Citocinas , Verapamil , Animais , Verapamil/farmacologia , Fator de Transcrição STAT1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Flavonas/farmacologia , Flavonas/uso terapêutico , Camundongos , Fator de Transcrição STAT3/metabolismo , Masculino , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Células Cultivadas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Behav Brain Res ; 466: 114995, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38599251

RESUMO

Neurodegenerative disorders have a pathophysiology that heavily involves neuroinflammation. In this study, we used lipopolysaccharide (LPS) to create a model of cognitive impairment by inducing systemic and neuroinflammation in experimental animals. LPS was injected intraperitoneally at a dose of 0.5 mg/kg during the last seven days of the study. Adalimumab (ADA), a TNF-α inhibitor, was injected at a dose of 10 mg/kg a total of 3 times throughout the study. On the last two days of the experiment, 50 mg/kg of curcumin was administered orally as a positive control group. Open field (OF) and elevated plus maze tests (EPM) were used to measure anxiety-like behaviors. The tail suspension test (TST) was used to measure depression-like behaviors, while the novel object recognition test (NOR) was used to measure learning and memory activities. Blood and hippocampal TNF α and nitric oxide (NO) levels, hippocampal BDNF, CREB, and ACh levels, and AChE activity were measured by ELISA. LPS increased anxiety and depression-like behaviors while decreasing the activity of the learning-memory system. LPS exerted this effect by causing systemic and neuroinflammation, cholinergic dysfunction, and impaired BDNF release. ADA controlled LPS-induced behavioral changes and improved biochemical markers. ADA prevented cognitive impairment induced by LPS by inhibiting inflammation and regulating the release of BDNF and the cholinergic pathway.


Assuntos
Acetilcolina , Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Doenças Neuroinflamatórias , Óxido Nítrico , Sepse , Fator de Necrose Tumoral alfa , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Masculino , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Acetilcolina/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Adalimumab/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Modelos Animais de Doenças , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/etiologia , Homeostase/efeitos dos fármacos , Depressão/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Comportamento Animal/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral/farmacologia
16.
Aging (Albany NY) ; 16(8): 6937-6953, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643461

RESUMO

AIMS: This study aimed to evaluate the effects of VC on SIMI in rats. METHODS: In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1ß, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS: High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/ß in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE: Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.


Assuntos
Apoptose , Autofagia , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Sepse , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Miocárdio/metabolismo , Miocárdio/patologia
17.
Int J Immunopathol Pharmacol ; 38: 3946320241234736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652556

RESUMO

Sepsis, critical condition marked by severe organ dysfunction from uncontrolled infection, involves the endothelium significantly. Macrophages, through paracrine actions, play a vital role in sepsis, but their mechanisms in sepsis pathogenesis remain elusive. Objective: We aimed to explore how macrophage-derived exosomes with low miR-141 expression promote pyroptosis in endothelial cells (ECs). Exosomes from THP-1 cell supernatant were isolated and characterized. The effects of miR-141 mimic/inhibitor on apoptosis, proliferation, and invasion of Human Umbilical Vein Endothelial Cells (HUVECs) were assessed using flow cytometry, CCK-8, and transwell assays. Key pyroptosis-related proteins, including caspase-1, IL-18, IL-1ß, NLR Family Pyrin Domain Containing 3 (NLRP3), ASC, and cleaved-GSDMD, were analyzed via Western blot. The interaction between miR-141 and NLRP3 was studied using RNAhybrid v2.2 and dual-Luciferase reporter assays. The mRNA and protein level of NLRP3 after exosomal miR-141 inhibitor treatment was detected by qPCR and Western blot, respectively. Exosomes were successfully isolated. miR-141 mimic reduced cell death and pyroptosis-related protein expression in HUVECs, while the inhibitor had opposite effects, increasing cell death, and enhancing pyroptosis protein expression. Additionally, macrophage-derived exosomal miR-141 inhibitor increased cell death and pyroptosis-related proteins in HUVECs. miR-141 inhibits NLRP3 transcription. Macrophages facilitate sepsis progression by secreting miR-141 decreased exosomes to activate NLRP3-mediated pyroptosis in ECs, which could be a potentially valuable target of sepsis therapy.


Assuntos
Exossomos , Células Endoteliais da Veia Umbilical Humana , Macrófagos , MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Sepse , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Humanos , Exossomos/metabolismo , Macrófagos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Sepse/metabolismo , Sepse/patologia , Células THP-1 , Progressão da Doença , Animais , Camundongos
18.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673868

RESUMO

This study aimed to investigate the preventive effects of the total polyphenols from Nymphaea candida (NCTP) on LPS-induced septic acute lung injury (ALI) in mice and its mechanisms. NCTP could significantly ameliorate LPS-induced lung tissue pathological injury in mice as well as lung wet/dry ratio and MPO activities (p < 0.05). NCTP could significantly decrease the blood leukocyte, neutrophil, monocyte, basophil, and eosinophil amounts and LPS contents in ALI mice compared with the model group (p < 0.05), improving lymphocyte amounts (p < 0.05). Moreover, compared with the model group, NCTP could decrease lung tissue TNF-α, IL-6, and IL-1ß levels (p < 0.05) and downregulate the protein expression of TLR4, MyD88, TRAF6, IKKß, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, NLRP3, ASC, and Caspase1 in lung tissues (p < 0.05). Furthermore, NCTP could inhibit ileum histopathological injuries, restoring the ileum tight junctions by increasing the expression of ZO-1 and occludin. Simultaneously, NCTP could reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Clostridiales and Lachnospiraceae, and enhance the content of SCFAs (acetic acid, propionic acid, and butyric acid) in feces. These results suggested that NCTP has preventive effects on septic ALI, and its mechanism is related to the regulation of gut microbiota, SCFA metabolism, and the TLR-4/NF-κB and NLRP3 pathways.


Assuntos
Lesão Pulmonar Aguda , Microbioma Gastrointestinal , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Polifenóis , Sepse , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Polifenóis/farmacologia , Sepse/complicações , Sepse/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Lipopolissacarídeos
19.
Front Immunol ; 15: 1368099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665923

RESUMO

Early increase in the level of endothelial progenitor cells (EPCs) in the systemic circulation occurs in patients with septic infection/sepsis. The significance and underlying mechanisms of this response remain unclear. This study investigated the bone marrow EPC response in adult mice with septic infection induced by intravenous injection (i.v.) of Escherichia coli. For in vitro experiments, sorted marrow stem/progenitor cells (SPCs) including lineage(lin)-stem cell factor receptor (c-kit)+stem cell antigen-1 (Sca-1)-, lin-c-kit+, and lin- cells were cultured with or without lipopolysaccharides (LPSs) and recombinant murine vascular endothelial growth factor (VEGF) in the absence and presence of anti-Sca-1 crosslinking antibodies. In a separate set of experiments, marrow lin-c-kit+ cells from green fluorescence protein (GFP)+ mice, i.v. challenged with heat-inactivated E. coli or saline for 24 h, were subcutaneously implanted in Matrigel plugs for 5 weeks. Marrow lin-c-kit+ cells from Sca-1 knockout (KO) mice challenged with heat-inactivated E. coli for 24 h were cultured in the Matrigel medium for 8 weeks. The marrow pool of EPCs bearing the lin-c-kit+Sca-1+VEGF receptor 2 (VEGFR2)+ (LKS VEGFR2+) and LKS CD133+VEGFR2+ surface markers expanded rapidly following septic infection, which was supported by both proliferative activation and phenotypic conversion of marrow stem/progenitor cells. Increase in marrow EPCs and their reprogramming for enhancing angiogenic activity correlated with cell-marked upregulation of Sca-1 expression. Sca-1 was coupled with Ras-related C3 botulinum toxin substrate 2 (Rac2) in signaling the marrow EPC response. Septic infection caused a substantial increase in plasma levels of IFN-γ, VEGF, G-CSF, and SDF-1. The early increase in circulating EPCs was accompanied by their active homing and incorporation into pulmonary microvasculature. These results demonstrate that the marrow EPC response is a critical component of the host defense system. Sca-1 signaling plays a pivotal role in the regulation of EPC response in mice with septic infection.


Assuntos
Células Progenitoras Endoteliais , Proteínas de Membrana , Sepse , Animais , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/imunologia , Sepse/imunologia , Sepse/metabolismo , Camundongos , Camundongos Knockout , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos Ly/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/imunologia , Células Cultivadas , Masculino
20.
Sci Rep ; 14(1): 7829, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570550

RESUMO

The immunotropic effects of aldosterone might play a role in COVID-19, as SARS-CoV-2 reportedly uses angiotensin-converting enzyme 2 receptors as an entry point into cells. Aldosterone function is closely linked to its action on mineralocorticoid receptors in kidneys; it increases the renal retention of sodium and the excretion of potassium, which increases blood pressure. Despite the large number of studies examining the effect of Ang-II and its blockers on the course of COVID-19 infection, there is still uncertainty about the role of aldosterone. The aim of the study was to assess the correlation of aldosterone, urea, creatinine, C-reactive protein (CRP), and procalcitonin (PCT) levels with 28 days of mortality in patients treated for COVID19 in an intensive care unit (ICU). This cross-selection study involved 115 adult patients who were divided into two groups: those who died within a 28-day period (n = 82) and those who survived (n = 33). The correlation of aldosterone, urea, creatinine, C-reactive protein (CRP), and procalcitonin (PCT) levels with 28 days of mortality in patients treated for COVID-19 were performed. The patients' age, sex, scores from the APACHE II, SAPS II, and SOFA scales and comorbidities like HA, IHD and DM were also analyzed. Remarkably, the individuals who survived for 28 days were of significantly lower mean age and achieved notably lower scores on the APACHE II, SAPS II, and SOFA assessment scales. Statistically significantly higher CRP levels were observed on days 3, 5, and 7 in individuals who survived for 28 days. Creatinine levels in the same group were also statistically significantly lower on days 1, 3, and 5 than those of individuals who died within 28 days. The investigation employed both univariate and multivariate Cox proportional hazard regression models to explore factors related to mortality. In the univariate analysis, variables with a p value of less than 0.50 were included in the multivariate model. Age, APACHE II, SAPS II, and SOFA demonstrated significance in univariate analysis and were considered to be associated with mortality. The outcomes of the multivariate analysis indicated that age (HR = 1.03, p = 0.033) served as a robust predictor of mortality in the entire study population. In conclusion the plasma aldosterone level is not associated with ICU mortality in patients with COVID-19. Other factors, including the patient's age, creatinine or CRP contribute to the severity and prognosis of the disease. This study was retrospectively registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) with registration no. ACTRN12621001300864 (27/09/2021: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382563&isReview=true ).


Assuntos
COVID-19 , Sepse , Adulto , Humanos , Aldosterona , Pró-Calcitonina , Proteína C-Reativa , Creatinina , Sepse/metabolismo , Curva ROC , SARS-CoV-2 , Austrália , Unidades de Terapia Intensiva , Prognóstico , Morte , Ureia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA