RESUMO
Tumor formation is supported by metabolic reprogramming, characterized by increase nutrient uptake, glycolysis and glutaminolysis. The c-Myc proto-oncogene is a transcription factor, upregulated in most cancers and several reports showed the role of c-Myc in other metabolic pathways such as glucose, amino acid, and nucleotide metabolism. In this short report, we tried to summarize the existing takeaway points from studies conducted in different cancer types with respect to c-Myc and lipid and serine metabolism. Here, we report that c-Myc can activate both lipid and serine metabolism against the backdrop of tumor formation, and different therapies like aspirin and lomitapide target the links between c-Myc and metabolism to slow down tumor progression and invasion. We also report diverse upstream regulators that influence c-Myc in different cancers, and interestingly components of the lipid metabolism (like lipid phosphate phosphatase and leptin) and serine metabolism can also act upstream of c-Myc in certain occasions. Finally, we also summarize the existing knowledge on the involvement of epigenetic pathways and non-coding RNAs in regulating lipid and serine metabolism and c-Myc in tumor cells. Identification of non-coding factors and epigenetic mechanisms present a promising avenue of study that could empower researchers with novel anticancer treatment targeting c-Myc and lipid and serine metabolism pathways!
Assuntos
Metabolismo dos Lipídeos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc , Serina , Humanos , Serina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genéticaRESUMO
The intricate network of protein-chaperone interactions is crucial for maintaining cellular function. Recent discoveries have unveiled the existence of specialized chaperone assemblies, known as epichaperomes, which serve as scaffolding platforms that orchestrate the reconfiguration of protein-protein interaction networks, thereby enhancing cellular adaptability and proliferation. This study explores the structural and regulatory aspects of epichaperomes, with a particular focus on the role of post-translational modifications (PTMs) in their formation and function. A key finding is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 within an intrinsically disordered region, as critical determinants of epichaperome assembly. Our data demonstrate that phosphorylation of these serine residues enhances HSP90's interactions with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Moreover, we establish a direct link between epichaperome function and cellular physiology, particularly in contexts where robust proliferation and adaptive behavior are essential, such as in cancer and pluripotent stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone assemblies in diseases characterized by epichaperome dysregulation, thereby bridging the gap between fundamental research and precision medicine.
Assuntos
Proliferação de Células , Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Processamento de Proteína Pós-Traducional , Humanos , Fosforilação , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Animais , Mapas de Interação de Proteínas , Camundongos , Serina/metabolismo , Linhagem Celular TumoralRESUMO
Dedifferentiated and Well-differentiated liposarcoma are characterized by a systematic amplification of the Murine Double Minute 2 (MDM2) oncogene. We demonstrate that p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in liposarcoma and mediate an addiction to serine metabolism to sustain tumor growth. However, the origin of exogenous serine remains unclear. Here, we show that elevated serine levels in mice harboring liposarcoma-patient derived xenograft, released by distant muscle is essential for liposarcoma cell survival. Repressing interleukine-6 expression, or treating liposarcoma cells with Food and Drugs Administration (FDA) approved anti-interleukine-6 monoclonal antibody, decreases de novo serine synthesis in muscle, impairs proliferation, and increases cell death in vitro and in vivo. This work reveals a metabolic crosstalk between muscle and liposarcoma tumor and identifies anti-interleukine-6 as a plausible treatment for liposarcoma patients.
Assuntos
Proliferação de Células , Lipossarcoma , Proteínas Proto-Oncogênicas c-mdm2 , Serina , Lipossarcoma/metabolismo , Lipossarcoma/patologia , Lipossarcoma/genética , Animais , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Camundongos , Linhagem Celular Tumoral , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Feminino , MasculinoRESUMO
Meningiomas are associated with inactivation of NF2/Merlin, but approximately one-third of meningiomas with favorable clinical outcomes retain Merlin expression. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that may be used to guide treatment de-escalation or imaging surveillance are lacking. Here, we use single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma xenografts and patients to define biochemical mechanisms and an imaging biomarker that underlie Merlin-intact meningiomas. We find Merlin serine 13 (S13) dephosphorylation drives meningioma Wnt signaling and tumor growth by attenuating inhibitory interactions with ß-catenin and activating the Wnt pathway. MRI analyses show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC). These results define mechanisms underlying a potential imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with Merlin-intact meningiomas.
Assuntos
Imageamento por Ressonância Magnética , Neoplasias Meníngeas , Meningioma , Neurofibromina 2 , Via de Sinalização Wnt , Meningioma/diagnóstico por imagem , Meningioma/metabolismo , Meningioma/patologia , Meningioma/genética , Humanos , Fosforilação , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Animais , Imageamento por Ressonância Magnética/métodos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Camundongos , Linhagem Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Feminino , Serina/metabolismo , Masculino , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genéticaRESUMO
Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered Escherichia coli for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules-the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules-and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene csdA or sufS improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5â¯%. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715â¯mg/L. This is the first report of the metabolic engineering of E. coli for the production of SeMCys and provide information on Se metabolism.
Assuntos
Escherichia coli , Engenharia Metabólica , Selenocisteína , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Selenocisteína/metabolismo , Selenocisteína/genética , Selenocisteína/análogos & derivados , Serina/análogos & derivados , Serina/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Selenito de Sódio/metabolismo , Técnicas de Cultura Celular por LotesRESUMO
Rationale: Tumor cells remodel transcriptome to construct an ecosystem with stemness features, which maintains tumor growth and highly malignant characteristics. However, the core regulatory factors involved in this process still need to be further discovered. Methods: Single cell RNA-sequncing (scRNA-seq) and bulk RNA-sequencing profiles derived from fetal liver, normal liver, liver tumors, and their adjacent samples were collected to analyze the ecosystem of liver cancer. Mouse models were established to identify molecular functions of oncofetal-related oncogenes using hydrodynamic tail vein injection. Results: We found that liver cancer rebuilt oncofetal ecosystem to maintain malignant features. Interestingly, we identified a group of RNA-binding proteins (RBPs) that were highly overexpressed with oncofetal features. Among them, TRIM71 was specifically expressed in liver cancers and was associated with poor outcomes. TRIM71 drove the carcinogenesis of hepatocellular carcinoma (HCC), and knockdown of TRIM71 significantly abolished liver cancer cell proliferation. Mechanistically, TRIM71 formed a protein complex with IGF2BP1, bound to and stabilized the mRNA of CEBPA in an m6A-dependent manner, enhance the serine/glycine metabolic pathway, and ultimately promoted liver cancer progression. Furthermore, we identified that all-trans-retinoic acid (ATRA) combined with e1A binding protein p300 (EP300) inhibitor A-485 repressed TRIM71, attenuated glycine/serine metabolism, and inhibited liver cancer cell proliferation with high TRIM71 levels. Conclusions: We demonstrated the oncofetal status in liver cancer and highlighted the crucial role of TRIM71 and provided potential therapeutic strategies and liver cancer-specific biomarker for liver cancer patients.
Assuntos
Carcinogênese , Carcinoma Hepatocelular , Glicina , Neoplasias Hepáticas , Serina , Animais , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Camundongos , Humanos , Serina/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Glicina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos NusRESUMO
Cultured cancer cells frequently rely on the consumption of glutamine and its subsequent hydrolysis by glutaminase (GLS). However, this metabolic addiction can be lost in the tumour microenvironment, rendering GLS inhibitors ineffective in the clinic. Here we show that glutamine-addicted breast cancer cells adapt to chronic glutamine starvation, or GLS inhibition, via AMPK-mediated upregulation of the serine synthesis pathway (SSP). In this context, the key product of the SSP is not serine, but α-ketoglutarate (α-KG). Mechanistically, we find that phosphoserine aminotransferase 1 (PSAT1) has a unique capacity for sustained α-KG production when glutamate is depleted. Breast cancer cells with resistance to glutamine starvation or GLS inhibition are highly dependent on SSP-supplied α-KG. Accordingly, inhibition of the SSP prevents adaptation to glutamine blockade, resulting in a potent drug synergism that suppresses breast tumour growth. These findings highlight how metabolic redundancy can be context dependent, with the catalytic properties of different metabolic enzymes that act on the same substrate determining which pathways can support tumour growth in a particular nutrient environment. This, in turn, has practical consequences for therapies targeting cancer metabolism.
Assuntos
Neoplasias da Mama , Glutamina , Transaminases , Glutamina/metabolismo , Humanos , Transaminases/metabolismo , Transaminases/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Animais , Ácidos Cetoglutáricos/metabolismo , Adaptação Fisiológica , Camundongos , Serina/metabolismo , Microambiente TumoralRESUMO
Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.
Assuntos
Células-Tronco Hematopoéticas , Homeostase , Mitocôndrias , Serina , Animais , Células-Tronco Hematopoéticas/metabolismo , Serina/metabolismo , Mitocôndrias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/genética , FerroptoseRESUMO
Many women have sought alternative therapies to address menopause. Recently, a multi-ingredient supplement (MIS) containing L-histidine, L-carnosine, L-serine, and L-cysteine has been shown to be effective at ameliorating hepatic steatosis (HS) in ovariectomized (OVX) rats, a postmenopausal oestrogen deficiency model. Considering that HS frequently accompanies obesity, which often occurs during menopause, we aimed to investigate the effects of this MIS for 8 weeks in OVX rats. Twenty OVX rats were orally supplemented with either MIS (OVX-MIS) or vehicle (OVX). Ten OVX rats received vehicle orally along with subcutaneous injections of 17ß-oestradiol (OVX-E2), whereas 10 rats underwent a sham operation and received oral and injected vehicles (control group). MIS consumption partly counteracted the fat mass accretion observed in OVX animals, leading to decreased total fat mass, adiposity index and retroperitoneal white adipose tissue (RWAT) adipocyte hypertrophy. OVX-MIS rats also displayed increased lean mass and lean/fat ratio, suggesting a healthier body composition, similar to the results reported for OVX-E2 animals. MIS consumption decreased the circulating levels of the proinflammatory marker CRP, the total cholesterol-to-HDL-cholesterol ratio and the leptin-to-adiponectin ratio, a biomarker of diabetes risk and metabolic syndrome. RWAT transcriptomics indicated that MIS favourably regulated genes involved in adipocyte structure and morphology, cell fate determination and differentiation, glucose/insulin homeostasis, inflammation, response to stress and oxidative phosphorylation, which may be mechanisms underlying the beneficial effects described for OVX-MIS rats. Our results pave the way for using this MIS formulation to improve the body composition and immunometabolic health of menopausal women.
Assuntos
Tecido Adiposo , Adiposidade , Carnosina , Cisteína , Histidina , Ovariectomia , Serina , Animais , Feminino , Adiposidade/efeitos dos fármacos , Carnosina/farmacologia , Histidina/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Ratos , Cisteína/farmacologia , Serina/farmacologia , Serina/metabolismo , Ratos Wistar , Suplementos NutricionaisRESUMO
The cGAS/STING pathway is a crucial immune activator in cancer biology, triggering innate immunosurveillance against tumors by sensing and reacting to endogenous mitochondrial DNA (mtDNA). In this issue of Cancer Research, research by Saha and colleagues highlights the significant impact of serine deprivation on this pathway, thereby unveiling its potential for anticancer therapy. Serine is essential for cellular metabolism and influences tumor growth and immune responses. Depriving cells of serine caused mitochondrial dysfunction and the release of mtDNA into the cytosol, activating the cGAS/STING pathway and inducing type I IFN responses. In mouse models, serine deprivation enhanced antitumor immunity, with increased tumoral immune infiltration, including CD4+/CD8+ T cells and type I IFN responses. Clinically, a genetic signature indicative of lower serine enrichment in colorectal cancer patients correlated with immune activation and improved survival. Furthermore, combining serine deprivation with PD1 blockade significantly reduced tumor volume and led to long-term immunity in mice, suggesting that serine depletion enhances the efficacy of immune checkpoint blockade. These findings propose serine deprivation as a promising strategy to boost antitumor immunity and improve cancer patient outcomes. See related article by Saha et al., p. 2645.
Assuntos
Proteínas de Membrana , Neoplasias , Nucleotidiltransferases , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , DNA Mitocondrial/genética , DNA Mitocondrial/imunologia , Transdução de Sinais/imunologia , Serina/metabolismoRESUMO
The non-essential amino acid serine is a critical nutrient for cancer cells due to its diverse biosynthetic functions. While some tumors can synthesize serine de novo, others are auxotrophic and therefore reliant on serine uptake. Importantly, despite several transporters being known to be capable of transporting serine, the transporters that mediate serine uptake in cancer cells are not known. Here, we characterize the amino acid transporter ASCT2 (SLC1A5) as a major contributor to serine uptake in cancer cells. ASCT2 is well known as a glutamine transporter in cancer, and our work demonstrates that serine and glutamine compete for uptake through ASCT2. We further show that ASCT2-mediated serine uptake is essential for purine nucleotide biosynthesis and that estrogen receptor α (ERα) promotes serine uptake by directly activating SLC1A5 transcription. Collectively, our work defines an additional important role for ASCT2 as a serine transporter in cancer and evaluates ASCT2 as a potential therapeutic target.
Assuntos
Sistema ASC de Transporte de Aminoácidos , Antígenos de Histocompatibilidade Menor , Serina , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Humanos , Serina/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Glutamina/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Animais , Transporte Biológico , Feminino , Células MCF-7RESUMO
BACKGROUND: ß-adrenergic receptor (ß-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of ß-AR remains unclear. METHODS: Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates ß-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the ß-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between ß-adrenergic insult and ß-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from ß-arrestin-1-S330A/S330D mutation and ß-adrenergic insult. RESULTS: Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to ß-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted ß-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing ß-arrestin-1-S330D (active form) inhibited the ß-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. ß-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the ß-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS: AMPK phosphorylation of ß-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting ß-AR/cAMP/PKA activation. Subsequently, ß-arrestin-1 Ser330 phosphorylation blocks ß-AR-induced cardiac inflammasome activation and remodeling.
Assuntos
Proteínas Quinases Ativadas por AMP , Isoproterenol , Miócitos Cardíacos , beta-Arrestina 1 , Animais , Fosforilação , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Isoproterenol/toxicidade , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Camundongos Endogâmicos C57BL , Masculino , Receptores Adrenérgicos beta/metabolismo , Serina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/toxicidade , Células Cultivadas , Transdução de Sinais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , HumanosAssuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias , Proteínas de Sinalização YAP , Humanos , Fosforilação , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Serina/metabolismoRESUMO
PURPOSE: Serine is a major source of one-carbon units needed for the synthesis of nucleotides and the production of intramitochondrial nicotinamide adenine dinucleotide phosphate (NADPH), and it plays an important role in cancer cell proliferation. The aim of this study was to develop a deuterium (2H) MRS imaging method for imaging tumor serine metabolism. METHODS: Sequential (2H) spectra and spectroscopic images were used to monitor the metabolism of [2,3,3-2H3]serine in patient-derived glioblastoma cells in vitro and in tumors obtained by their orthotopic implantation in mouse brain. RESULTS: [14,14-2H2] 5,10-methylene-tetrahydrofolate, [2H]glycine, [2H]formate, and labeled water were detected in cell suspensions and water labeling in spectroscopic images of tumors. Studies in cells and tumors with variable mitochondrial content and inhibitor studies in cells demonstrated that most of the labeled serine was metabolized in the mitochondria. Water labeling in the cell suspensions was correlated with formate labeling; therefore, water labeling observed in tumors could be used to provide a surrogate measure of flux in the pathway of one-carbon metabolism in vivo. CONCLUSION: The method has the potential to be used clinically to select patients for treatment with inhibitors of one-carbon metabolism and subsequently to detect their early responses to such treatment.
Assuntos
Neoplasias Encefálicas , Deutério , Glioblastoma , Imageamento por Ressonância Magnética , Serina , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Animais , Serina/metabolismo , Camundongos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Modelos Animais de DoençasRESUMO
BACKGROUND: Endoplasmic reticulum stress and synthesis of serine are essential for tumor growth, but the mechanism of their interaction is not clarified yet. The overarching goal of this work was to investigate the impact of ERN1 (endoplasmic reticulum to nucleus signaling 1) inhibition on the expression of serine synthesis genes in U87MG glioblastoma cells concerning the suppression of cell proliferation. METHODS: Wild type U87MG glioblastoma cells and their clones with overexpression of transgenes dnERN1 (without cytoplasmic domain of ERN1) and dnrERN1 (with mutation in endoribonuclease of ERN1), and empty vector (as control) were used. The silencing of ERN1 and XBP1 was also used to inhibition of ERN1 and its function. Gene expression was measured by qPCR. RESULTS: We show that the expression of PSAT1 and several other related to serine synthesis genes is suppressed in cells with ERN1 inhibition by dissimilar mechanisms: PHGDH gene through ERN1 protein kinase, because its expression was resistant to inhibition of ERN1 endoribonuclease, but ATF4 gene via endoribonuclease of ERN1. However, in the control of PSAT1 and PSPH genes both enzymatic activities of ERN1 signaling protein are involved. At the same time, ERN1 knockdown strongly increased SHMT1 expression, which controls serine metabolism and enhances the proliferation and invasiveness of glioma cells. The level of microRNAs, which have binding sites in PSAT1, SHMT1, and PSPH mRNAs, was also changed in cells harboring dnERN1 transgene. Inhibition of ERN1 suppressed cell proliferation and enzymatic activity of PHGDH, a rate-limiting enzyme for serine synthesis. CONCLUSION: Changes in the expression of phosphoserine aminotransferase 1 and other genes related to serine synthesis are mediated by diverse ERN1-dependent mechanisms and contributed to suppressed proliferation and enhanced invasiveness of ERN1 knockdown glioblastoma cell.
Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Proteínas Serina-Treonina Quinases , Transaminases , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Transaminases/genética , Transaminases/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Técnicas de Silenciamento de Genes , Serina/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genéticaRESUMO
Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (PâS) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to PâS mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to PâS mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to PâS mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.
Assuntos
Drosophila melanogaster , Prolina , Biossíntese de Proteínas , Serina , Transcriptoma , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Masculino , Feminino , Prolina/metabolismo , Serina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , Regulação da Expressão GênicaRESUMO
The loss of E-cadherin, an epithelial cell adhesion molecule, has been implicated in metastasis by mediating the epithelial-mesenchymal transition, which promotes invasion and migration of cancer cells. However, recent studies have demonstrated that E-cadherin supports the survival and proliferation of metastatic cancer cells. Here, we identified a metabolic role for E-cadherin in breast cancer by upregulating the de novo serine synthesis pathway (SSP). The upregulated SSP provided metabolic precursors for biosynthesis and resistance to oxidative stress, enabling E-cadherin+ breast cancer cells to achieve faster tumor growth and enhanced metastases. Inhibition of phosphoglycerate dehydrogenase, a rate-limiting enzyme in the SSP, significantly and specifically hampered proliferation of E-cadherin+ breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. These findings reveal that E-cadherin reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers. Significance: E-Cadherin promotes the progression and metastasis of breast cancer by upregulating the de novo serine synthesis pathway, offering promising targets for inhibiting tumor growth and metastasis in E-cadherin-expressing tumors.
Assuntos
Neoplasias da Mama , Caderinas , Progressão da Doença , Serina , Serina/metabolismo , Caderinas/metabolismo , Feminino , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Animais , Camundongos , Proliferação de Células , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Metástase Neoplásica , Antígenos CD/metabolismo , Movimento Celular , Estresse Oxidativo , Camundongos NusRESUMO
ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients. To understand the role of ADPr in PARPi sensitivity, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze ADPr in six breast cancer cell lines exhibiting different PARPi sensitivities. We identify 1,632 sites on 777 proteins across all cell lines, primarily on serine residues, with site-specific overlap of targeted residues across DNA-damage-related proteins across all cell lines, demonstrating high conservation of serine ADPr-signaling networks upon DNA damage. Furthermore, we observe site-specific differences in ADPr intensities in PARPi-sensitive BRCA mutants and unique ADPr sites in PARPi-resistant BRCA-mutant HCC1937 cells, which have low poly(ADP-ribose) glycohydrolase (PARG) levels and longer ADPr chains on PARP1.
Assuntos
ADP-Ribosilação , Proteína BRCA1 , Neoplasias da Mama , Dano ao DNA , Serina , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Serina/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Mutação/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genéticaRESUMO
RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.
Assuntos
Microscopia Crioeletrônica , Glicina Hidroximetiltransferase , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Humanos , RNA/metabolismo , RNA/genética , Serina/metabolismo , Regulação Alostérica , Ligação Proteica , Filogenia , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Glicina/metabolismo , Glicina/química , Sítios de LigaçãoRESUMO
Cancer cells secrete extracellular vesicles (EVs) to regulate cells in the tumor microenvironment to benefit their own growth and survive in the patient's body. Although emerging evidence has demonstrated the molecular mechanisms of EV release, regulating cancer-specific EV secretion remains challenging. In this study, we applied a microRNA library to reveal the universal mechanisms of EV secretion from cancer cells. Here, we identified miR-891b and its direct target gene, phosphoserine aminotransferase 1 (PSAT1), which promotes EV secretion through the serine-ceramide synthesis pathway. Inhibition of PSAT1 affected EV secretion in multiple types of cancer, suggesting that the miR-891b/PSAT1 axis shares a common mechanism of EV secretion from cancer cells. Interestingly, aberrant PSAT1 expression also regulated cancer metastasis via EV secretion. Our data link the PSAT1-controlled EV secretion mechanism and cancer metastasis and show the potential of this mechanism as a therapeutic target in multiple types of cancer.