Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.723
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Oncol Res ; 32(7): 1209-1219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948021

RESUMO

Objective: This study aimed to investigate the role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in triple-negative breast cancer (TNBC). Methods: ROR2 expression in primary TNBC and metastatic TNBC tissues was analyzed by immunohistochemical staining and PCR. ROR2 expression in TNBC cell lines was detected by PCR and Western blot analysis. The migration, invasion and chemosensitivity of TNBC cells with overexpression or knockdown of ROR2 were examined. Results: ROR2 expression was high in metastatic TNBC tissues. ROR2 knockdown suppressed the migration, invasion and chemoresistance of TNBC cells. ROR2 overexpression in MDA-MB-435 cells promoted the migration, invasion, and chemoresistance. Moreover, ROR2 knockdown in HC1599 and MDA-MB-435 adriamycin-resistant cells enhanced chemosensitivity to adriamycin. ROR2 could activate PI3K/AKT/mTOR signaling in TNBC cells. Conclusion: ROR2 is upregulated and promotes metastatic phenotypes of TNBC by activating PI3K/AKT/mTOR signaling.


Assuntos
Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Transdução de Sinais , Serina-Treonina Quinases TOR , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Doxorrubicina/farmacologia
2.
PeerJ ; 12: e17555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948215

RESUMO

Background: PLAUR has been found upregulated in various tumors and closely correlated with the malignant phenotype of tumor cells. The aim of this study was to investigate the relationship between PLAUR and clear cell renal cell carcinoma (ccRCC) and its potential mechanism of promoting tumor progression. Methods: The expression levels and clinical significance of PLAUR, along with the associated signaling pathways, were extensively investigated in ccRCC samples obtained from The Cancer Genome Atlas (TCGA). PLAUR expression in 20 pairs of ccRCC tumor tissues and the adjacent tissues was assessed using qRT-PCR and IHC staining. Additionally, a series of in vitro experiments were conducted to investigate the impact of PLAUR suppression on cellular proliferation, migration, invasion, cell cycle progression, and apoptosis in ccRCC. The Western blot analysis was employed to investigate the expression levels of pivotal genes associated with the PI3K/AKT/mTOR signaling pathway. Results: The expression of PLAUR was significantly upregulated in ccRCC compared to normal renal tissues, and higher PLAUR expression in ccRCC was associated with a poorer prognosis than low expression. The in-vitro functional investigations demonstrated that knockdown of PLAUR significantly attenuated the proliferation, migration, and invasion capabilities of ccRCC cells. Concurrently, PLAUR knockdown effectively induced cellular apoptosis, modulated the cell cycle, inhibited the EMT process, and attenuated the activation of the PI3K/AKT/mTOR signaling pathway. PLAUR may represent a key mechanism underlying ccRCC progression. Conclusions: The involvement of PLAUR in ccRCC progression may be achieved through the activation of the PI3K/AKT/mTOR signaling pathway, making it a reliable biomarker for the identification and prediction of ccRCC.


Assuntos
Carcinoma de Células Renais , Proliferação de Células , Progressão da Doença , Neoplasias Renais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Masculino , Feminino , Apoptose , Movimento Celular/genética , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Prognóstico , Regulação para Cima
3.
Cell Commun Signal ; 22(1): 320, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862983

RESUMO

Multiple Myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most prevalent hematological malignancy and is incurable due to the inevitable development of drug resistance. Intense protein synthesis is a distinctive trait of MM cells, supporting the massive production of clonal immunoglobulins or free light chains. The mammalian target of rapamycin (mTOR) kinase is appreciated as a master regulator of vital cellular processes, including regulation of metabolism and protein synthesis, and can be found in two multiprotein complexes, mTORC1 and mTORC2. Dysregulation of these complexes is implicated in several types of cancer, including MM. Since mTOR has been shown to be aberrantly activated in a large portion of MM patients and to play a role in stimulating MM cell survival and resistance to several existing therapies, understanding the regulation and functions of the mTOR complexes is vital for the development of more effective therapeutic strategies. This review provides a general overview of the mTOR pathway, discussing key discoveries and recent insights related to the structure and regulation of mTOR complexes. Additionally, we highlight findings on the mechanisms by which mTOR is involved in protein synthesis and delve into mTOR-mediated processes occurring in MM. Finally, we summarize the progress and current challenges of drugs targeting mTOR complexes in MM.


Assuntos
Mieloma Múltiplo , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Terapia de Alvo Molecular , Inibidores de MTOR/uso terapêutico , Inibidores de MTOR/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo
4.
J Exp Clin Cancer Res ; 43(1): 159, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840237

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. EXPERIMENTAL DESIGN: We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. RESULTS: EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. CONCLUSION: Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.


Assuntos
Carcinoma de Células Renais , Reparo do DNA , Neoplasias Renais , Survivina , Serina-Treonina Quinases TOR , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/radioterapia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Animais , Survivina/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Renais/patologia , Neoplasias Renais/radioterapia , Neoplasias Renais/tratamento farmacológico , Reparo do DNA/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Imidazóis/farmacologia , Dano ao DNA , Everolimo/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Lipossomos/farmacologia , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico
5.
Cell Death Dis ; 15(6): 401, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849370

RESUMO

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-ß1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.


Assuntos
Apoptose , Macrófagos , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Receptores Imunológicos , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Macrófagos/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo , Rim/patologia , Rim/metabolismo , Camundongos Knockout , Masculino , Fibrose , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Obstrução Ureteral/patologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/complicações , Polaridade Celular , Serina-Treonina Quinases TOR/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética
6.
Cell Biochem Funct ; 42(4): e4077, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881228

RESUMO

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing rapidly due to the obesity epidemic. In the inflammatory stages of MASLD (MASH), activation of hepatic stellate cells (HSCs) leads to initiation and progression of liver fibrosis. Extracellular vesicles (EVs) are released from all cell types and play an important role in intercellular communication. However, the role of EVs released from hepatocytes in the context of MASLD is largely unknown. Therefore, the present study aimed to investigate the role of EVs derived from both normal and steatotic (free fatty acid-treated) hepatocytes on the phenotype of HSCs via the senescence pathway. Primary rat hepatocytes were treated with free fatty acids (FFAs: oleic acid and palmitic acid). EVs were collected by ultracentrifugation. EVs markers and HSCs activation and senescence markers were assessed by Western blot analysis, qPCR and cytochemistry. Reactive oxygen species (ROS) production was assessed by fluorescence assay. RNA profiles of EVs were evaluated by sequencing. We found that EVs from hepatocytes treated with FFAs (FFA-EVs) inhibit collagen type 1 and α-smooth muscle actin expression, increase the production of ROS and the expression of senescence markers (IL-6, IL-1ß, p21 and senescence-associated ß-galactosidase activity) in early activating HSCs via the AKT-mTOR pathway. Sequencing showed differentially enriched RNA species between the EVs groups. In conclusion, EVs from FFA-treated hepatocytes inhibit HSC activation by inducing senescence via the AKT-mTOR signaling pathway. Determining the components in EVs from steatotic hepatocytes that induce HSC senescence may lead to the identification of novel targets for intervention in the treatment of MASLD in the future.


Assuntos
Senescência Celular , Vesículas Extracelulares , Células Estreladas do Fígado , Hepatócitos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Vesículas Extracelulares/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Senescência Celular/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/efeitos dos fármacos , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Ratos Sprague-Dawley
7.
Sci Rep ; 14(1): 13258, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858422

RESUMO

Lung cancer is the most common oncological disease worldwide, with non-small cell lung cancer accounting for approximately 85% of lung cancer cases. α-Hederin is a monodesmosidic triterpenoid saponin isolated from the leaves of Hedera helix L. or Nigella sativa and has been extensively studied for its antitumor activity against a variety of tumor cells. It has been suggested that α-Hederin is a potential regulator of autophagy and has high promise for application. However, the specific mechanism and characteristics of α-Hederin in regulating autophagy are not well understood. In this study, we confirmed the potential of α-Hederin application in lung cancer treatment and comprehensively explored the mechanism and characteristics of α-Hederin in regulating autophagy in lung cancer cells. Our results suggest that α-Hederin is an incomplete autophagy inducer that targets mTOR to activate the classical autophagic pathway, inhibits lysosomal acidification without significantly affecting the processes of autophagosome transport, lysosome biogenesis, autophagosome and lysosome fusion, and finally leads to impaired autophagic flux and triggers autophagic damage in NSCLC.


Assuntos
Autofagia , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Lisossomos , Ácido Oleanólico , Saponinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Saponinas/farmacologia , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Células A549
8.
Nat Commun ; 15(1): 5144, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886379

RESUMO

The renal epithelium is sensitive to changes in blood potassium (K+). We identify the basolateral K+ channel, Kir4.2, as a mediator of the proximal tubule response to K+ deficiency. Mice lacking Kir4.2 have a compensated baseline phenotype whereby they increase their distal transport burden to maintain homeostasis. Upon dietary K+ depletion, knockout animals decompensate as evidenced by increased urinary K+ excretion and development of a proximal renal tubular acidosis. Potassium wasting is not proximal in origin but is caused by higher ENaC activity and depends upon increased distal sodium delivery. Three-dimensional imaging reveals Kir4.2 knockouts fail to undergo proximal tubule expansion, while the distal convoluted tubule response is exaggerated. AKT signaling mediates the dietary K+ response, which is blunted in Kir4.2 knockouts. Lastly, we demonstrate in isolated tubules that AKT phosphorylation in response to low K+ depends upon mTORC2 activation by secondary changes in Cl- transport. Data support a proximal role for cell Cl- which, as it does along the distal nephron, responds to K+ changes to activate kinase signaling.


Assuntos
Túbulos Renais Proximais , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Knockout , Canais de Potássio Corretores do Fluxo de Internalização , Potássio , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Serina-Treonina Quinases TOR/metabolismo , Potássio/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Fosforilação , Masculino , Cloretos/metabolismo , Camundongos Endogâmicos C57BL
9.
J Exp Clin Cancer Res ; 43(1): 170, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886756

RESUMO

BACKGROUND: Recent intravesical administration of adenoviral vectors, either as a single injection or in combination with immune checkpoint inhibitors, exemplified by cretostimogene grenadenorepvec and nadofaragene firadenovec, has demonstrated remarkable efficacy in clinical trials for non-muscle invasive bladder cancer. Despite their ability to induce an enhanced immune reaction within the lesion, the intracellular survival signaling of cancer cells has not been thoroughly addressed. METHODS: An analysis of the prognostic data revealed a high probability of therapeutic efficacy with simultaneous inhibition of mTOR and STAT3. Considering the challenges of limited pharmaco-accessibility to the bladder due to its pathophysiological structure and the partially undruggable nature of target molecules, we designed a dual siRNA system targeting both mRNAs. Subsequently, this dual siRNA system was encoded into the adenovirus 5/3 (Ad 5/3) to enhance in vivo delivery efficiency. RESULTS: Gene-targeting efficacy was assessed using cells isolated from xenografted tumors using a single-cell analysis system. Our strategy demonstrated a balanced downregulation of mTOR and STAT3 at the single-cell resolution, both in vitro and in vivo. This approach reduced tumor growth in bladder cancer xenograft and orthotopic animal experiments. In addition, increased infiltration of CD8+ T cells was observed in a humanized mouse model. We provided helpful and safe tissue distribution data for intravesical therapy of siRNAs coding adenoviruses. CONCLUSIONS: The bi-specific siRNA strategy, encapsulated in an adenovirus, could be a promising tool to augment cancer treatment efficacy and overcome conventional therapy limitations associated with "undruggability." Hence, we propose that dual targeting of mTOR and STAT3 is an advantageous strategy for intravesical therapy using adenoviruses.


Assuntos
Fator de Transcrição STAT3 , Serina-Treonina Quinases TOR , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Humanos , Fator de Transcrição STAT3/metabolismo , Animais , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Administração Intravesical , Feminino , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892329

RESUMO

The mammalian target of rapamycin (mTOR) is a pivotal regulator, integrating diverse environmental signals to control fundamental cellular functions, such as protein synthesis, cell growth, survival, and apoptosis. Embedded in a complex network of signaling pathways, mTOR dysregulation is implicated in the onset and progression of a range of human diseases, including metabolic disorders such as diabetes and cardiovascular diseases, as well as various cancers. mTOR also has a notable role in aging. Given its extensive biological impact, mTOR signaling is a prime therapeutic target for addressing these complex conditions. The development of mTOR inhibitors has proven advantageous in numerous research domains. This review delves into the significance of mTOR signaling, highlighting the critical components of this intricate network that contribute to disease. Additionally, it addresses the latest findings on mTOR inhibitors and their clinical implications. The review also emphasizes the importance of developing more effective next-generation mTOR inhibitors with dual functions to efficiently target the mTOR pathways. A comprehensive understanding of mTOR signaling will enable the development of effective therapeutic strategies for managing diseases associated with mTOR dysregulation.


Assuntos
Envelhecimento , Doenças Metabólicas , Neoplasias , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/tratamento farmacológico , Envelhecimento/metabolismo , Animais , Inibidores de MTOR/uso terapêutico , Inibidores de MTOR/farmacologia
11.
Biomed Pharmacother ; 176: 116836, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850660

RESUMO

Alzheimer's disease (AD) is a devastating neurological condition characterized by cognitive decline, motor coordination impairment, and amyloid plaque accumulation. The underlying molecular mechanisms involve oxidative stress, inflammation, and neuronal degeneration. This study aimed to investigate the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-exos) on AD and explore the molecular pathways involved, including the PI3K/Akt/mTOR axis, autophagy, and neuroinflammation. To assess the potential of MSC-exos for the treatment of AD, rats were treated with AlCl3 (17 mg/kg/once/day) for 8 weeks, followed by the administration of an autophagy activator (rapamycin), or MSC-exos with or without an autophagy inhibitor (3-methyladenin; 3-MA+ chloroquine) for 4 weeks. Memory impairment was tested, and brain tissues were collected for gene expression analyses, western blotting, histological studies, immunohistochemistry, and transmission electron microscopy. Remarkably, the administration of MSC-exos improved memory performance in AD rats and reduced the accumulation of amyloid-beta (Aß) plaques and tau phosphorylation. Furthermore, MSC-exos promoted neurogenesis, enhanced synaptic function, and mitigated astrogliosis in AD brain tissues. These beneficial effects were associated with the modulation of autophagy and the PI3K/Akt/mTOR signalling pathway, as well as the inhibition of neuroinflammation. Additionally, MSC-exos were found to regulate specific microRNAs, including miRNA-21, miRNA-155, miRNA-17-5p, and miRNA-126-3p, further supporting their therapeutic potential. Histopathological and bioinformatic analyses confirmed these findings. This study provides compelling evidence that MSC-exos hold promise as a potential therapeutic approach for AD. By modulating the PI3K/Akt/mTOR axis, autophagy, and neuroinflammation, MSC-exos have the potential to improve memory, reduce Aß accumulation, enhance neurogenesis, and mitigate astrogliosis. These findings shed light on the therapeutic potential of MSC-exos and highlight their role in combating AD.


Assuntos
Doença de Alzheimer , Autofagia , Exossomos , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Exossomos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Masculino , Ratos , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insulina/metabolismo , Modelos Animais de Doenças
12.
Chem Biol Drug Des ; 103(6): e14572, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923686

RESUMO

The environmental factor aryl hydrocarbon receptor (AhR), a key protein connecting the external environmental signals (e.g., environmental endocrine disruptor TCDD) to internal cellular processes, is involved in the activation of peripheral macrophages and inflammatory response in human body. Thus, there is widespread interest in finding compounds to anti-inflammatory response in macrophages by targeting human AhR. Here, ensemble docking based-virtual screening was first used to screen a library (~200,000 compounds) against human AhR ligand binding domain (LBD) and 25 compounds were identified as potential inhibitors. Then, 9 out of the 25 ligands were found to down-regulate the mRNA expression of CYP1A1 (a downstream gene of AhR signaling) in AhR overexpressing macrophages. The most potent compound AE-411/41415610 was selected for further study and found to reduce both mRNA and protein expressions level of CYP1A1 in mouse peritoneal macrophage. Moreover, protein chip signal pathway analysis indicated that AE-411/41415610 play a role in regulating JAK-STAT and AKT-mTOR pathways. In sum, the discovered hits with novel scaffolds provided a starting point for future design of more effective AhR-targeted lead compounds to regulate CYP1A1 expression of inflammatory peritoneal macrophages.


Assuntos
Citocromo P-450 CYP1A1 , Simulação de Acoplamento Molecular , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Receptores de Hidrocarboneto Arílico/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Animais , Ligantes , Camundongos , Humanos , Transdução de Sinais/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sítios de Ligação
13.
Anticancer Res ; 44(7): 2961-2972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925830

RESUMO

BACKGROUND/AIM: Kaempferol, a natural flavonoid, occurs abundantly in fruits and vegetables. It has various bioactivities, with antioxidant, anti-inflammatory, and other beneficial properties. The aim of this study was to investigate the in vitro effects of kaempferol on the proliferation, apoptosis, and autophagy of KB cells, a human cervical cancer cell line, and the corresponding action mechanisms. MATERIALS AND METHODS: The inhibitory efficacy of kaempferol on KB cervical cancer cells was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, migration assay, 4',6-diamidino-2-phenylindole staining, flow cytometry, acridine orange staining and western blotting. RESULTS: Kaempferol reduced KB cell viability and migration in a dose-dependent manner. Additionally, kaempferol-induced apoptosis was confirmed, and kaempferol treatment influenced levels of apoptotic proteins. Autophagy was detected upon visualization of characteristic autophagic vacuoles and acidic vesicular organelles, and verified using western blotting, which revealed elevated levels of autophagy-related proteins. Kaempferol-mediated apoptosis and autophagy were evidently attributable to reduced phosphorylation in the phosphoinositide 3-kinase (PI3K)/serine/threonine kinase 1 (AKT)/mammalian target of rapamycin (mTOR) pathway. This finding was validated using a pharmacological inhibition assay with the PI3K pathway inhibitor LY294002, which promoted KB cell apoptosis and autophagy. CONCLUSION: Our results suggest that kaempferol induces apoptosis and autophagy by inhibiting the PI3K/AKT/mTOR pathway in human cervical cancer cells, empirically showing the anticancer effects of kaempferol, and thereby presenting it as a potential anticancer therapeutic agent.


Assuntos
Apoptose , Autofagia , Quempferóis , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Neoplasias do Colo do Útero , Humanos , Quempferóis/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
14.
Anticancer Res ; 44(7): 2877-2886, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925846

RESUMO

BACKGROUND/AIM: Clinical diagnostic value of circ-ARHGER28 in breast cancer (BC), and the biological functions of circ-ARHGER28 on the proliferation and apoptosis of MCF-7 cells were investigated. MATERIALS AND METHODS: Human circRNA microarray was performed to analyze the expression of circRNAs in BC patients. RT-qPCR combined with bioinformatics analysis was applied to verify the candidate circRNAs in BC tissues and peripheral blood samples. Circ-ARHGER28 was chosen as the candidate gene for further research. The clinical diagnostic value and biological functions of circ-ARHGER28 were analyzed. The overexpression and negative control vector of circ-ARHGER28 were constructed and transfected to MCF-7 cells. The CCK 8 assay and clone formation experiments were applied to detect the cell proliferative and migratory abilities. Flow cytometry was used to analyze cell apoptosis and cell cycle distribution. RT-qPCR and Western blot were performed to detect apoptosis and expression of PI3K/AKT/mTOR-associated genes and proteins. RESULTS: Overexpression of circ-ARHGER28 inhibited the proliferation, colony formation and migration of MCF-7 cells, while increasing the population of the cells in the G2/M phase and the apoptotic rate. Apoptosis associated genes and proteins were significantly increased, whereas gene and protein expression of PI3K, AKT and mTOR were decreased in the cells. CONCLUSION: Circular RNA ARHGER28 exhibits promising diagnostic value for BC. Circ-ARHGER28 inhibited MCF-7 cell proliferation and increased the apoptotic rate. The function of circ-ARHGER28 was associated with the PI3K/AKT/mTOR signaling pathway. Circ-ARHGER28 could be an ideal biomarker for BC diagnosis and a novel target for BC therapy.


Assuntos
Apoptose , Neoplasias da Mama , Proliferação de Células , RNA Circular , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/diagnóstico , Proliferação de Células/genética , Feminino , Apoptose/genética , RNA Circular/genética , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação Neoplásica da Expressão Gênica , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Movimento Celular/genética , Pessoa de Meia-Idade
15.
Anticancer Res ; 44(7): 2787-2792, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925854

RESUMO

BACKGROUND/AIM: Methotrexate (MTX) resistance in osteosarcoma leads to a very poor prognosis. In the present study, in order to further understand the basis and ramifications of MTX resistance in osteosarcoma, we selected an osteosarcoma cell line that has a 5,500-fold-increased MTX IC50 Materials and Methods: The super MTX-resistant 143B osteosarcoma cells (143B-MTXSR) were selected from MTX-sensitive parental human 143B osteosarcoma cells (143B-P) by continuous culture with step-wise increased amounts of MTX. To compare the malignancy of 143B-MTXSR and 143B-P, colony-formation capacity was compared with clonogenic assays on plastic and in soft agar. In addition, tumor growth was compared with orthotopic xenograft mouse models of osteosarcoma. Expression of dihydrofolate reductase (DHFR), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), and myelocytomatosis oncogene (MYC) was examined with western immunoblotting and compared in 143B-MTXSR and 143B-P cells. RESULTS: 143B-MTXSR had a 5,500-fold increase in the MTX IC50 compared to the parental 143B-P cells. Expression of DHFR was increased 10-fold in 143B-MTXSR compared to 143B-P (p<0.01). 143B-MTXSR cells had reduced colony-formation capacity on plastic (p=0.032) and in soft agar (p<0.01) compared to 143B-P and reduced tumor growth in orthotopic xenograft mouse models (p<0.001). These results demonstrate that 143B-MTXSR had reduced malignancy. 143B-MTXSR also showed an increased expression of PI3K (p<0.01), phosphorylated (activated) AKT (p=0.031), phosphorylated mTOR (p=0.043), and c-MYC (p=0.024) compared to 143B-P. CONCLUSION: The present study demonstrates that the increased expression of DHFR, PI3K/AKT/mTOR and c-MYC appears to be linked to super MTX resistance and, paradoxically, to reduced malignancy. The present results suggest that DHFR may be a powerful tumor suppressor when highly amplified.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Metotrexato , Osteossarcoma , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-myc , Serina-Treonina Quinases TOR , Tetra-Hidrofolato Desidrogenase , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/genética , Metotrexato/farmacologia , Humanos , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Amplificação de Genes , Transdução de Sinais/efeitos dos fármacos , Camundongos Nus , Antimetabólitos Antineoplásicos/farmacologia
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 670-678, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926952

RESUMO

OBJECTIVE: To investigate the clinical significance, functional role and potential downstream mechanism of USP5 in acute myeloid leukemia (AML). METHODS: The expression of USP5 in AML and normal tissues and its correlation with patients' survival were analyzed based on TCGA database. USP5 was knocked down and overexpressed in Jurkat and HL-60 cells using lentivirus. USP5 mRNA and protein expression were detected by RT-qPCR and Western blot, respectively. Cell proliferation and growth were measured by CCK-8 and methylcellulose colony-forming assay. Flow cytometry was used to analyze cell cycle and apoptosis. RESULTS: USP5 was highly expression in AML compared with normal tissues. Up-regulation of USP5 was negatively correlated with the survival of AML patients. USP5 knockdown and overexpression inhibited and promoted the proliferation and colony growth of AML cells, respectively. Cell cycle arrest and apoptosis were induced in USP5 knockdown Jurkat and HL-60 cells. Furthermore, USP5 knockdown inhibited the phosphrylation of AKT, mTOR and 4EBP1. CONCLUSION: Overexpression of USP5 predicts poor survival of AML patients. Targeting USP5 suppresses AKT/mTOR/4EBP1 signaling and reduces the proliferation and growth of AML cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Proliferação de Células , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células HL-60 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células Jurkat , Proteases Específicas de Ubiquitina/metabolismo , Relevância Clínica
17.
PLoS One ; 19(6): e0302721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935660

RESUMO

OBJECTIVE: To investigate the therapeutic effect and mechanism of sivelestat sodium on acute lung injury (AIL). METHODS: A rat model for ALI/acute respiratory distress syndrome (ALI/ARDS) was established. Pathological examination of lung tissue was conducted to assess lung injury. Blood gas in the arteries was measured using a blood analyzer. Changes in PaO2, PaO2/FiO2, and lung wet/dry (W/D) weight ratio were carefully compared. ELISA assay was conducted to estimate cell adhesion and inflammation response. Finally, real-time reverse transcription polymerase chain reaction and western blotting assay was used to determine the activation of PI3K/AKT/mTOR pathway. RESULTS: ARDS in vivo model was successfully constructed by LPS injection. Compared with the sham group, PaO2 and PaO2/FiO2 were significantly lower in the vehicle group, while the lung W/D ratio, the lung injury score, NE, VCAM-1, IL-8 andTNF-αwere significantly increased. After treatment with different doses of sivelestat sodium, we found PaO2, PaO2/FiO2 were prominently increased, while the lung W/D ratio, the lung injury score, NE, VCAM-1, IL-8, TNF-α levels were decreased in the dose-dependent manner. Meanwhile, compared with the vehicle group, the expression levels of Bax, PI3K, Akt and mTOR were significantly lower, and the expression of Bcl-2 was significantly higher after injection with sivelestat sodium. CONCLUSION: Sivelestat sodium has an interventional effect on ALI in sepsis by inhibiting the PI3K/AKT/mTOR signalling pathway.


Assuntos
Lesão Pulmonar Aguda , Glicina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Sulfonamidas , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Masculino , Glicina/análogos & derivados , Glicina/farmacologia , Glicina/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Modelos Animais de Doenças
18.
Nutrients ; 16(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931171

RESUMO

Taurine, a non-proteogenic amino acid and commonly used nutritional supplement, can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We found that OC ascites-derived cells contained significantly more intracellular taurine than cell culture-modeled OC. In culture, elevation of intracellular taurine concentration to OC ascites-cell-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse-phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant or wild-type p53 binding to DNA, activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage-sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth and metabolism, and activate cell protective mechanisms involving mTOR and DNA damage-sensing signal transducti.


Assuntos
Cisplatino , Dano ao DNA , Neoplasias Ovarianas , Serina-Treonina Quinases TOR , Taurina , Proteína Supressora de Tumor p53 , Taurina/farmacologia , Humanos , Serina-Treonina Quinases TOR/metabolismo , Feminino , Neoplasias Ovarianas/metabolismo , Dano ao DNA/efeitos dos fármacos , Cisplatino/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Antineoplásicos/farmacologia
19.
Sci Rep ; 14(1): 14914, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942821

RESUMO

Prostate cancer (PCa) is the most common cancer among men in the United States and the leading cause of cancer-related death. The Solute Carrier Family 14 Member 1 (SLC14A1) is a member of urea transporters which are important for the regulation of urine concentration. However, the physiological significance of SLC14A1 in PCa still remains unclear. In the present study, via bioinformatics analysis and experiments, we found that expression of SLC14A1 is significantly decreased in PCa progression, which could be attributed to hypermethylation on SLC14A1 promoter region. Moreover, its low expression and hypermethylation on SLC14A1 promoter are closely related to the poor prognosis of PCa patients. On the other hand, overexpression of SLC14A1 inhibited cell proliferation and metastasis while its overexpression also suppressed CDK1/CCNB1 pathway and mTOR/MMP-9 signaling pathway. Additionally, SLC14A1 expression is enriched in prostate basal-type cells. In summary, our study indicates that its low expression level and promoter hypermethylation of SLC14A1 may represent novel indicators for PCa progression and prognosis, and SLC14A1 could inhibit the progression of PCa.


Assuntos
Proteína Quinase CDC2 , Metilação de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , Neoplasias da Próstata , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Linhagem Celular Tumoral , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Proliferação de Células/genética , Regulação para Baixo , Prognóstico , Movimento Celular/genética
20.
Cell Death Dis ; 15(6): 423, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890304

RESUMO

Mitochondria play a crucial role in the progression of nasopharyngeal carcinoma (NPC). YME1L, a member of the AAA ATPase family, is a key regulator of mitochondrial function and has been implicated in various cellular processes and diseases. This study investigates the expression and functional significance of YME1L in NPC. YME1L exhibits significant upregulation in NPC tissues from patients and across various primary human NPC cells, while its expression remains relatively low in adjacent normal tissues and primary nasal epithelial cells. Employing genetic silencing through the shRNA strategy or knockout (KO) via the CRISPR-sgRNA method, we demonstrated that YME1L depletion disrupted mitochondrial function, leading to mitochondrial depolarization, reactive oxygen species (ROS) generation, lipid peroxidation, and ATP reduction within primary NPC cells. Additionally, YME1L silencing or KO substantially impeded cell viability, proliferation, cell cycle progression, and migratory capabilities, concomitant with an augmentation of Caspase-apoptosis activation in primary NPC cells. Conversely, ectopic YME1L expression conferred pro-tumorigenic attributes, enhancing ATP production and bolstering NPC cell proliferation and migration. Moreover, our findings illuminate the pivotal role of YME1L in Akt-mTOR activation within NPC cells, with Akt-S6K phosphorylation exhibiting a significant decline upon YME1L depletion but enhancement upon YME1L overexpression. In YME1L-silenced primary NPC cells, the introduction of a constitutively-active Akt1 mutant (caAkt1, at S473D) restored Akt-S6K phosphorylation, effectively ameliorating the inhibitory effects imposed by YME1L shRNA. In vivo studies revealed that intratumoral administration of YME1L-shRNA-expressing adeno-associated virus (AAV) curtailed subcutaneous NPC xenograft growth in nude mice. Furthermore, YME1L downregulation, concurrent with mitochondrial dysfunction and ATP reduction, oxidative injury, Akt-mTOR inactivation, and apoptosis induction were evident within YME1L-silenced NPC xenograft tissues. Collectively, these findings shed light on the notable pro-tumorigenic role by overexpressed YME1L in NPC, with a plausible mechanism involving the promotion of Akt-mTOR activation.


Assuntos
Proliferação de Células , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Animais , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/genética , Linhagem Celular Tumoral , Camundongos , Mitocôndrias/metabolismo , Apoptose/genética , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Serina-Treonina Quinases TOR/metabolismo , Masculino , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Feminino , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA