Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 999
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(4): e1012027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598558

RESUMO

Although the length and constituting sequences for pericentromeric repeats are highly variable across eukaryotes, the presence of multiple pericentromeric repeats is one of the conserved features of the eukaryotic chromosomes. Pericentromeric heterochromatin is often misregulated in human diseases, with the expansion of pericentromeric repeats in human solid cancers. In this article, we have developed a mathematical model of the RNAi-dependent methylation of H3K9 in the pericentromeric region of fission yeast. Our model, which takes copy number as an explicit parameter, predicts that the pericentromere is silenced only if there are many copies of repeats. It becomes bistable or desilenced if the copy number of repeats is reduced. This suggests that the copy number of pericentromeric repeats alone can determine the fate of heterochromatin silencing in fission yeast. Through sensitivity analysis, we identified parameters that favor bistability and desilencing. Stochastic simulation shows that faster cell division and noise favor the desilenced state. These results show the unexpected role of pericentromeric repeat copy number in gene silencing and provide a quantitative basis for how the copy number allows or protects repetitive and unique parts of the genome from heterochromatin silencing, respectively.


Assuntos
Centrômero , Heterocromatina , Schizosaccharomyces , Heterocromatina/metabolismo , Heterocromatina/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Centrômero/metabolismo , Centrômero/genética , Modelos Genéticos , Biologia Computacional , Inativação Gênica , Sequências Repetitivas de Ácido Nucleico/genética , Humanos , Histonas/metabolismo , Histonas/genética
2.
Methods Cell Biol ; 182: 167-185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359975

RESUMO

Repeat and structure-prone DNA sequences comprise a large proportion of the human genome. The instability of these sequences has been implicated in a range of diseases, including cancers and neurodegenerative disorders. However, the mechanism of pathogenicity is poorly understood. As such, further studies on repetitive DNA are required. Cloning and maintaining repeat-containing substrates is challenging due to their inherent ability to form non-B DNA secondary structures which are refractory to DNA polymerases and prone to undergo rearrangements. Here, we describe an approach to clone and expand tandem-repeat DNA without interruptions, thereby allowing for its manipulation and subsequent investigation.


Assuntos
DNA , Sequências Repetitivas de Ácido Nucleico , Humanos , Sequência de Bases , Sequências Repetitivas de Ácido Nucleico/genética , DNA/genética , Clonagem Molecular
3.
J Mol Biol ; 436(1): 168205, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481156

RESUMO

Telomeres and their single stranded overhangs gradually shorten with successive cell divisions, as part of the natural aging process, but can be elongated by telomerase, a nucleoprotein complex which is activated in the majority of cancers. This prominent implication in cancer and aging has made the repetitive telomeric sequences (TTAGGG repeats) and the G-quadruplex structures that form in their overhangs the focus of intense research in the past several decades. However, until recently most in vitro efforts to understand the structure, stability, dynamics, and interactions of telomeric overhangs had been focused on short sequences that are not representative of longer sequences encountered in a physiological setting. In this review, we will provide a broad perspective about telomeres and associated factors, and introduce the agents and structural characteristics involved in organizing, maintaining, and protecting telomeric DNA. We will also present a summary of recent research performed on long telomeric sequences, nominally defined as those that can form two or more tandem G-quadruplexes, i.e., which contain eight or more TTAGGG repeats. Results of experimental studies using a broad array of experimental tools, in addition to recent computational efforts will be discussed, particularly in terms of their implications for the stability, folding topology, and compactness of the tandem G-quadruplexes that form in long telomeric overhangs.


Assuntos
DNA , Quadruplex G , Telomerase , Telômero , DNA/genética , DNA/química , Sequências Repetitivas de Ácido Nucleico/genética , Telomerase/genética , Telômero/genética , Telômero/metabolismo , Humanos , Animais
4.
Cells ; 11(16)2022 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-36010599

RESUMO

Repetitive sequences represent about half of the human genome. They are actively transcribed and play a role during development and in epigenetic regulation. The altered activity of repetitive sequences can lead to genomic instability and they can contribute to the establishment or the progression of degenerative diseases and cancer transformation. In this work, we analyzed the expression profiles of DNA repetitive sequences in the breast cancer specimens of the HMUCC cohort. Satellite expression is generally upregulated in breast cancers, with specific families upregulated per histotype: in HER2-enriched cancers, they are the human satellite II (HSATII), in luminal A and B, they are part of the ALR family and in triple-negative, they are part of SAR and GSAT families, together with a perturbation in the transcription from endogenous retroviruses and their LTR sequences. We report that the background expression of repetitive sequences in healthy tissues of cancer patients differs from the tissues of non-cancerous controls. To conclude, peculiar patterns of expression of repetitive sequences are reported in each specimen, especially in the case of transcripts arising from satellite repeats.


Assuntos
Neoplasias da Mama , Retrovirus Endógenos , Neoplasias da Mama/genética , Retrovirus Endógenos/genética , Epigênese Genética , Feminino , Genoma Humano , Humanos , Sequências Repetitivas de Ácido Nucleico/genética
5.
PLoS Comput Biol ; 18(1): e1009802, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073327

RESUMO

Long-read-only bacterial genome assemblies usually contain residual errors, most commonly homopolymer-length errors. Short-read polishing tools can use short reads to fix these errors, but most rely on short-read alignment which is unreliable in repeat regions. Errors in such regions are therefore challenging to fix and often remain after short-read polishing. Here we introduce Polypolish, a new short-read polisher which uses all-per-read alignments to repair errors in repeat sequences that other polishers cannot. Polypolish performed well in benchmarking tests using both simulated and real reads, and it almost never introduced errors during polishing. The best results were achieved by using Polypolish in combination with other short-read polishers.


Assuntos
Genoma Bacteriano/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , DNA Bacteriano/genética , Sequências Repetitivas de Ácido Nucleico/genética
6.
Gene ; 808: 145975, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592349

RESUMO

Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.


Assuntos
Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Neoplasias/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Instabilidade Genômica/genética , Genômica/métodos , Humanos , Neoplasias/fisiopatologia , Sequências Repetitivas de Ácido Nucleico/genética , Retroelementos/genética
7.
Cytogenet Genome Res ; 161(6-7): 285-296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34469893

RESUMO

Unique repetitive elements of the eukaryotic genome can be problematic for cellular DNA replication and transcription and pose a source of genomic instability. Human ribosomal DNA (rDNA) exists as repeating units clustered together on several chromosomes. Understanding the molecular mechanisms whereby rDNA interferes with normal genome homeostasis is the subject of this review. We discuss the instability of rDNA as a driver of senescence and the important roles of helicases to suppress its deleterious effects. The propensity of rDNA that is rich in guanine bases to form G-quadruplexes (G4) is discussed and evaluated in disease pathogenesis. Targeting G4 in the ribosomes and other chromosomal loci may represent a useful synthetic lethal approach to combating cancer.


Assuntos
DNA Ribossômico/genética , Quadruplex G , Genoma Humano/genética , Instabilidade Genômica , Neoplasias/genética , Sequências Repetitivas de Ácido Nucleico/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA/genética , DNA Ribossômico/química , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo
8.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34345914

RESUMO

Sperm histones represent an essential part of the paternally transmitted epigenome, but uncertainty exists about the role of those remaining in non-coding and repetitive DNA. We therefore analyzed the genome-wide distribution of the heterochromatic marker H4K20me3 in human sperm and somatic (K562) cells. To specify the function of sperm histones, we compared all H4K20me3-containing and -free loci in the sperm genome. Sperm and somatic cells possessed a very similar H4K20me3 distribution: H4K20me3 peaks occurred mostly in distal intergenic regions and repetitive gene clusters (in particular genes encoding odorant-binding factors and zinc-finger antiviral proteins). In both cell types, H4K20me3 peaks were enriched in LINEs, ERVs, satellite DNA and low complexity repeats. In contrast, H4K20me3-free nucleosomes occurred more frequently in genic regions (in particular promoters, exons, 5'-UTR and 3'-UTR) and were enriched in genes encoding developmental factors (in particular transcription activators and repressors). H4K20me3-free nucleosomes were also detected in substantial quantities in distal intergenic regions and were enriched in SINEs. Thus, evidence suggests that paternally transmitted histones may have a dual purpose: maintenance and regulation of heterochromatin and guidance towards transcription of euchromatin.


Assuntos
Histonas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Espermatozoides/fisiologia , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Linhagem Celular Tumoral , DNA/genética , Éxons/genética , Genoma/genética , Heterocromatina/genética , Humanos , Células K562 , Masculino , Nucleossomos/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
9.
Cytogenet Genome Res ; 161(3-4): 213-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34233333

RESUMO

The genera of the tribe Triticeae (family Poaceae), constituting many economically important plants with abundant genetic resources, carry genomes such as St, H, P, and Y. The genome symbol of Roegneria C. Koch (Triticeae) is StY. The St and Y genomes are crucial in Triticeae, and tetraploid StY species participate extensively in polyploid speciation. Characterization of St and Y nonhomologous chromosomes in StY-genome species could help understand variation in the chromosome structure and differentiation of StY-containing species. However, the high genetic affinity between St and Y genome and the deficiency of a complete set of StY nonhomologous probes limit the identification of St and Y genomes and variation of chromosome structures among Roegneria species. We aimed to identify St- and Y-enhanced repeat clusters and to study whether homoeologous chromosomes between St and Y genomes could be accurately identified due to high affinity. We employed comparative genome analyses to identify St- and Y-enhanced repeat clusters and generated a FISH-based karyotype of R. grandis (Keng), one of the taxonomically controversial StY species, for the first time. We explored 4 novel repeat clusters (StY_34, StY_107, StY_90, and StY_93), which could specifically identify individual St and Y nonhomologous chromosomes. The clusters StY_107 and StY_90 could identify St and Y addition/substitution chromosomes against common wheat genetic backgrounds. The chromosomes V_St, VII_St, I_Y, V_Y, and VII_Y displayed similar probe distribution patterns in the proximal region, indicating that the high affinity between St and Y genome might result from chromosome rearrangements or transposable element insertion among V_St/Y, VII_St/Y, and I_Y chromosomes during allopolyploidization. Our results can be used to employ FISH further to uncover the precise karyotype based on colinearity of Triticeae species by using the wheat karyotype as reference, to analyze diverse populations of the same species to understand the intraspecific structural changes, and to generate the karyotype of different StY-containing species to understand the interspecific chromosome variation.


Assuntos
Cromossomos de Plantas/genética , Elymus/genética , Genoma de Planta/genética , Hibridização in Situ Fluorescente/métodos , Evolução Molecular , Marcadores Genéticos/genética , Cariótipo , Região Organizadora do Nucléolo/genética , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética , Tetraploidia , Triticum/genética
10.
Nucleic Acids Res ; 49(14): 7839-7855, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34244785

RESUMO

Cancer and neurodegenerative diseases are caused by genetic and environmental factors. Expression of tumour suppressor genes is suppressed by mutations or epigenetic silencing, whereas for neurodegenerative disease-related genes, nucleic acid-based effects may be presented through loss of protein function due to erroneous protein sequences or gain of toxic function from extended repeat transcripts or toxic peptide production. These diseases are triggered by damaged genes and proteins due to lifestyle and exposure to radiation. Recent studies have indicated that transient, non-canonical structural changes in nucleic acids in response to the environment can regulate the expression of disease-related genes. Non-canonical structures are involved in many cellular functions, such as regulation of gene expression through transcription and translation, epigenetic regulation of chromatin, and DNA recombination. Transcripts generated from repeat sequences of neurodegenerative disease-related genes form non-canonical structures that are involved in protein transport and toxic aggregate formation. Intracellular phase separation promotes transcription and protein assembly, which are controlled by the nucleic acid structure and can influence cancer and neurodegenerative disease progression. These findings may aid in elucidating the underlying disease mechanisms. Here, we review the influence of non-canonical nucleic acid structures in disease-related genes on disease onset and progression.


Assuntos
Neoplasias/genética , Doenças Neurodegenerativas/genética , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Sequências Repetitivas de Ácido Nucleico/genética , Animais , Epigênese Genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo
11.
PLoS Genet ; 17(7): e1009660, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34270553

RESUMO

Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Plasmídeos/genética , Saccharomycetales/genética , Adenosina Trifosfatases/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Divisão Celular , Centrômero/metabolismo , Segregação de Cromossomos/genética , Cromossomos/genética , Replicação do DNA/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/metabolismo , Complexos Multiproteicos/metabolismo , Plasmídeos/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo , Telômero/metabolismo , Transativadores/genética
12.
Plant J ; 107(2): 511-524, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33960537

RESUMO

Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2-5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12-90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.


Assuntos
Endorreduplicação/genética , Evolução Molecular , Tamanho do Genoma/genética , Genoma de Planta/genética , Orchidaceae/genética , Sequências Repetitivas de Ácido Nucleico/genética , Cromossomos de Plantas/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Citometria de Fluxo , Variação Genética , Cariotipagem , Filogenia , Análise de Sequência de DNA
13.
Sci Rep ; 11(1): 5690, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707600

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive Schwann cell-derived neoplasms that occur sporadically or in patients with neurofibromatosis type 1 (NF1). Preclinical research on sporadic MPNSTs has been limited as few cell lines exist. We generated and characterized a new sporadic MPNST cell line, 2XSB, which shares the molecular and genomic features of the parent tumor. These cells have a highly complex karyotype with extensive chromothripsis. 2XSB cells show robust invasive 3-dimensional and clonogenic culture capability and form solid tumors when xenografted into immunodeficient mice. High-density single nucleotide polymorphism array and whole exome sequencing analyses indicate that, unlike NF1-associated MPNSTs, 2XSB cells have intact, functional NF1 alleles with no evidence of mutations in genes encoding components of Polycomb Repressor Complex 2. However, mutations in other genes implicated in MPNST pathogenesis were identified in 2XSB cells including homozygous deletion of CDKN2A and mutations in TP53 and PTEN. We also identified mutations in genes not previously associated with MPNSTs but associated with the pathogenesis of other human cancers. These include DNMT1, NUMA1, NTRK1, PDE11A, CSMD3, LRP5 and ACTL9. This sporadic MPNST-derived cell line provides a useful tool for investigating the biology and potential treatment regimens for sporadic MPNSTs.


Assuntos
Genoma Humano , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Sequências Repetitivas de Ácido Nucleico , Linhagem Celular Tumoral , Proliferação de Células , Dosagem de Genes , Genes Neoplásicos , Humanos , Cariotipagem , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sequenciamento do Exoma
14.
Hum Mol Genet ; 30(7): 552-563, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33693705

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an inherited muscle disease caused by misexpression of the DUX4 gene in skeletal muscle. DUX4 is a transcription factor, which is normally expressed in the cleavage-stage embryo and regulates gene expression involved in early embryonic development. Recent studies revealed that DUX4 also activates the transcription of repetitive elements such as endogenous retroviruses (ERVs), mammalian apparent long terminal repeat (LTR)-retrotransposons and pericentromeric satellite repeats (Human Satellite II). DUX4-bound ERV sequences also create alternative promoters for genes or long non-coding RNAs, producing fusion transcripts. To further understand transcriptional regulation by DUX4, we performed nanopore long-read direct RNA sequencing (dRNA-seq) of human muscle cells induced by DUX4, because long reads show whole isoforms with greater confidence. We successfully detected differential expression of known DUX4-induced genes and discovered 61 differentially expressed repeat loci, which are near DUX4-ChIP peaks. We also identified 247 gene-ERV fusion transcripts, of which 216 were not reported previously. In addition, long-read dRNA-seq clearly shows that RNA splicing is a common event in DUX4-activated ERV transcripts. Long-read analysis showed non-LTR transposons including Alu elements are also transcribed from LTRs. Our findings revealed further complexity of DUX4-induced ERV transcripts. This catalogue of DUX4-activated repetitive elements may provide useful information to elucidate the pathology of FSHD. Also, our results indicate that nanopore dRNA-seq has complementary strengths to conventional short-read complementary DNA sequencing.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Nanoporos , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células Musculares/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Isoformas de Proteínas/genética , Isoformas de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/estatística & dados numéricos
15.
Sci Rep ; 11(1): 449, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432083

RESUMO

The ribosomal RNA genes (rDNA) are tandemly arrayed in most eukaryotes and exhibit vast copy number variation. There is growing interest in integrating this variation into genotype-phenotype associations. Here, we explored a possible association of rDNA copy number variation with autism spectrum disorder and found no difference between probands and unaffected siblings. Because short-read sequencing estimates of rDNA copy number are error prone, we sought to validate our 45S estimates. Previous studies reported tightly correlated, concerted copy number variation between the 45S and 5S arrays, which should enable the validation of 45S copy number estimates with pulsed-field gel-verified 5S copy numbers. Here, we show that the previously reported strong concerted copy number variation may be an artifact of variable data quality in the earlier published 1000 Genomes Project sequences. We failed to detect a meaningful correlation between 45S and 5S copy numbers in thousands of samples from the high-coverage Simons Simplex Collection dataset as well as in the recent high-coverage 1000 Genomes Project sequences. Our findings illustrate the challenge of genotyping repetitive DNA regions accurately and call into question the accuracy of recently published studies of rDNA copy number variation in cancer that relied on diverse publicly available resources for sequence data.


Assuntos
Variações do Número de Cópias de DNA/genética , DNA/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Ribossômico 5S/genética , RNA Ribossômico/genética , Transtorno do Espectro Autista/genética , Confiabilidade dos Dados , Conjuntos de Dados como Assunto , Técnicas de Genotipagem , Projeto Genoma Humano , Humanos , Neoplasias/genética , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA
16.
J Cell Physiol ; 236(3): 2023-2035, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32730662

RESUMO

The downregulation of melatonin receptor 1A (MTNR1A) is associated with a range of pathological conditions, including membranous nephropathy. Knowledge of the mechanism underlying MTNR1A expression has been limited to the transcriptional regulation level. Here, RNA interference screening in human kidney cells revealed that heterogeneous nuclear ribonucleoprotein L (hnRNPL) upregulated MTNR1A RNA post-transcriptionally. hnRNPL knockdown or overexpression led to increased or decreased levels of cyclic adenosine monophosphate-responsive element-binding protein phosphorylation, respectively. Molecular studies showed that cytoplasmic hnRNPL exerts a stabilizing effect on the MTNR1A transcript through CA-repeat elements in its coding region. Further studies revealed that the interaction between hnRNPL and MTNR1A serves to protect MNTR1A RNA degradation by the exosome component 10 protein. MTNR1A, but not hnRNPL, displays a diurnal rhythm in mouse kidneys. Enhanced levels of MTNR1A recorded at midnight correlated with robust binding activity between cytoplasmic hnRNPL and the MTNR1A transcript. Both hnRNPL and MTNR1A were decreased in the cytoplasm of tubular epithelial cells from experimental membranous nephropathy kidneys, supporting their clinical relevance. Collectively, our data identified cytoplasmic hnRNPL as a novel player in the upregulation of MTNR1A expression in renal tubular epithelial cells, and as a potential therapeutic target.


Assuntos
Citoplasma/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Túbulos Renais/metabolismo , Receptor MT1 de Melatonina/genética , Animais , Linhagem Celular , Ritmo Circadiano/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Glomerulonefrite Membranosa/genética , Glomerulonefrite Membranosa/patologia , Humanos , Túbulos Renais/patologia , Camundongos Endogâmicos BALB C , Modelos Biológicos , Fases de Leitura Aberta/genética , Fosforilação , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor MT1 de Melatonina/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Regulação para Cima/genética
17.
Cell ; 184(2): 352-369.e23, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33357448

RESUMO

Repetitive elements (REs) compose ∼50% of the human genome and are normally transcriptionally silenced, although the mechanism has remained elusive. Through an RNAi screen, we identified FBXO44 as an essential repressor of REs in cancer cells. FBXO44 bound H3K9me3-modified nucleosomes at the replication fork and recruited SUV39H1, CRL4, and Mi-2/NuRD to transcriptionally silence REs post-DNA replication. FBXO44/SUV39H1 inhibition reactivated REs, leading to DNA replication stress and stimulation of MAVS/STING antiviral pathways and interferon (IFN) signaling in cancer cells to promote decreased tumorigenicity, increased immunogenicity, and enhanced immunotherapy response. FBXO44 expression inversely correlated with replication stress, antiviral pathways, IFN signaling, and cytotoxic T cell infiltration in human cancers, while a FBXO44-immune gene signature correlated with improved immunotherapy response in cancer patients. FBXO44/SUV39H1 were dispensable in normal cells. Collectively, FBXO44/SUV39H1 are crucial repressors of RE transcription, and their inhibition selectively induces DNA replication stress and viral mimicry in cancer cells.


Assuntos
Replicação do DNA/genética , Proteínas F-Box/metabolismo , Neoplasias/genética , Sequências Repetitivas de Ácido Nucleico/genética , Adulto , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Interferons/metabolismo , Lisina/metabolismo , Masculino , Metilação , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Neoplasias/imunologia , Nucleossomos/metabolismo , Transdução de Sinais , Transcrição Gênica , Resultado do Tratamento
18.
Curr Opin Genet Dev ; 67: 41-51, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33279816

RESUMO

Repetitive sequences throughout the genome are a major source of endogenous DNA damage, due to the propensity of many of them to form alternative non-B DNA structures that can interfere with replication, transcription, and DNA repair. These repetitive sequences are prone to breakage (fragility) and instability (changes in repeat number). Repeat fragility and expansions are linked to several diseases, including many cancers and neurodegenerative diseases, hence the importance of understanding the mechanisms that cause genome instability and contribute to these diseases. This review focuses on recent findings of mechanisms causing repeat fragility and instability, new associations between repeat expansions and genetic diseases, and potential therapeutic options to target repeat expansions.


Assuntos
DNA/ultraestrutura , Genoma/genética , Sequências Repetitivas de Ácido Nucleico/genética , Transcrição Gênica , DNA/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Conformação de Ácido Nucleico
19.
PLoS One ; 15(12): e0240498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296397

RESUMO

The signal peptides, present at the N-terminus of many proteins, guide the proteins into cell membranes. In some proteins, the signal peptide is with an extended N-terminal region. Previously, it was demonstrated that the N-terminally extended signal peptide of the human PTPRJ contains a cluster of arginine residues, which attenuates translation. The analysis of the mammalian orthologous sequences revealed that this sequence is highly conserved. The PTPRJ transcripts in placentals, marsupials, and monotremes encode a stretch of 10-14 arginine residues, positioned 11-12 codons downstream of the initiating AUG. The remarkable conservation of the repeated arginine residues in the PTPRJ signal peptides points to their key role. Further, the presence of an arginine cluster in the extended signal peptides of other proteins (E3 ubiquitin-protein ligase, NOTCH3) is noted and indicates a more general importance of this cis-acting mechanism of translational suppression.


Assuntos
Sequência Conservada/genética , Biossíntese de Proteínas/genética , Sinais Direcionadores de Proteínas/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Animais , Arginina/genética , Códon de Iniciação/genética , Humanos , RNA Mensageiro/genética , Receptor Notch3/genética , Sequências Repetitivas de Ácido Nucleico/genética , Alinhamento de Sequência
20.
PLoS One ; 15(6): e0235127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579599

RESUMO

Repeat-induced gene silencing (RIGS) establishes the centromere structure, prevents the spread of transposons and silences transgenes, thereby limiting recombinant protein production. We previously isolated a sequence (B-3-31) that alleviates RIGS from the human genome. Here, we developed an assay system for evaluating the influence of repeat sequences on gene expression, based on in vitro ligation followed by our original gene amplification technology in animal cells. Using this assay, we found that the repeat of B-3-31, three core sequences of replication initiation regions (G5, C12, and D8) and two matrix attachment regions (AR1 and 32-3), activated the co-amplified plasmid-encoded d2EGFP gene in both human and hamster cell lines. This upregulation effect persisted for up to 82 days, which was confirmed to be repeat-induced, and was thus designated as a repeat-induced gene activation (RIGA). In clear contrast, the repeat of three bacterial sequences (lambda-phage, Amp, and ColE1) and three human retroposon sequences (Alu, 5'-untranslated region, and ORF1 of a long interspersed nuclear element) suppressed gene expression, thus reflecting RIGS. RIGS was CpG-independent. We suggest that RIGA might be associated with replication initiation. The discovery of RIGS and RIGA has implications for the repeat in mammalian genome, as well as practical value in recombinant production.


Assuntos
Inativação Gênica , Genoma Humano/genética , Regiões de Interação com a Matriz/genética , Origem de Replicação/genética , Ativação Transcricional , Animais , Sequência de Bases , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hibridização in Situ Fluorescente/métodos , Plasmídeos/genética , Sequências Repetitivas de Ácido Nucleico/genética , Retroelementos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA