Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
J Allergy Clin Immunol ; 149(3): 923-933.e6, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34902435

RESUMO

BACKGROUND: Treatments for coronavirus disease 2019, which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are urgently needed but remain limited. SARS-CoV-2 infects cells through interactions of its spike (S) protein with angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) on host cells. Multiple cells and organs are targeted, particularly airway epithelial cells. OM-85, a standardized lysate of human airway bacteria with strong immunomodulating properties and an impeccable safety profile, is widely used to prevent recurrent respiratory infections. We found that airway OM-85 administration inhibits Ace2 and Tmprss2 transcription in the mouse lung, suggesting that OM-85 might hinder SARS-CoV-2/host cell interactions. OBJECTIVES: We sought to investigate whether and how OM-85 treatment protects nonhuman primate and human epithelial cells against SARS-CoV-2. METHODS: ACE2 and TMPRSS2 mRNA and protein expression, cell binding of SARS-CoV-2 S1 protein, cell entry of SARS-CoV-2 S protein-pseudotyped lentiviral particles, and SARS-CoV-2 cell infection were measured in kidney, lung, and intestinal epithelial cell lines, primary human bronchial epithelial cells, and ACE2-transfected HEK293T cells treated with OM-85 in vitro. RESULTS: OM-85 significantly downregulated ACE2 and TMPRSS2 transcription and surface ACE2 protein expression in epithelial cell lines and primary bronchial epithelial cells. OM-85 also strongly inhibited SARS-CoV-2 S1 protein binding to, SARS-CoV-2 S protein-pseudotyped lentivirus entry into, and SARS-CoV-2 infection of epithelial cells. These effects of OM-85 appeared to depend on SARS-CoV-2 receptor downregulation. CONCLUSIONS: OM-85 inhibits SARS-CoV-2 epithelial cell infection in vitro by downregulating SARS-CoV-2 receptor expression. Further studies are warranted to assess whether OM-85 may prevent and/or reduce the severity of coronavirus disease 2019.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , COVID-19/prevenção & controle , Extratos Celulares/administração & dosagem , Receptores Virais/antagonistas & inibidores , Receptores Virais/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/imunologia , COVID-19/virologia , Células CACO-2 , Extratos Celulares/imunologia , Células Cultivadas , Chlorocebus aethiops , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/virologia , Células HEK293 , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Técnicas In Vitro , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/imunologia , Células Vero
2.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833913

RESUMO

Dengue fever is a dangerous infectious endemic disease that affects over 100 nations worldwide, from Africa to the Western Pacific, and is caused by the dengue virus, which is transmitted to humans by an insect bite of Aedes aegypti. Millions of citizens have died as a result of dengue fever and dengue hemorrhagic fever across the globe. Envelope (E), serine protease (NS3), RNA-directed RNA polymerase (NS5), and non-structural protein 1 (NS1) are mostly required for cell proliferation and survival. Some of the diterpenoids and their derivatives produced by nature possess anti-dengue viral properties. The goal of the computational study was to scrutinize the effectiveness of diterpenoids and their derivatives against dengue viral proteins through in silico study. Methods: molecular docking was performed to analyze the binding affinity of compounds against four viral proteins: the envelope (E) protein, the NS1 protein, the NS3 protein, and the NS5 protein. Results: among the selected drug candidates, triptolide, stevioside, alepterolic acid, sphaeropsidin A, methyl dodovisate A, andrographolide, caesalacetal, and pyrimethamine have demonstrated moderate to good binding affinities (-8.0 to -9.4 kcal/mol) toward the selected proteins: E protein, NS3, NS5, and NS1 whereas pyrimethamine exerts -7.5, -6.3, -7.8, and -6.6 kcal/mol with viral proteins, respectively. Interestingly, the binding affinities of these lead compounds were better than those of an FDA-approved anti-viral medication (pyrimethamine), which is underused in dengue fever. Conclusion: we can conclude that diterpenoids can be considered as a possible anti-dengue medication option. However, in vivo investigation is recommended to back up the conclusions of this study.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Diterpenos/farmacologia , Antivirais/química , Antivirais/farmacocinética , Sítios de Ligação , Simulação por Computador , Dengue/tratamento farmacológico , Dengue/virologia , Diterpenos/química , Diterpenos/farmacocinética , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/farmacologia , Ligação Proteica , RNA Helicases/química , RNA Helicases/efeitos dos fármacos , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/efeitos dos fármacos , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34635581

RESUMO

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Assuntos
Benzotiazóis/farmacologia , Tratamento Farmacológico da COVID-19 , Oligopeptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/genética , Animais , Benzamidinas/química , Benzotiazóis/farmacocinética , COVID-19/genética , COVID-19/virologia , Linhagem Celular , Desenho de Fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Ésteres/química , Guanidinas/química , Humanos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Oligopeptídeos/farmacocinética , SARS-CoV-2/patogenicidade , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/ultraestrutura , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
4.
Nutrients ; 13(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34444960

RESUMO

Hesperidin (HD) is a common flavanone glycoside isolated from citrus fruits and possesses great potential for cardiovascular protection. Hesperetin (HT) is an aglycone metabolite of HD with high bioavailability. Through the docking simulation, HD and HT have shown their potential to bind to two cellular proteins: transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2), which are required for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results further found that HT and HD suppressed the infection of VeroE6 cells using lentiviral-based pseudo-particles with wild types and variants of SARS-CoV-2 with spike (S) proteins, by blocking the interaction between the S protein and cellular receptor ACE2 and reducing ACE2 and TMPRSS2 expression. In summary, hesperidin is a potential TMPRSS2 inhibitor for the reduction of the SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Hesperidina/química , Hesperidina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
5.
Endocrinology ; 162(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089595

RESUMO

Coronavirus disease 2019 (COVID-19) is characterized by a gender disparity in severity, with men exhibiting higher hospitalization and mortality rates than women. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, infects cells following recognition and attachment of the viral spike glycoprotein to the angiotensin-converting enzyme 2 transmembrane protein, followed by spike protein cleavage and activation by cell surface transmembrane protease serine 2 (TMPRSS2). In prostate cancer cells, androgen acting on the androgen receptor increases TMPRSS2 expression, which has led to the hypothesis that androgen-dependent expression of TMPRSS2 in the lung may increase men's susceptibility to severe COVID-19 and that, accordingly, suppressing androgen production or action may mitigate COVID-19 severity by reducing SARS-CoV-2 amplification. Several ongoing clinical trials are testing the ability of androgen deprivation therapies or anti-androgens to mitigate COVID-19. This perspective discusses clinical and molecular advances on the rapidly evolving field of androgen receptor (AR) action on cell surface transmembrane protease serine 2 (TMPRSS2) expression and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the potential effect of anti-androgens on coronavirus disease 2019 (COVID-19) severity in male patients. It discusses limitations of current studies and offers insight for future directions.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/fisiologia , SARS-CoV-2/fisiologia , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/genética , Serina Endopeptidases/fisiologia , Fatores Sexuais
6.
Aging (Albany NY) ; 13(5): 6982-6998, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33621955

RESUMO

Androgen receptor (AR) and histone deacetylase 6 (HDAC6) are important targets for cancer therapy. Given that both AR antagonists and HDAC6 inhibitors modulate AR signaling, a novel AR/HDAC6 dual inhibitor is investigated for its anticancer effects in castration-resistant prostate cancer (CRPC). Zeta55 inhibits nuclear translocation of AR and suppresses androgen-induced PSA and TMPRSS2 expression. Meanwhile, Zeta55 selectively inhibits HDAC6 activity, leading to AR degradation. Zeta55 reduces the growth of AR-overexpressing VCaP prostate cancer cells both in vitro and in a CRPC xenograft model. These results provide preclinical proof of principle for Zeta55 as a promising therapeutic in prostate cancer treatment.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antagonistas de Receptores de Andrógenos/química , Animais , Masculino , Camundongos SCID , Antígeno Prostático Específico/efeitos dos fármacos , Serina Endopeptidases/efeitos dos fármacos
7.
Med Hypotheses ; 146: 110394, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33239231

RESUMO

No definitive treatment for COVID-19 exists although promising results have been reported with remdesivir and glucocorticoids. Short of a truly effective preventive or curative vaccine against SARS-CoV-2, it is becoming increasingly clear that multiple pathophysiologic processes seen with COVID-19 as well as SARS-CoV-2 itself should be targeted. Because alpha-1-antitrypsin (AAT) embraces a panoply of biologic activities that may antagonize several pathophysiologic mechanisms induced by SARS-CoV-2, we hypothesize that this naturally occurring molecule is a promising agent to ameliorate COVID-19. We posit at least seven different mechanisms by which AAT may alleviate COVID-19. First, AAT is a serine protease inhibitor (SERPIN) shown to inhibit TMPRSS-2, the host serine protease that cleaves the spike protein of SARS-CoV-2, a necessary preparatory step for the virus to bind its cell surface receptor ACE2 to gain intracellular entry. Second, AAT has anti-viral activity against other RNA viruses HIV and influenza as well as induces autophagy, a known host effector mechanism against MERS-CoV, a related coronavirus that causes the Middle East Respiratory Syndrome. Third, AAT has potent anti-inflammatory properties, in part through inhibiting both nuclear factor-kappa B (NFκB) activation and ADAM17 (also known as tumor necrosis factor-alpha converting enzyme), and thus may dampen the hyper-inflammatory response of COVID-19. Fourth, AAT inhibits neutrophil elastase, a serine protease that helps recruit potentially injurious neutrophils and implicated in acute lung injury. AAT inhibition of ADAM17 also prevents shedding of ACE2 and hence may preserve ACE2 inhibition of bradykinin, reducing the ability of bradykinin to cause a capillary leak in COVID-19. Fifth, AAT inhibits thrombin, and venous thromboembolism and in situ microthrombi and macrothrombi are increasingly implicated in COVID-19. Sixth, AAT inhibition of elastase can antagonize the formation of neutrophil extracellular traps (NETs), a complex extracellular structure comprised of neutrophil-derived DNA, histones, and proteases, and implicated in the immunothrombosis of COVID-19; indeed, AAT has been shown to change the shape and adherence of non-COVID-19-related NETs. Seventh, AAT inhibition of endothelial cell apoptosis may limit the endothelial injury linked to severe COVID-19-associated acute lung injury, multi-organ dysfunction, and pre-eclampsia-like syndrome seen in gravid women. Furthermore, because both NETs formation and the presence of anti-phospholipid antibodies are increased in both COVID-19 and non-COVID pre-eclampsia, it suggests a similar vascular pathogenesis in both disorders. As a final point, AAT has an excellent safety profile when administered to patients with AAT deficiency and is dosed intravenously once weekly but also comes in an inhaled preparation. Thus, AAT is an appealing drug candidate to treat COVID-19 and should be studied.


Assuntos
Tratamento Farmacológico da COVID-19 , Modelos Biológicos , alfa 1-Antitripsina/uso terapêutico , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Antitrombinas/uso terapêutico , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , COVID-19/fisiopatologia , Armadilhas Extracelulares/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Elastase de Leucócito/antagonistas & inibidores , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/fisiologia , Internalização do Vírus/efeitos dos fármacos , alfa 1-Antitripsina/administração & dosagem
8.
Commun Biol ; 3(1): 547, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005001

RESUMO

Rising antibiotic resistance urgently begs for novel targets and strategies for antibiotic discovery. Here, we report that over-activation of the periplasmic DegP protease, a member of the highly conserved HtrA family, can be a viable strategy for antibiotic development. We demonstrate that tripodal peptidyl compounds that mimic DegP-activating lipoprotein variants allosterically activate DegP and inhibit the growth of an Escherichia coli strain with a permeable outer membrane in a DegP-dependent fashion. Interestingly, these compounds inhibit bacterial growth at a temperature at which DegP is not essential for cell viability, mainly by over-proteolysis of newly synthesized proteins. Co-crystal structures show that the peptidyl arms of the compounds bind to the substrate-binding sites of DegP. Overall, our results represent an intriguing example of killing bacteria by activating a non-essential enzyme, and thus expand the scope of antibiotic targets beyond the traditional essential proteins or pathways.


Assuntos
Antibacterianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/metabolismo , Sítios de Ligação , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Escherichia coli/efeitos dos fármacos , Polarização de Fluorescência , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas Periplásmicas/química , Proteínas Periplásmicas/efeitos dos fármacos , Estrutura Terciária de Proteína , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos
10.
Future Oncol ; 16(20): 1455-1461, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32412310

RESUMO

During the ongoing global pandemic of coronavirus disease 2019 (COVID-19), the benefit of treating patients with cancer must be weighed against the COVID-19 infection risks to patients, staff and society. Prostate cancer is one of the most common cancers among men and raises particular interest during the pandemic as recent reports show that the TMPRSS2 (and other serine proteases), which facilitate the entry, replication and budding of the virion from a cell, can be inhibited using androgen deprivation therapy. Nevertheless, patients with metastatic prostate cancer commonly receive chemotherapy which may compromise their immune system. This paper aims to address the current status of the COVID-19 in patients with cancer overall and suggests an optimal approach to patients with metastatic prostate cancer.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , COVID-19 , Comorbidade , Humanos , Terapia de Imunossupressão/métodos , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia , SARS-CoV-2 , Serina Endopeptidases/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
11.
Biochim Biophys Acta Proteins Proteom ; 1868(7): 140409, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171757

RESUMO

Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies. In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging. In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.


Assuntos
Fibroblastos/metabolismo , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Domínio Catalítico , Dipeptidil Peptidase 4/metabolismo , Endopeptidases , Gelatinases/química , Gelatinases/efeitos dos fármacos , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/efeitos dos fármacos , Estrutura Molecular , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/terapia , Pró-Fármacos , Prolil Oligopeptidases , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos , Especificidade por Substrato , Microambiente Tumoral
12.
Photodiagnosis Photodyn Ther ; 27: 234-240, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31163284

RESUMO

Cancer-associated fibroblasts (CAFs) are important components of the tumor microenvironment, affecting the biological behavior of tumor cells and playing critical roles in tumor growth, invasion, and metastasis. Topical 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is an established approach for the treatment of non-melanoma skin cancers. It is reported that ALA-PDT treating cutaneous squamous cell carcinoma(cSCC) also induce antitumor immune effect and has an impact on tumor microenvironment. However, the effect of ALA-PDT on CAFs is not well known. In this study, the data showed that the expression of α-smooth muscle actin (α-SMA) and fibroblast activation protein (FAP), as well as migratory ability, were elevated in 3T3 fibroblasts co-cultured with tumor cells. Western blot, qRT-PCR and transwell cell migration assay were performed to detect these findings. In vivo, the rate of tumor growth in mice injected with a mixture of tumor cells and 3T3 fibroblasts was higher than that in mice injected with tumor cells only. Furthermore, both in co-cultured 3T3 fibroblasts and CAFs, a reduction in the expression of a-SMA and FAP was observed after ALA-PDT. Same with migratory ability. The findings indicated an inhibitory effect of ALA-PDT on the activation of CAFs in cSCC.


Assuntos
Ácido Aminolevulínico/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Actinas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Endopeptidases , Feminino , Gelatinases/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Camundongos , Camundongos Pelados , Serina Endopeptidases/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
13.
PLoS One ; 14(1): e0210869, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30677071

RESUMO

Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 µM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 µM and 16 µM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Antivirais/síntese química , Domínio Catalítico , Chalconas/química , Chalconas/farmacologia , Vírus da Dengue/classificação , Vírus da Dengue/enzimologia , Estabilidade de Medicamentos , Humanos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/síntese química , Serina Endopeptidases/efeitos dos fármacos , Tioguanina/química , Interface Usuário-Computador , Proteínas não Estruturais Virais/antagonistas & inibidores
14.
Antiviral Res ; 143: 218-229, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28461069

RESUMO

The recent re-emergence of Zika virus (ZIKV)1, a member of the Flaviviridae family, has become a global emergency. Currently, there are no effective methods of preventing or treating ZIKV infection, which causes severe neuroimmunopathology and is particularly harmful to the developing fetuses of infected pregnant women. However, the pathology induced by ZIKV is unique among flaviviruses, and knowledge of the biology of other family members cannot easily be extrapolated to ZIKV. Thus, structure-function studies of ZIKV proteins are urgently needed to facilitate the development of effective preventative and therapeutic agents. Like other flaviviruses, ZIKV expresses an NS2B-NS3 protease, which consists of the NS2B cofactor and the NS3 protease domain and is essential for cleavage of the ZIKV polyprotein precursor and generation of fully functional viral proteins. Here, we report the enzymatic characterization of ZIKV protease, and we identify structural scaffolds for allosteric small-molecule inhibitors of this protease. Molecular modeling of the protease-inhibitor complexes suggests that these compounds bind to the druggable cavity in the NS2B-NS3 protease interface and affect productive interactions of the protease domain with its cofactor. The most potent compound demonstrated efficient inhibition of ZIKV propagation in vitro in human fetal neural progenitor cells and in vivo in SJL mice. The inhibitory scaffolds could be further developed into valuable research reagents and, ultimately, provide a roadmap for the selection of efficient inhibitors of ZIKV infection.


Assuntos
Sítio Alostérico , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/química , Zika virus/enzimologia , Sequência de Aminoácidos , Animais , Antivirais/antagonistas & inibidores , Antivirais/química , Sequência de Bases , Ativação Enzimática , Feminino , Flavivirus/química , Expressão Gênica , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , RNA Helicases/efeitos dos fármacos , Fatores de Transcrição SOXB1/genética , Alinhamento de Sequência , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos , Células-Tronco , Proteínas não Estruturais Virais/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/genética , Zika virus/química , Zika virus/genética , Zika virus/crescimento & desenvolvimento , Infecção por Zika virus/virologia
15.
Antiviral Res ; 143: 186-194, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28457855

RESUMO

Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log10 PFU viral reduction with IC50 value of ∼2.5-5 µg/ml (1.93 µM-3.85 µM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor.


Assuntos
Suramina/antagonistas & inibidores , Infecção por Zika virus/prevenção & controle , Zika virus/efeitos dos fármacos , Animais , Anticorpos Antivirais , Cloratos/farmacologia , Chlorocebus aethiops , DNA Helicases/metabolismo , Sulfato de Dextrana/antagonistas & inibidores , Flavivirus/efeitos dos fármacos , Glicosaminoglicanos/farmacologia , Heparina/análogos & derivados , Heparina/química , Heparina/farmacologia , Heparitina Sulfato/farmacologia , Concentração Inibidora 50 , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Helicases/química , RNA Helicases/efeitos dos fármacos , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos , Suramina/administração & dosagem , Células Vero , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zika virus/fisiologia , Infecção por Zika virus/virologia
16.
Prostate ; 76(16): 1469-1483, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27416770

RESUMO

BACKGROUND: Prostate cancer is one of the most prevalent cancers in men worldwide. Aberrant activation of c-Met/signal transducer and activator of transcription-3 (STAT3) signaling is involved in prostate carcinogenesis, underscoring the demand for developing c-Met/STAT3-targeting drugs. Thus, we first utilized virtual screening strategy to identify STAT3-inhibiting marine compound, heteronemin, and then validated the STAT3-inhibiting function of heteronemin in prostate cancer cells. METHODS: Human prostate cancer LNCaP, DU145, and PC-3 cell lines were treated with heteronemin for 24 hr, then the cell viability was evaluated by MTT assay. Flow cytometry was performed to analyze the apoptosis in heteronemin-treated cells. Western blot and quantitative real-time PCR were executed to further confirm the c-Met/STAT3 signaling inhibition by heteronemin in DU145 and PC-3 cells. RESULTS: In this study, we employed the virtual screening strategy to identify heteronemin, a spongean sesterterpene, as a potential STAT3 inhibitor from Taiwan marine drugs library. Application of heteronemin potently suppressed the viability and anchorage-independent growth of human prostate cancer cells. Besides, heteronemin induced apoptosis in prostate cancer cells by activation of both intrinsic (caspase-9) and extrinsic (caspase-8) apoptotic pathways. By luciferase assay and expression analysis, it was confirmed that heteronemin inhibited the phosphorylation of c-Met/src/STAT3 signaling axis, STAT3-driven luciferase activities and expression of STAT3-regulated genes including Bcl-xL, Bcl-2, and Cyclin D1. Finally, heteronemin effectively antagonized the hepatocyte growth factor (HGF)-stimulated c-Met/STAT3 activation as well as the proliferation and colonies formation in refractory prostate cancer cells. CONCLUSIONS: These findings suggest that heteronemin may constitute a novel c-Met/STAT3-targeting agent for prostate cancer. Prostate 76:1469-1483, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Terpenos/farmacologia , Antineoplásicos , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Serina Endopeptidases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Terpenos/química , c-Mer Tirosina Quinase
17.
Am J Respir Crit Care Med ; 194(6): 701-10, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27014936

RESUMO

RATIONALE: In cystic fibrosis (CF) a reduction in airway surface liquid (ASL) height compromises mucociliary clearance, favoring mucus plugging and chronic bacterial infection. Inhibitors of the epithelial sodium channel (ENaC) have therapeutic potential in CF airways to reduce hyperstimulated sodium and fluid absorption to levels that can restore airway hydration. OBJECTIVES: To determine whether a novel compound (QUB-TL1) designed to inhibit protease/ENaC signaling in CF airways restores ASL volume and mucociliary function. METHODS: Protease activity was measured using fluorogenic activity assays. Differentiated primary airway epithelial cell cultures (F508del homozygotes) were used to determined ENaC activity (Ussing chamber recordings), ASL height (confocal microscopy), and mucociliary function (by tracking the surface flow of apically applied microbeads). Cell toxicity was measured using a lactate dehydrogenase assay. MEASUREMENTS AND MAIN RESULTS: QUB-TL1 inhibits extracellularly located channel activating proteases (CAPs), including prostasin, matriptase, and furin, the activities of which are observed at excessive levels at the apical surface of CF airway epithelial cells. QUB-TL1-mediated CAP inhibition results in diminished ENaC-mediated Na(+) absorption in CF airway epithelial cells caused by internalization of a prominent pool of cleaved (active) ENaCγ from the cell surface. Importantly, diminished ENaC activity correlates with improved airway hydration status and mucociliary clearance. We further demonstrate QUB-TL1-mediated furin inhibition, which is in contrast to other serine protease inhibitors (camostat mesylate and aprotinin), affords protection against neutrophil elastase-mediated ENaC activation and Pseudomonas aeruginosa exotoxin A-induced cell death. CONCLUSIONS: QUB-TL1 corrects aberrant CAP activities, providing a mechanism to delay or prevent the development of CF lung disease in a manner independent of CF transmembrane conductance regulator mutation.


Assuntos
Arginina/análogos & derivados , Fibrose Cística/tratamento farmacológico , Depuração Mucociliar/efeitos dos fármacos , Organofosfonatos/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Serina Endopeptidases/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/efeitos dos fármacos , Arginina/farmacologia , Células Cultivadas , Humanos , Depuração Mucociliar/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia , Canais de Sódio/fisiologia
18.
Arterioscler Thromb Vasc Biol ; 35(7): 1589-96, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26023080

RESUMO

OBJECTIVE: Proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds the low-density lipoprotein receptor and targets it for degradation, has emerged as an important regulator of serum cholesterol levels and cardiovascular disease risk. Although much work is currently focused on developing therapies for inhibiting PCSK9, the endogenous regulation of PCSK9, particularly by insulin, remains unclear. The objective of these studies was to determine the effects of insulin on PCSK9 in vitro and in vivo. APPROACH AND RESULTS: Using rat hepatoma cells and primary rat hepatocytes, we found that insulin increased PCSK9 expression and increased low-density lipoprotein receptor degradation in a PCSK9-dependent manner. In parallel, hepatic Pcsk9 mRNA and plasma PCSK9 protein levels were reduced by 55% to 75% in mice with liver-specific knockout of the insulin receptor; 75% to 88% in mice made insulin-deficient with streptozotocin; and 65% in ob/ob mice treated with antisense oligonucleotides against the insulin receptor. However, antisense oligonucleotide-mediated knockdown of insulin receptor in lean, wild-type mice had little effect. In addition, we found that fasting was able to reduce PCSK9 expression by 80% even in mice that lack hepatic insulin signaling. CONCLUSIONS: Taken together, these data indicate that although insulin induces PCSK9 expression, it is not the sole or even dominant regulator of PCSK9 under all conditions.


Assuntos
Insulina/farmacologia , Insulina/fisiologia , Serina Endopeptidases/metabolismo , Animais , Carcinoma Hepatocelular , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Meia-Vida , Hepatócitos/metabolismo , Camundongos Knockout , Camundongos Obesos , Pró-Proteína Convertase 9 , RNA Mensageiro/metabolismo , Ratos , Receptores de LDL/metabolismo , Serina Endopeptidases/efeitos dos fármacos
19.
J Nat Prod ; 78(5): 1073-82, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25894999

RESUMO

Cyclotides are head-to-tail cyclized peptides comprising a stabilizing cystine-knot motif. To date, they are well known for their diverse bioactivities such as anti-HIV and immunosuppressive properties. Yet little is known about specific molecular mechanisms, in particular the interaction of cyclotides with cellular protein targets. Native and synthetic cyclotide-like peptides from Momordica plants are potent and selective inhibitors of different serine-type proteinases such as trypsin, chymotrypsin, matriptase, and tryptase-beta. This study describes the bioactivity-guided isolation of a cyclotide from Psychotria solitudinum as an inhibitor of another serine-type protease, namely, the human prolyl oligopeptidase (POP). Analysis of the inhibitory potency of Psychotria extracts and subsequent fractionation by liquid chromatography yielded the isolated peptide psysol 2 (1), which exhibited an IC50 of 25 µM. In addition the prototypical cyclotide kalata B1 inhibited POP activity with an IC50 of 5.6 µM. The inhibitory activity appeared to be selective for POP, since neither psysol 2 nor kalata B1 were able to inhibit the proteolytic activity of trypsin or chymotrypsin. The enzyme POP is well known for its role in memory and learning processes, and it is currently being considered as a promising therapeutic target for the cognitive deficits associated with several psychiatric and neurodegenerative diseases, such as schizophrenia and Parkinson's disease. In the context of discovery and development of POP inhibitors with beneficial ADME properties, cyclotides may be suitable starting points considering their stability in biological fluids and possible oral bioavailability.


Assuntos
Ciclotídeos/química , Ciclotídeos/farmacologia , Psychotria/química , Serina Endopeptidases/efeitos dos fármacos , Inibidores de Serina Proteinase/química , Algoritmos , Sequência de Aminoácidos , Quimotripsina/efeitos dos fármacos , Humanos , Estrutura Molecular , Prolil Oligopeptidases , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Tripsina/efeitos dos fármacos
20.
J Endocrinol ; 222(1): 151-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24860148

RESUMO

Mammalian proprotein convertases (PCs) play an important role in folliculogenesis, as they proteolytically activate a variety of substrates such as the transforming growth factor beta (TGFß) superfamily. PC subtilism/kexin 6 (PCSK6) is a member of the PC family and is ubiquitously expressed and implicated in many physiological and pathological processes. However, in human granulosa cells, the expression of the PC family members, their hormonal regulation, and the function of PCs are not clear. In this study, we found that PCSK6 is the most highly expressed PC family member in granulosa cells. LH increased PCSK6 mRNA level and PCSK6 played an anti-apoptosis function in KGN cells. Knockdown of PCSK6 not only increased the secretion of activin A and TGFß2 but also decreased the secretion of follistatin, estrogen, and the mRNA levels of FSH receptor (FSHR) and P450AROM (CYP19A1). We also found that, in the KGN human granulosa cell line, TGFß2 and activin A could promote the apoptosis of KGN cells and LH could regulate the follistatin level. These data indicate that PCSK6, which is regulated by LH, is highly expressed in human primary granulosa cells of pre-ovulatory follicles and plays important roles in regulating a series of downstream molecules and apoptosis of KGN cells.


Assuntos
Ativinas/metabolismo , Apoptose/fisiologia , Células da Granulosa/metabolismo , Hormônio Luteinizante/farmacologia , Pró-Proteína Convertases/efeitos dos fármacos , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Apoptose/efeitos dos fármacos , Aromatase/metabolismo , Linhagem Celular , Células Cultivadas , Estrogênios/metabolismo , Feminino , Folistatina/metabolismo , Células da Granulosa/citologia , Células da Granulosa/efeitos dos fármacos , Humanos , Técnicas In Vitro , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores do FSH/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA