RESUMO
BACKGROUND: Organellar genomes have become increasingly essential for studying genetic diversity, phylogenetics, and evolutionary histories of seaweeds. The order Dictyotales (Dictyotophycidae), a highly diverse lineage within the Phaeophyceae, is long-term characterized by a scarcity of organellar genome datasets compared to orders of the brown algal crown radiation (Fucophycidae). RESULTS: We sequenced the organellar genomes of Padina usoehtunii, a representative of the order Dictyotales, to investigate the structural and evolutionary differences by comparing to five other major brown algal orders. Our results confirmed previously reported findings that the rate of structural rearrangements in chloroplast genomes is higher than that in mitochondria, whereas mitochondrial sequences exhibited a higher substitution rate compared to chloroplasts. Such evolutionary patterns contrast with land plants and green algae. The expansion and contraction of the inverted repeat (IR) region in the chloroplast correlated with the changes in the number of boundary genes. Specifically, the size of the IR region influenced the position of the boundary gene rpl21, with complete rpl21 genes found within the IR region in Dictyotales, Sphacelariales and Ectocarpales, while the rpl21 genes in Desmarestiales, Fucales, and Laminariales span both the IR and short single copy (SSC) regions. The absence of the rbcR gene in the Dictyotales may indicate an endosymbiotic transfer from the chloroplast to the nuclear genome. Inversion of the SSC region occurred at least twice in brown algae. Once in a lineage only represented by the Ectocarpales in the present study and once in a lineage only represented by the Fucales. Photosystem genes in the chloroplasts experienced the strongest signature of purifying selection, while ribosomal protein genes in both chloroplasts and mitochondria underwent a potential weak purifying selection. CONCLUSIONS: Variations in chloroplast genome structure among different brown algal orders are evolutionarily linked to their phylogenetic positions in the Phaeophyceae tree. Chloroplast genomes harbor more structural rearrangements than the mitochondria, despite mitochondrial genes exhibiting faster mutation rates. The position and the change in the number of boundary genes likely shaped the IR regions in the chloroplast, and the produced structural variability is important mechanistically to create gene diversity in brown algal chloroplast.
Assuntos
Evolução Molecular , Genoma de Cloroplastos , Phaeophyceae , Filogenia , Phaeophyceae/genética , Genoma Mitocondrial , Sequências Repetidas Invertidas/genética , Cloroplastos/genéticaRESUMO
The chloroplast genomes of most plants and algae contain a large inverted repeat (IR) region that separates two single-copy regions and harbours the ribosomal RNA operon. We have addressed the functional importance of the IR region by removing an entire copy of the 25.3-kb IR from the tobacco plastid genome. Using plastid transformation and subsequent selectable marker gene elimination, we precisely excised the IR, thus generating plants with a substantially reduced plastid genome size. We show that the lack of the IR results in a mildly reduced plastid ribosome number, suggesting a gene dosage benefit from the duplicated presence of the ribosomal RNA operon. Moreover, the IR deletion plants contain an increased number of plastid genomes, suggesting that genome copy number is regulated by measuring total plastid DNA content rather than by counting genomes. Together, our findings (1) demonstrate that the IR can enhance the translation capacity of the plastid, (2) reveal the relationship between genome size and genome copy number, and (3) provide a simplified plastid genome structure that will facilitate future synthetic biology applications.
Assuntos
Dosagem de Genes , Genomas de Plastídeos , Sequências Repetidas Invertidas , Nicotiana , Nicotiana/genética , Sequências Repetidas Invertidas/genética , Plastídeos/genética , Tamanho do Genoma , Variações do Número de Cópias de DNA , Genoma de PlantaRESUMO
In the absence of the scanning ribosomes that unwind mRNA coding sequences and 5'UTRs, mRNAs are likely to form secondary structures and intermolecular bridges. Intermolecular base pairing of non polysomal mRNAs is involved in stress granule (SG) assembly when the pool of mRNAs freed from ribosomes increases during cellular stress. Here, we unravel the structural mechanisms by which a major partner of dormant mRNAs, YB-1 (YBX1), unwinds mRNA secondary structures without ATP consumption by using its conserved cold-shock domain to destabilize RNA stem/loops and its unstructured C-terminal domain to secure RNA unwinding. At endogenous levels, YB-1 facilitates SG disassembly during arsenite stress recovery. In addition, overexpression of wild-type YB-1 and to a lesser extent unwinding-defective mutants inhibit SG assembly in HeLa cells. Through its mRNA-unwinding activity, YB-1 may thus inhibit SG assembly in cancer cells and package dormant mRNA in an unfolded state, thus preparing mRNAs for translation initiation.
Assuntos
Sequências Repetidas Invertidas/genética , Iniciação Traducional da Cadeia Peptídica/genética , RNA Mensageiro/genética , Grânulos de Estresse/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Trifosfato de Adenosina/metabolismo , Arsenitos/toxicidade , Pareamento de Bases/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Ribossomos/metabolismoRESUMO
Parvoviruses package a linear single-stranded DNA genome with hairpin structures at both ends. It has been thought that terminal hairpin sequences are indispensable for viral DNA replication. Here, we provide evidence that the hairpin-deleted duplex genomes of human bocavirus 1 (HBoV1) replicate in human embryonic kidney 293 (HEK293) cells. We propose an alternative model for HBoV1 DNA replication in which the leading strand can initiate strand displacement without hairpin transfer. The transfection of the HBoV1 duplex genomes that retain a minimal replication origin at the right end (OriR) but with extensive deletions in the right-end hairpin (REH) generated viruses in HEK293 cells at a level 10 to 20 times lower than that of the wild-type (WT) duplex genome. Importantly, these viruses that have a genome with various deletions after the OriR but not the one retaining only the OriR replicated in polarized human airway epithelia. We discovered that the 18-nucleotide (nt) sequence (nt 5403 to 5420) beyond the OriR was sufficient to confer virus replication in polarized human airway epithelia, although its progeny virus production was â¼5 times lower than that of the WT virus. Thus, our study demonstrates that hairpin transfer-independent productive parvovirus DNA replication can occur. IMPORTANCE Hairpin transfer-independent parvovirus replication was modeled with human bocavirus 1 (HBoV1) duplex genomes whose 5' hairpin structure was ablated by various deletions. In HEK293 cells, these duplex viral genomes with ablated 5' hairpin sequence replicated efficiently and generated viruses that productively infected polarized human airway epithelium. Thus, for the first time, we reveal a previously unknown phenomenon that productive parvovirus DNA replication does not depend on the hairpin sequence at REH to initiate rolling-hairpin DNA replication. Notably, the intermediates of viral DNA replication, as revealed by two-dimensional electrophoresis, from transfections of hairpin sequence-deleted duplex genome and full-length genome in HEK293 cells as well as from virus infection of polarized human airway epithelia are similar. Thus, the establishment of the hairpin transfer-independent parvoviral DNA replication deepens our understanding of viral DNA replication and may have implications in the development of parvovirus-based viral vectors with alternative properties.
Assuntos
Replicação do DNA/genética , Bocavirus Humano/genética , Sequências Repetidas Invertidas/genética , DNA Viral/genética , Células Epiteliais/virologia , Genoma Viral/genética , Células HEK293 , Humanos , Parvovirus/genética , Origem de Replicação , Mucosa Respiratória/virologia , Proteínas não Estruturais Virais/genética , Viroses/genética , Replicação Viral/genéticaRESUMO
Cancer therapies that target epigenetic repressors can mediate their effects by activating retroelements within the human genome. Retroelement transcripts can form double-stranded RNA (dsRNA) that activates the MDA5 pattern recognition receptor1-6. This state of viral mimicry leads to loss of cancer cell fitness and stimulates innate and adaptive immune responses7,8. However, the clinical efficacy of epigenetic therapies has been limited. To find targets that would synergize with the viral mimicry response, we sought to identify the immunogenic retroelements that are activated by epigenetic therapies. Here we show that intronic and intergenic SINE elements, specifically inverted-repeat Alus, are the major source of drug-induced immunogenic dsRNA. These inverted-repeat Alus are frequently located downstream of 'orphan' CpG islands9. In mammals, the ADAR1 enzyme targets and destabilizes inverted-repeat Alu dsRNA10, which prevents activation of the MDA5 receptor11. We found that ADAR1 establishes a negative-feedback loop, restricting the viral mimicry response to epigenetic therapy. Depletion of ADAR1 in patient-derived cancer cells potentiates the efficacy of epigenetic therapy, restraining tumour growth and reducing cancer initiation. Therefore, epigenetic therapies trigger viral mimicry by inducing a subset of inverted-repeats Alus, leading to an ADAR1 dependency. Our findings suggest that combining epigenetic therapies with ADAR1 inhibitors represents a promising strategy for cancer treatment.
Assuntos
Adenosina Desaminase/metabolismo , Elementos Alu/efeitos dos fármacos , Elementos Alu/genética , Decitabina/farmacologia , Decitabina/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos , Adenosina Desaminase/deficiência , Elementos Alu/imunologia , Animais , Linhagem Celular Tumoral , Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/genética , DNA Intergênico/efeitos dos fármacos , DNA Intergênico/genética , DNA Intergênico/imunologia , DNA-Citosina Metilases/antagonistas & inibidores , Retroalimentação Fisiológica , Humanos , Imunidade Inata/efeitos dos fármacos , Helicase IFIH1 Induzida por Interferon/metabolismo , Íntrons/efeitos dos fármacos , Íntrons/genética , Íntrons/imunologia , Sequências Repetidas Invertidas/efeitos dos fármacos , Sequências Repetidas Invertidas/genética , Sequências Repetidas Invertidas/imunologia , Masculino , Camundongos , Mimetismo Molecular/efeitos dos fármacos , Mimetismo Molecular/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , RNA de Cadeia Dupla/efeitos dos fármacos , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/imunologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Vírus/efeitos dos fármacos , Vírus/imunologiaRESUMO
Subcellular localizations of RNAs can be imaged in vivo with genetically encoded reporters consisting of a sequence-specific RNA-binding protein (RBP) fused to a fluorescent protein. Several such reporter systems have been described based on RBPs that recognize RNA stem-loops. Here we describe RNA tagging for imaging with an inactive mutant of the bacterial endonuclease Csy4, which has a significantly higher affinity for its cognate stem-loop than alternative systems. This property allows for sensitive imaging with only few tandem copies of the target stem-loop inserted into the RNA of interest.
Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Endorribonucleases/genética , Fungos/genética , Genes Reporter/genética , Microscopia Confocal/métodos , Plantas/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Clonagem Molecular , Endorribonucleases/metabolismo , Fungos/metabolismo , Expressão Gênica/genética , Sequências Repetidas Invertidas/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Neurospora crassa/genética , Neurospora crassa/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas/metabolismo , Plantas/virologia , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Transformação GenéticaRESUMO
Many microRNAs (miRNAs) are generated from primary transcripts containing multiple clustered stem-loop structures that are thought to be recognized and cleaved by the Microprocessor complex as independent units. Here, we uncover an unexpected mode of processing of the bicistronic miR-15a-16-1 cluster. We find that the primary miR-15a stem-loop is not processed on its own but that the presence of the neighboring primary miR-16-1 stem-loop on the same transcript can compensate for this deficiency in cis. Using a CRISPR/Cas9 screen, we identify SAFB2 (scaffold attachment factor B2) as an essential co-factor in this miR-16-1-assisted pri-miR-15 cleavage and describe SAFB2 as an accessory protein of the Microprocessor. Notably, SAFB2-mediated cleavage expands to other clustered pri-miRNAs, indicating a general mechanism. Together, our study reveals an unrecognized function of SAFB2 in miRNA processing and suggests a scenario in which SAFB2 enables the binding and processing of suboptimal Microprocessor substrates in clustered primary miRNA transcripts.
Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , MicroRNAs/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Sequências Repetidas Invertidas/genética , Sequências Repetidas Invertidas/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , MicroRNAs/genética , Proteínas Associadas à Matriz Nuclear/genética , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Estrogênio/genéticaRESUMO
MicroRNAs (miRNAs) are predicted to regulate the expression of >60% of mammalian genes and play fundamental roles in most biological processes. Deregulation of miRNA expression is a hallmark of most cancers and further investigation of mechanisms controlling miRNA biogenesis is needed. The double stranded RNA-binding protein, NF90 has been shown to act as a competitor of Microprocessor for a limited number of primary miRNAs (pri-miRNAs). Here, we show that NF90 has a more widespread effect on pri-miRNA biogenesis than previously thought. Genome-wide approaches revealed that NF90 is associated with the stem region of 38 pri-miRNAs, in a manner that is largely exclusive of Microprocessor. Following loss of NF90, 22 NF90-bound pri-miRNAs showed increased abundance of mature miRNA products. NF90-targeted pri-miRNAs are highly stable, having a lower free energy and fewer mismatches compared to all pri-miRNAs. Mutations leading to less stable structures reduced NF90 binding while increasing pri-miRNA stability led to acquisition of NF90 association, as determined by RNA electrophoretic mobility shift assay (EMSA). NF90-bound and downregulated pri-miRNAs are embedded in introns of host genes and expression of several host genes is concomitantly reduced. These data suggest that NF90 controls the processing of a subset of highly stable, intronic miRNAs.
Assuntos
Sequências Repetidas Invertidas/genética , MicroRNAs/genética , Neoplasias/genética , Proteínas do Fator Nuclear 90/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , MicroRNAs/biossíntese , Proteínas do Fator Nuclear 90/antagonistas & inibidores , Processamento Pós-Transcricional do RNA/genéticaRESUMO
The conflicts exist between the phylogeny of Campanulaceae based on nuclear ITS sequence and plastid markers, particularly in the subdivision of Cyanantheae (Campanulaceae). Besides, various and complicated plastid genome structures can be found in species of the Campanulaceae. However, limited availability of genomic information largely hinders the studies of molecular evolution and phylogeny of Campanulaceae. We reported the complete plastid genomes of three Cyanantheae species, compared them to eight published Campanulaceae plastomes, and shed light on a deeper understanding of the applicability of plastomes. We found that there were obvious differences among gene order, GC content, gene compositions and IR junctions of LSC/IRa. Almost all protein-coding genes and amino acid sequences showed obvious codon preferences. We identified 14 genes with highly positively selected sites and branch-site model displayed 96 sites under potentially positive selection on the three lineages of phylogenetic tree. Phylogenetic analyses showed that Cyananthus was more closely related to Codonopsis compared with Cyclocodon and also clearly illustrated the relationship among the Cyanantheae species. We also found six coding regions having high nucleotide divergence value. Hotpot regions were considered to be useful molecular markers for resolving phylogenetic relationships and species authentication of Campanulaceae.
Assuntos
Campanulaceae/classificação , Campanulaceae/genética , Genomas de Plastídeos/genética , Filogenia , Códon de Terminação/genética , Sequências Repetidas Invertidas/genética , Repetições de Microssatélites/genética , Fases de Leitura Aberta/genética , Seleção GenéticaRESUMO
An efficient and new electrochemical biosensor for detection of DNA damage, induced by the interaction of the hybrid anti-cancer compound (7ESTAC01) with DNA, was studied by differential pulse voltammetry (DPV). The biosensor consists of a Stem-Loop DNA (SL-DNA) probe covalently attached to the gold electrode (GE) surface that hybridizes to a complementary DNA strand (cDNA) to form a double-stranded DNA (dsDNA). The interaction and DNA damage induced by 7ESTAC01 was electrochemically studied based on the oxidation signals of the electroactive nucleic acids on the surface of the GE by DPV. As a result, the SL-DNA/GE and dsDNA/GE were tested with the reduced 7ESTAC01, showing the voltammetric signal of guanine and adenine, increase in the presence of 7ESTAC01. Under optimum conditions, the dsDNA/GE biosensor exhibited excellent DPV response in the presence of 7ESTAC01. The bonding interaction between 7ESTAC01 and calf thymus DNA (ctDNA) was confirmed by UV-Vis absorption spectroscopy, dynamic simulations (performed to investigate the DNA structure under physiological conditions), and molecular docking. Theoretical results showed the presence of hydrogen bonding and intercalation in the minor groove of DNA, involving hydrophobic interactions.
Assuntos
Antineoplásicos/química , Técnicas Biossensoriais , DNA/isolamento & purificação , Técnicas Eletroquímicas , Antineoplásicos/farmacologia , DNA/química , DNA/genética , Dano ao DNA/efeitos dos fármacos , DNA Complementar/química , DNA Complementar/genética , Ouro/química , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Sequências Repetidas Invertidas/genética , Simulação de Acoplamento Molecular , Oxirredução/efeitos dos fármacos , Raios UltravioletaRESUMO
Carnation ringspot virus (CRSV) is the prototype virus of the genus Dianthovirus. Full-length cDNAs of CRSV strainsPV-0097 and PV-21 were constructed and the infectivity of in vitro transcripts was analyzed. Infectivity of PV-0097 and PV-21 to several plants was markedly higher than that of 1.30, a previously reported infectious CRSV clone. Overall RNA sequences of these viruses were similar, but PV-0097 and PV-21 contained additional nucleotides at the 5' end of RNA1. Stem-loop structures were predicted in the 5'-terminal region of PV-0097 and PV-21 RNA1 but not in 1.30 RNA1. Mutant CRSV 1.30 RNA1 that contains the terminal 4 nucleotides of PV-0097, predicted to fold a 5'-terminal stem-loop structure, recovered higher level accumulation of viral RNAs in the inoculated protoplasts and leaves of Nicotiana benthamiana. These results suggest that the 5'-terminal stem-loop structure of CRSV RNA1 plays an important role in efficient amplification of the virus.
Assuntos
Sequências Repetidas Invertidas/genética , RNA Viral/genética , Tombusviridae/genética , Replicação Viral/genética , DNA Complementar , Dianthus/virologia , Conformação de Ácido Nucleico , Protoplastos/virologia , Nicotiana/virologiaRESUMO
Because of essentiality and toxicity of iron in our body, iron metabolism is tightly regulated in cells. In mammalian cells, iron regulatory protein 1 and 2 (IRP1 and IRP2) are the central regulators of cellular iron metabolism. IRPs regulate iron metabolism by interacting with the RNA stem-loop structures, iron-responsive elements (IREs), found on the transcripts encoding proteins involved in iron metabolism only in iron depleted condition. It is also well-known that the ubiquitin system plays central roles in cellular iron regulation because both IRPs having the IRE binding activity are recognized and ubiquitinated by the SCFFBXL5 ubiquitin ligase in condition of iron-replete. FBXL5, which is a substrate recognition subunit of SCFFBXL5, senses iron availability via its hemerythrin-like domain. In this small article, current understanding of the roles of SCFFBXL5-mediated degradation of IRPs played in cellular iron metabolism is discussed.
Assuntos
Proteínas F-Box/genética , Ferro/metabolismo , RNA/genética , Proteínas Ligases SKP Culina F-Box/genética , Complexos Ubiquitina-Proteína Ligase/genética , Animais , Proteínas F-Box/metabolismo , Humanos , Sequências Repetidas Invertidas/genética , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , RNA/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismoRESUMO
Hepatitis B virus genotype G possesses a 36-nucleotide (nt) insertion at the 5' end of core gene, adding 12 residues to core protein. The insertion markedly increased core protein level irrespective of viral genotype, with the effect reproducible using CMV-core gene construct. Here we used such expression constructs and transient transfection experiments in Huh7 cells to identify the structural bases. The insertion is predicted to create a stem-loop structure 14nt downstream of core gene AUG. A +â¯1 or +â¯2 frameshift into the 36nt mitigated enhancement of core protein level. Point mutations to disrupt or restore the stem-loop had opposite effects on core protein expression. Shifting the translation initiation site downstream or further upstream of the stem-loop rendered it inhibitory or no longer stimulatory of core protein expression. Therefore, both the reading frame and a properly positioned stem-loop structure contribute to marked increase in core protein expression by the 36-nt insertion.
Assuntos
Regulação Viral da Expressão Gênica/genética , Vírus da Hepatite B/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas/genética , RNA Viral/química , Proteínas do Core Viral/biossíntese , Proteínas do Core Viral/química , Sequência de Aminoácidos/genética , Códon de Iniciação , Genótipo , Humanos , Sequências Repetidas Invertidas/genética , Mutação , Fases de Leitura Aberta/genética , RNA Viral/genética , Proteínas do Core Viral/genética , Vírion/metabolismo , Replicação ViralRESUMO
BACKGROUND: Plant transformation via Agrobacterium tumefaciens is characterized by integration of commonly low number of T-DNAs at random positions in the genome. When integrated into an active gene region, promoterless reporter genes placed near the T-DNA border sequence are frequently transcribed and even translated to reporter proteins, which is the principle of promoter- and gene-trap lines. RESULTS: Here we show that even internal promotorless regions of T-DNAs are often transcribed. Such spontaneous transcription was observed in the majority of independently transformed tobacco BY-2 lines (over 65%) and it could effectively induce silencing if an inverted repeat was present within the T-DNA. We documented that the transcription often occurred in both directions. It was not directly connected with any regulatory elements present within the T-DNAs and at least some of the transcripts were initiated outside of the T-DNA. The likeliness of this read-through transcription seemed to increase in lines with higher T-DNA copy number. Splicing and presence of a polyA tail in the transcripts indicated involvement of Pol II, but surprisingly, the transcription was able to run across two transcription terminators present within the T-DNA. Such pervasive transcription was observed with three different T-DNAs in BY-2 cells and with lower frequency was also detected in Arabidopsis thaliana. CONCLUSIONS: Our results demonstrate unexpected pervasive read-through transcription of T-DNAs. We hypothesize that it was connected with a specific chromatin state of newly integrated DNA, possibly affected by the adjacent genomic region. Although this phenomenon can be easily overlooked, it can have significant consequences when working with highly sensitive systems like RNAi induction using an inverted repeat construct, so it should be generally considered when interpreting results obtained with the transgenic technology.
Assuntos
Agrobacterium tumefaciens/genética , Arabidopsis/genética , DNA Bacteriano/genética , Nicotiana/genética , Transcrição Gênica , Linhagem Celular , Genes Reporter , Sequências Repetidas Invertidas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genéticaRESUMO
Double-stranded RNA (dsRNA) structures form triplexes and RNA-protein complexes through binding to single-stranded RNA (ssRNA) regions and proteins, respectively, for diverse biological functions. Hence, targeting dsRNAs through major-groove triplex formation is a promising strategy for the development of chemical probes and potential therapeutics. Short (e.g., 6-10 mer) chemically-modified Peptide Nucleic Acids (PNAs) have been developed that bind to dsRNAs sequence specifically at physiological conditions. For example, a PNA incorporating a modified base thio-pseudoisocytosine (L) has an enhanced recognition of a G-C pair in an RNA duplex through major-groove L·G-C base triple formation at physiological pH, with reduced pH dependence as observed for C+·G-C base triple formation. Currently, an unmodified T base is often incorporated into PNAs to recognize a Watson-Crick A-U pair through major-groove T·A-U base triple formation. A substitution of the 5-methyl group in T by hydrogen and halogen atoms (F, Cl, Br, and I) causes a decrease of the pKa of N3 nitrogen atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions. Here, we synthesized a series of PNAs incorporating uracil and halouracils, followed by binding studies by non-denaturing polyacrylamide gel electrophoresis, circular dichroism, and thermal melting. Our results suggest that replacing T with uracil and halouracils may enhance the recognition of an A-U pair by PNA·RNA2 triplex formation in a sequence-dependent manner, underscoring the importance of local stacking interactions. Incorporating bromouracils and chlorouracils into a PNA results in a significantly reduced pH dependence of triplex formation even for PNAs containing C bases, likely due to an upshift of the apparent pKa of N3 atoms of C bases. Thus, halogenation and other chemical modifications may be utilized to enhance hydrogen bonding of the adjacent base triples and thus triplex formation. Furthermore, our experimental and computational modelling data suggest that PNA·RNA2 triplexes may be stabilized by incorporating a BrUL step but not an LBrU step, in dsRNA-binding PNAs.
Assuntos
Pareamento de Bases/genética , Halogênios/química , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , RNA de Cadeia Dupla/síntese química , Uracila/análogos & derivados , Uracila/química , Bromouracila/química , Linhagem Celular Tumoral , Biologia Computacional/métodos , Simulação por Computador , Halogenação , Células HeLa , Humanos , Ligação de Hidrogênio , Sequências Repetidas Invertidas/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/químicaRESUMO
Once infected by viruses, cells can detect pathogen-associated molecular patterns (PAMPs) on viral nucleic acid by host pattern recognition receptors (PRRs) to initiate the antiviral response. Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failure in sows and respiratory diseases in pigs of different ages. To date, the sensing mechanism of PRRSV has not been elucidated. Here, we reported that the pseudoknot region residing in the 3' untranslated regions (UTR) of the PRRSV genome, which has been proposed to regulate RNA synthesis and virus replication, was sensed as nonself by retinoic acid-inducible gene I (RIG-I) and Toll-like receptor 3 (TLR3) and strongly induced type I interferons (IFNs) and interferon-stimulated genes (ISGs) in porcine alveolar macrophages (PAMs). The interaction between the two stem-loops inside the pseudoknot structure was sufficient for IFN induction, since disruption of the pseudoknot interaction powerfully dampened the IFN induction. Furthermore, transfection of the 3' UTR pseudoknot transcripts in PAMs inhibited PRRSV replication in vitro Importantly, the predicted similar structures of other arterivirus members, including equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV), also displayed strong IFN induction activities. Together, in this work we identified an innate recognition mechanism by which the PRRSV 3' UTR pseudoknot region served as PAMPs of arteriviruses and activated innate immune signaling to produce IFNs that inhibit virus replication. All of these results provide novel insights into innate immune recognition during virus infection.IMPORTANCE PRRS is the most common viral disease in the pork industry. It is caused by PRRSV, a positive single-stranded RNA virus, whose infection often leads to persistent infection. To date, it is not yet clear how PRRSV is recognized by the host and what is the exact mechanism of IFN induction. Here, we investigated the nature of PAMPs on PRRSV and the associated PRRs. We found that the 3' UTR pseudoknot region of PRRSV, which has been proposed to regulate viral RNA synthesis, could act as PAMPs recognized by RIG-I and TLR3 to induce type I IFN production to suppress PRRSV infection. This report is the first detailed description of pattern recognition for PRRSV, which is important in understanding the antiviral response of arteriviruses, especially PRRSV, and extends our knowledge on virus recognition.
Assuntos
Proteína DEAD-box 58/genética , Moléculas com Motivos Associados a Patógenos/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Dobramento de RNA/genética , Receptor 3 Toll-Like/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Genoma Viral/genética , Helicase IFIH1 Induzida por Interferon/genética , Interferon-alfa/imunologia , Interferon beta/imunologia , Sequências Repetidas Invertidas/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Interferência de RNA , RNA Interferente Pequeno/genética , Sus scrofa , Suínos , Doenças dos Suínos/virologia , Receptor 7 Toll-Like/genéticaRESUMO
FOXA1 is a transcription factor capable to bind silenced chromatin to direct context-dependent cell fate conversion. Here, we demonstrate that a compact palindromic DNA element (termed 'DIV' for its diverging half-sites) induces the homodimerization of FOXA1 with strongly positive cooperativity. Alternative structural models are consistent with either an indirect DNA-mediated cooperativity or a direct protein-protein interaction. The cooperative homodimer formation is strictly constrained by precise half-site spacing. Re-analysis of chromatin immunoprecipitation sequencing data indicates that the DIV is effectively targeted by FOXA1 in the context of chromatin. Reporter assays show that FOXA1-dependent transcriptional activity declines when homodimeric binding is disrupted. In response to phosphatidylinositol-3 kinase inhibition DIV sites pre-bound by FOXA1 such as at the PVT1/MYC locus exhibit a strong increase in accessibility suggesting a role of the DIV configuration in the chromatin closed-open dynamics. Moreover, several disease-associated single nucleotide polymorphisms map to DIV elements and show allelic differences in FOXA1 homodimerization, reporter gene expression and are annotated as quantitative trait loci. This includes the rs541455835 variant at the MAPT locus encoding the Tau protein associated with Parkinson's disease. Collectively, the DIV guides chromatin engagement and regulation by FOXA1 and its perturbation could be linked to disease etiologies.
Assuntos
DNA/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Sequências Repetidas Invertidas/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Dimerização , Células HCT116 , Humanos , Células MCF-7 , Inibidores de Fosfoinositídeo-3 Quinase , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Tiazóis/farmacologiaRESUMO
Translational readthrough of the stop codon of the capsid protein (CP) open reading frame (ORF) is used by members of the Luteoviridae to produce their minor capsid protein as a readthrough protein (RTP). The elements regulating RTP expression are not well understood, but they involve long-distance interactions between RNA domains. Using high-resolution mass spectrometry, glutamine and tyrosine were identified as the primary amino acids inserted at the stop codon of Potato leafroll virus (PLRV) CP ORF. We characterized the contributions of a cytidine-rich domain immediately downstream and a branched stem-loop structure 600 to 700 nucleotides downstream of the CP stop codon. Mutations predicted to disrupt and restore the base of the distal stem-loop structure prevented and restored stop codon readthrough. Motifs in the downstream readthrough element (DRTE) are predicted to base pair to a site within 27 nucleotides (nt) of the CP ORF stop codon. Consistent with a requirement for this base pairing, the DRTE of Cereal yellow dwarf virus was not compatible with the stop codon-proximal element of PLRV in facilitating readthrough. Moreover, deletion of the complementary tract of bases from the stop codon-proximal region or the DRTE of PLRV prevented readthrough. In contrast, the distance and sequence composition between the two domains was flexible. Mutants deficient in RTP translation moved long distances in plants, but fewer infection foci developed in systemically infected leaves. Selective 2'-hydroxyl acylation and primer extension (SHAPE) probing to determine the secondary structure of the mutant DRTEs revealed that the functional mutants were more likely to have bases accessible for long-distance base pairing than the nonfunctional mutants. This study reveals a heretofore unknown combination of RNA structure and sequence that reduces stop codon efficiency, allowing translation of a key viral protein.IMPORTANCE Programmed stop codon readthrough is used by many animal and plant viruses to produce key viral proteins. Moreover, such "leaky" stop codons are used in host mRNAs or can arise from mutations that cause genetic disease. Thus, it is important to understand the mechanism(s) of stop codon readthrough. Here, we shed light on the mechanism of readthrough of the stop codon of the coat protein ORFs of viruses in the Luteoviridae by identifying the amino acids inserted at the stop codon and RNA structures that facilitate this "leakiness" of the stop codon. Members of the Luteoviridae encode a C-terminal extension to the capsid protein known as the readthrough protein (RTP). We characterized two RNA domains in Potato leafroll virus (PLRV), located 600 to 700 nucleotides apart, that are essential for efficient RTP translation. We further determined that the PLRV readthrough process involves both local structures and long-range RNA-RNA interactions. Genetic manipulation of the RNA structure altered the ability of PLRV to translate RTP and systemically infect the plant. This demonstrates that plant virus RNA contains multiple layers of information beyond the primary sequence and extends our understanding of stop codon readthrough. Strategic targets that can be exploited to disrupt the virus life cycle and reduce its ability to move within and between plant hosts were revealed.
Assuntos
Proteínas do Capsídeo/biossíntese , Códon de Terminação/genética , Sequências Repetidas Invertidas/genética , Luteoviridae/genética , Conformação de Ácido Nucleico , RNA Viral/metabolismo , Sequência de Aminoácidos/genética , Sequência de Bases , Proteínas do Capsídeo/genética , Fases de Leitura Aberta/genética , Doenças das Plantas/virologia , Biossíntese de Proteínas/genética , Deleção de Sequência/genética , Solanum/virologia , Nicotiana/virologiaRESUMO
In mammalian cells, the transcription factor p53 plays a crucial role in transmitting DNA damage signals to maintain genome integrity. However, in plants, orthologous genes for p53 and checkpoint proteins are absent. Instead, the plant-specific transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) controls most of the genes induced by gamma irradiation and promotes DNA repair, cell cycle arrest, and stem cell death. To date, the genes directly controlled by SOG1 remain largely unknown, limiting the understanding of DNA damage signaling in plants. Here, we conducted a microarray analysis and chromatin immunoprecipitation (ChIP)-sequencing, and identified 146 Arabidopsis genes as direct targets of SOG1. By using ChIP-sequencing data, we extracted the palindromic motif [CTT(N)7 AAG] as a consensus SOG1-binding sequence, which mediates target gene induction in response to DNA damage. Furthermore, DNA damage-triggered phosphorylation of SOG1 is required for efficient binding to the SOG1-binding sequence. Comparison between SOG1 and p53 target genes showed that both transcription factors control genes responsible for cell cycle regulation, such as CDK inhibitors, and DNA repair, whereas SOG1 preferentially targets genes involved in homologous recombination. We also found that defense-related genes were enriched in the SOG1 target genes. Consistent with this finding, SOG1 is required for resistance against the hemi-biotrophic fungus Colletotrichum higginsianum, suggesting that SOG1 has a unique function in controlling the immune response.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Dano ao DNA/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Reparo do DNA/genética , Genes p53/genética , Sequências Repetidas Invertidas/genética , Análise de Sequência com Séries de Oligonucleotídeos , FosforilaçãoRESUMO
The construction of reliable sensors for adenosine triphosphate (ATP) detection gains increasing interest because of its important roles in various enzymatic activities and biological processes. Based on a cascaded, significant signal amplification approach by the integration of the aptazymes and catalytic hairpin assembly (CHA), we have developed a sensitive electrochemical sensor for the detection of ATP. The target ATP leads to the conformational change of the aptazyme sequences and their association with the hairpin substrates to form active aptazymes, in which the hairpin substrates are cyclically cleaved by the metal ion cofactors in buffer to release the enzymatic sequences that can also bind the hairpin substrates to generate active DNAzymes. The catalytic cleavage of the hairpin substrates in the aptazymes/DNAzymes thus results in the generation of a large number of intermediate sequences. Subsequently, these intermediate sequences trigger catalytic capture of many methylene blue-tagged signal sequences on the electrode surface through CHA, producing significantly amplified current response for sensitive detection of ATP at 0.6nM. Besides, the developed sensor can discriminate ATP from analogous interference molecules and be applied to human serum samples, making the sensor a useful addition to the arena for sensitive detection of small molecules.