Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.370
Filtrar
1.
Behav Brain Res ; 459: 114796, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38048911

RESUMO

Exposure by women to stressors before pregnancy increases their risk of contracting prenatal depression, a condition which typically may require antidepressant treatment. And even though such perinatal antidepressant treatment is generally considered to be safe. For the mother, its effects on the development and functioning of the offspring`s brain remain unknown. In this study, we aimed to investigate the effects of pregestational chronic unpredictable stress (CUS) and perinatal bupropion on the anxiety behavior and firing activity of the dorsal raphe nucleus (DRN) serotonin (5-HT) neurons. Female rats underwent CUS for three weeks before mating. Bupropion was administered to them from gestation day ten until their offspring were weaned. Behavioral (elevated plus maze or EPM test) and neurophysiological (single-unit in vivo electrophysiology) assessments were performed on offspring who reached the age of 48-56 days. We found that maternal CUS and perinatal bupropion, as separate factors on their own, did not change offspring behavior. There was, however, an interaction between their effects on the number of entries to the open arms and time spent in the intersection: maternal CUS tended to decrease these values, and perinatal bupropion tended to diminish CUS effect. Maternal CUS increased the firing activity of 5-HT neurons in males, but not females. Perinatal bupropion did not alter the firing activity of 5-HT neurons but tended to potentiate the maternal CUS-induced increase in 5-HT neuronal firing activity. The CUS-induced increase in firing activity of 5-HT neurons might be a compensatory mechanism that diminishes the negative effects of maternal stress. Perinatal bupropion does not alter the offspring`s anxiety and firing activity of 5-HT, but it does intervene in the effects of maternal stress.


Assuntos
Bupropiona , Neurônios Serotoninérgicos , Humanos , Gravidez , Masculino , Ratos , Feminino , Animais , Lactente , Bupropiona/farmacologia , Serotonina/fisiologia , Ratos Sprague-Dawley , Núcleo Dorsal da Rafe , Ansiedade , Antidepressivos
2.
Eur J Pharmacol ; 949: 175715, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059373

RESUMO

5-Hydroxytryptamine (5-HT) can enhance human ureteral contractions. However, the mediating receptors have not been clarified. This study sought to further characterize the mediating receptors using several selective antagonists and agonists. Human distal ureters were obtained from 96 patients undergoing cystectomy. The mRNA expression levels of 5-HT receptors were examined using RT-qPCR experiments. The phasic contractions of ureter strips, either spontaneous or evoked with neurokinin, were recorded in an organ bath. Among the 13 5-HT receptors, 5-HT2A and 5-HT2C receptors showed the highest mRNA expression levels. 5-HT (10-7-10-4 M) increased the frequency and baseline tension of phasic contractions in a concentration-dependent manner. However, a desensitization effect was observed. The 5-HT2C receptor selective antagonist, SB242084 (10,30,100 nM), shifted the 5-HT concentration-response curves (frequency and baseline tension) rightward with a pA2 value of 8.05 and 7.75, respectively. 5-HT2C receptor selective agonist, vabicaserin, increased contraction frequency with an Emax of 35% of 5-HT. 5-HT2A receptor selective antagonist, volinanserin (1,10,100 nM), only reduced baseline tension with a pA2 of 8.18. The selective antagonists of 5-HT1A, 1B, 1D, 2B, 3, 4, 5, 6, and 7 had no antagonism. Blockade of voltage-gated sodium channels, α1-adrenergic receptors, adrenergic neurotransmission, and neurokinin-2 receptors using tetrodotoxin, tamsulosin, guanethidine, and Men10376, respectively, and desensitization of sensory afferents using capsaicin (100 µM), significantly reduced 5-HT effects. We conclude that 5-HT enhanced ureteral phasic contractions mainly by activating 5-HT2C and 5-HT2A receptors. Sympathetic nerve and sensory afferents partly contributed to 5-HT effects. 5-HT2C and 5-HT2A receptors could be promising targets for ureteral stone expulsion.


Assuntos
Serotonina , Ureter , Humanos , Serotonina/farmacologia , Serotonina/fisiologia , Receptor 5-HT2C de Serotonina , Contração Muscular , RNA Mensageiro
3.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36655738

RESUMO

By means of an expansive innervation, the serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) are positioned to enact coordinated modulation of circuits distributed across the entire brain in order to adaptively regulate behavior. Yet the network computations that emerge from the excitability and connectivity features of the DRN are still poorly understood. To gain insight into these computations, we began by carrying out a detailed electrophysiological characterization of genetically identified mouse 5-HT and somatostatin (SOM) neurons. We next developed a single-neuron modeling framework that combines the realism of Hodgkin-Huxley models with the simplicity and predictive power of generalized integrate-and-fire models. We found that feedforward inhibition of 5-HT neurons by heterogeneous SOM neurons implemented divisive inhibition, while endocannabinoid-mediated modulation of excitatory drive to the DRN increased the gain of 5-HT output. Our most striking finding was that the output of the DRN encodes a mixture of the intensity and temporal derivative of its input, and that the temporal derivative component dominates this mixture precisely when the input is increasing rapidly. This network computation primarily emerged from prominent adaptation mechanisms found in 5-HT neurons, including a previously undescribed dynamic threshold. By applying a bottom-up neural network modeling approach, our results suggest that the DRN is particularly apt to encode input changes over short timescales, reflecting one of the salient emerging computations that dominate its output to regulate behavior.


Assuntos
Núcleo Dorsal da Rafe , Serotonina , Camundongos , Animais , Núcleo Dorsal da Rafe/fisiologia , Serotonina/fisiologia , Neurônios/fisiologia , Redes Neurais de Computação
4.
Neuron ; 110(14): 2199-2201, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35863315

RESUMO

Serotonin is a multifunctional signaling molecule. In this issue of Neuron, Zhu et al. (2022) demonstrate, surprisingly, that despite the diminutive size of the enteric serotonin neuronal pool, it is serotonin from these neurons that drives proliferation of colorectal cancer stem cells.


Assuntos
Neoplasias Colorretais , Neurônios Serotoninérgicos , Humanos , Neurônios Serotoninérgicos/fisiologia , Serotonina/fisiologia
5.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502396

RESUMO

The monoamine serotonin, 5-hydroxytryptamine (5-HT), is a remarkable molecule with conserved production in prokaryotes and eukaryotes and a wide range of functions. In the gastrointestinal tract, enterochromaffin cells are the most important source for 5-HT production. Some intestinal bacterial species are also able to produce 5-HT. Besides its role as a neurotransmitter, 5-HT acts on immune cells to regulate their activation. Several lines of evidence indicate that intestinal 5-HT signaling is altered in patients with inflammatory bowel disease. In this review, we discuss the current knowledge on the production, secretion, and signaling of 5-HT in the intestine. We present an inventory of intestinal immune and epithelial cells that respond to 5-HT and describe the effects of these signaling processes on intestinal homeostasis. Further, we detail the mechanisms by which 5-HT could affect inflammatory bowel disease course and describe the effects of interventions that target intestinal 5-HT signaling.


Assuntos
Trato Gastrointestinal/metabolismo , Serotonina/metabolismo , Serotonina/fisiologia , Animais , Colite , Células Enterocromafins/metabolismo , Células Enterocromafins/fisiologia , Células Epiteliais/metabolismo , Trato Gastrointestinal/fisiologia , Homeostase/fisiologia , Humanos , Inflamação , Doenças Inflamatórias Intestinais , Mucosa Intestinal/metabolismo , Intestinos , Transdução de Sinais/efeitos dos fármacos
6.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281274

RESUMO

It has been recognized that serotonin 2A receptor (5-HT2A) agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI) impairs serotonergic homeostasis. However, the mechanism of DOI-induced serotonergic behaviors remains to be explored. Moreover, little is known about therapeutic interventions against serotonin syndrome, although evidence suggests that ginseng might possess modulating effects on the serotonin system. As ginsenoside Re (GRe) is well-known as a novel antioxidant in the nervous system, we investigated whether GRe modulates 5-HT2A receptor agonist DOI-induced serotonin impairments. We proposed that protein kinase Cδ (PKCδ) mediates serotonergic impairments. Treatment with GRe or 5-HT2A receptor antagonist MDL11939 significantly attenuated DOI-induced serotonergic behaviors (i.e., overall serotonergic syndrome behaviors, head twitch response, hyperthermia) by inhibiting mitochondrial translocation of PKCδ, reducing mitochondrial glutathione peroxidase activity, mitochondrial dysfunction, and mitochondrial oxidative stress in wild-type mice. These attenuations were in line with those observed upon PKCδ inhibition (i.e., pharmacologic inhibitor rottlerin or PKCδ knockout mice). Furthermore, GRe was not further implicated in attenuation mediated by PKCδ knockout in mice. Our results suggest that PKCδ is a therapeutic target for GRe against serotonergic behaviors induced by DOI.


Assuntos
Ginsenosídeos/farmacologia , Proteína Quinase C-delta/metabolismo , Antagonistas da Serotonina/farmacologia , Síndrome da Serotonina/prevenção & controle , Acetofenonas/farmacologia , Anfetaminas/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Benzopiranos/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Piperidinas/farmacologia , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/genética , Inibidores de Proteínas Quinases/farmacologia , Serotonina/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Síndrome da Serotonina/induzido quimicamente , Síndrome da Serotonina/fisiopatologia
7.
Am J Chin Med ; 48(4): 793-811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32420752

RESUMO

Acupuncture reduces pain by activating specific areas called acupoints on the patient's body. When these acupoints are fully activated, sensations of soreness, numbness, fullness, or heaviness called De qi or Te qi are felt by clinicians and patients. There are two kinds of acupuncture, manual acupuncture and electroacupuncture (EA). Compared with non-acupoints, acupoints are easily activated on the basis of their special composition of blood vessels, mast cells, and nerve fibers that mediate the acupuncture signals. In the spinal cord, EA can inhibit glial cell activation by down-regulating the chemokine CX3CL1 and increasing the anti-inflammatory cytokine interleukin-10. This inhibits P38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways, which are associated with microglial activation of the C-Jun N-terminal kinase signaling pathway and subsequent astrocyte activation. The inactivation of spinal microglia and astrocytes mediates the immediate and long-term analgesic effects of EA, respectively. A variety of pain-related substances released by glial cells such as the proinflammatory cytokines tumor necrosis factor [Formula: see text], interleukin-1[Formula: see text], interleukin-6, and prostaglandins such as prostaglandins E2 can also be reduced. The descending pain modulation system in the brain, including the anterior cingulated cortex, the periaqueductal gray, and the rostral ventromedial medulla, plays an important role in EA analgesia. Multiple transmitters and modulators, including endogenous opioids, cholecystokinin octapeptide, 5-hydroxytryptamine, glutamate, noradrenalin, dopamine, [Formula: see text]-aminobutyric acid, acetylcholine, and orexin A, are involved in acupuncture analgesia. Finally, the "Acupuncture [Formula: see text]" strategy is introduced to help clinicians achieve better analgesic effects, and a newly reported acupuncture method called acupoint catgut embedding, which injects sutures made of absorbable materials at acupoints to achieve long-term effects, is discussed.


Assuntos
Analgesia por Acupuntura , Eletroacupuntura , Neurotransmissores/fisiologia , Analgesia por Acupuntura/métodos , Pontos de Acupuntura , Hormônio Adrenocorticotrópico/fisiologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Quimiocina CX3CL1/metabolismo , Citocinas/metabolismo , Dopamina/fisiologia , Ácido Glutâmico/fisiologia , Hemodinâmica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Neuroglia/fisiologia , Norepinefrina/fisiologia , Peptídeos Opioides/fisiologia , Serotonina/fisiologia , Sincalida/fisiologia , Medula Espinal/citologia , Ácido gama-Aminobutírico/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245184

RESUMO

BACKGROUND: Reward processing is fundamental for animals to survive and reproduce. Many studies have shown the importance of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons in this process, but the strongly correlative link between the activity of DRN 5-HT neurons and rewarding/aversive potency is under debate. Our primary objective was to reveal this link using two different strategies to transduce DRN 5-HT neurons. METHODS: For transduction of 5-HT neurons in wildtype mice, adeno-associated virus (AAV) bearing the mouse tryptophan hydroxylase 2 (TPH2) gene promoter was used. For transduction in Tph2-tTA transgenic mice, AAVs bearing the tTA-dependent TetO enhancer were used. To manipulate the activity of 5-HT neurons, optogenetic actuators (CheRiff, eArchT) were expressed by AAVs. For measurement of rewarding/aversive potency, we performed a nose-poke self-stimulation test and conditioned place preference (CPP) test. RESULTS: We found that stimulation of DRN 5-HT neurons and their projections to the ventral tegmental area (VTA) increased the number of nose-pokes in self-stimulation test and CPP scores in both targeting methods. Concomitantly, CPP scores were decreased by inhibition of DRN 5-HT neurons and their projections to VTA. CONCLUSION: Our findings indicate that the activity of DRN 5-HT neurons projecting to the VTA is a key modulator of balance between reward and aversion.


Assuntos
Núcleo Dorsal da Rafe/fisiologia , Neurônios/fisiologia , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Área Tegmentar Ventral/fisiologia , Animais , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiologia , Escala de Avaliação Comportamental , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/fisiologia , Dependovirus/genética , Núcleo Dorsal da Rafe/metabolismo , Elementos Facilitadores Genéticos , Vetores Genéticos , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Optogenética , Regiões Promotoras Genéticas , Recompensa , Serotonina/fisiologia , Triptofano Hidroxilase/genética , Área Tegmentar Ventral/metabolismo
9.
Elife ; 92020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32324136

RESUMO

Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.


Assuntos
Desenvolvimento Embrionário/fisiologia , Células Germinativas/fisiologia , Neurônios/fisiologia , Serotonina/fisiologia , Estresse Fisiológico/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas de Ligação a DNA/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Temperatura Alta , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Fatores de Elongação da Transcrição/fisiologia
10.
Physiol Rep ; 8(5): e14395, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32170814

RESUMO

Equilibrative nucleoside transporter 4 (ENT4), encoded by SLC29A4, mediates the flux of both 5-hydroxytryptamine (5-HT) and adenosine across cell membranes. We hypothesized that loss of ENT4 function in mice would modify the effects of these established regulators of vascular function. Male and female wild-type (WT) and slc29a4-null (ENT4-KO) mice were compared with respect to their hemodynamics and mesenteric vascular function. Male ENT4-KO mice had a complete loss of myogenic tone in their mesenteric resistance arteries. This was accompanied by a decrease in blood flow in the superior mesenteric artery in the male ENT4-KO mice, and a reduced responsiveness to 5-HT. In contrast, endothelium-dependent relaxations of mesenteric arteries from female ENT4-KO mice were more sensitive to Ca2+ -activated K+ (KCa ) channel blockade than WT mice. Female ENT4-KO mice also demonstrated an enhanced vasodilatory response to adenosine in vivo that was not seen in males. Ketanserin (5-HT2A inhibitor) and GR55562 (5-HT1B/1D inhibitor) decreased 5-HT-induced tone, but only ketanserin inhibited the relaxant effect of 5-HT in mesenteric arteries. 5-HT-evoked increases in tone were elevated in arteries from ENT4-KO mice upon block of endothelial relaxant pathways, with arteries from female ENT4-KO mice showing the greatest increase. Adenosine A2b receptor expression was decreased, while other adenosine transporter subtypes, as well as adenosine deaminase and adenosine kinase were increased in mesenteric arteries from male, but not female, ENT4-KO mice. These findings indicate that deletion of slc29a4 leads to sex-specific changes in vascular function with significant consequences for regulation of blood flow and pressure by adenosine and 5-HT.


Assuntos
Adenosina/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Artérias Mesentéricas/fisiologia , Serotonina/fisiologia , Adenosina/administração & dosagem , Animais , Pressão Sanguínea , Feminino , Frequência Cardíaca , Masculino , Proteínas de Membrana Transportadoras/genética , Artérias Mesentéricas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serotonina/administração & dosagem , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia
11.
Mol Neurobiol ; 57(5): 2391-2419, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32062841

RESUMO

Psoriasis is a chronic immune-mediated skin disease, with a pathogenesis resulting from a combination of genetic and environmental factors. The pathogenesis of psoriasis is driven by the interaction between innate and adaptive immune cells and keratinocytes, in a complex process mediated by cytokines and other signaling molecules. This leads to an inflammatory process with increased proliferation of epidermal cells, neo-angiogenesis, and infiltration of white cells in the skin, which cause the characteristic psoriasis plaques. Several studies have suggested that the neurotransmitter serotonin, a key mediator between the skin and the neuroendocrine system, also plays an important role in the pathogenesis of psoriasis. Psoriasis often needs long-term treatment, which can be a burden. Thus, the choice of the treatment is crucial to increase the patients' adherence and quality of life. This review addresses the currently available systemic and topical treatments for psoriasis, used by themselves or combined with phototherapy. It particularly focuses on the importance of advanced drug delivery systems as a way to increase the drug penetration and retention in the skin, while also enhancing its solubility and stability. Finally, we discuss the role of the serotonin system in psoriasis, and summarize what is known about the effects of antidepressants, in particular specific serotonin reuptake inhibitors, on the physical symptoms of this disease.


Assuntos
Fármacos Dermatológicos/uso terapêutico , Psoríase/tratamento farmacológico , Serotoninérgicos/uso terapêutico , Serotonina/fisiologia , Administração Oral , Administração Tópica , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Antidepressivos/administração & dosagem , Antidepressivos/uso terapêutico , Produtos Biológicos/administração & dosagem , Produtos Biológicos/uso terapêutico , Medicamentos Biossimilares/administração & dosagem , Medicamentos Biossimilares/uso terapêutico , Ensaios Clínicos como Assunto , Fármacos Dermatológicos/administração & dosagem , Formas de Dosagem , Sistemas de Liberação de Medicamentos , Emulsões , Previsões , Terapia Genética , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/uso terapêutico , Imunossupressores/administração & dosagem , Imunossupressores/uso terapêutico , Lipossomos , Terapia com Luz de Baixa Intensidade , Nanopartículas , Fototerapia , Psoríase/metabolismo , Psoríase/radioterapia , Psoríase/terapia , Serotoninérgicos/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
12.
Exp Neurol ; 326: 113165, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887304

RESUMO

Recordings from infants who died suddenly and unexpectedly demonstrate the occurrence of recurring apneas, ineffective gasping, and finally, failure to restore eupnea and arouse prior to death. Immunohistochemical and autoradiographic data demonstrate a constellation of serotonergic defects in the caudal raphe nuclei in infants who died of Sudden Infant Death Syndrome (SIDS). The purpose of this review is to synthesize what is known about adaptive responses of the infant to severely hypoxic conditions, which unleash a flood of neuromodulators that inhibit cardiorespiratory function, thermogenesis, and arousal and the emerging role of serotonin, which combats this cardiorespiratory inhibition to foster autoresuscitation, eupnea, and arousal to ensure survival following an hypoxic episode. The laryngeal and carotid body chemoreflexes are potent in newborns and infants, and both reflexes can induce apnea and bradycardia, which may be adaptive initially, but must be terminated if an infant is to survive. Serotonin has a unique ability to touch on each of the processes that may be required to recover from hypoxic reflex apnea: gasping, the restoration of heart rate and blood pressure, termination of apneas and, eventually, stimulation of eupnea and arousal. Recurrent apneic events, bradycardia, ineffective gasping and a failure to terminate apneas and restore eupnea are observed in animals harboring defects in the caudal serotonergic system models - all of these phenotypes are reminiscent of and compatible with the cardiorespiratory recordings made in infants who subsequently died of SIDS. The caudal serotonergic system provides an organized, multi-pronged defense against reflex cardiorespiratory inhibition and the hypoxia that accompanies prolonged apnea, bradycardia and hypotension, and any deficiency of caudal serotonergic function will increase the propensity for sudden unexplained infant death.


Assuntos
Serotonina/fisiologia , Morte Súbita do Lactente , Animais , Nível de Alerta , Humanos , Lactente , Recém-Nascido , Respiração , Mecânica Respiratória
13.
Cereb Cortex ; 30(2): 488-504, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31210267

RESUMO

Neocortical GABAergic interneurons expressing vasoactive intestinal polypeptide (VIP) contribute to sensory processing, sensorimotor integration, and behavioral control. In contrast to other major subpopulations of GABAergic interneurons, VIP neurons show a remarkable diversity. Studying morphological and electrophysiological properties of VIP cells, we found a peculiar group of neurons in layer II/III of mouse primary somatosensory (barrel) cortex, which showed a highly dynamic burst firing behavior at resting membrane potential that switched to tonic mode at depolarized membrane potentials. Furthermore, we demonstrate that burst firing depends on T-type calcium channels. The burst-tonic switch could be induced by acetylcholine (ACh) and serotonin. ACh mediated a depolarization via nicotinic receptors whereas serotonin evoked a biphasic depolarization via ionotropic and metabotropic receptors in 48% of the population and a purely monophasic depolarization via metabotropic receptors in the remaining cells. These data disclose an electrophysiologically defined subpopulation of VIP neurons that via neuromodulator-induced changes in firing behavior is likely to regulate the state of cortical circuits in a profound manner.


Assuntos
Potenciais de Ação , Neurônios GABAérgicos/fisiologia , Córtex Somatossensorial/fisiologia , Peptídeo Intestinal Vasoativo/análise , Acetilcolina/administração & dosagem , Acetilcolina/fisiologia , Animais , Canais de Cálcio Tipo T/fisiologia , Agonistas Colinérgicos/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Camundongos Transgênicos , Serotonina/administração & dosagem , Serotonina/fisiologia , Serotoninérgicos/administração & dosagem , Córtex Somatossensorial/diagnóstico por imagem
14.
Biol Pharm Bull ; 42(8): 1253-1267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31366863

RESUMO

Systemic platelet behaviors in experimental animals are often assessed by infusion of isotope-labeled platelets and measuring them under anesthesia. However, such procedures alter, therefore may not reveal, real-life platelet behaviors. 5-Hydroxytryptamine (5HT or serotonin) is present within limited cell-types, including platelets. In our studies, by measuring 5HT as a platelet-marker in non-anesthetized mice, we identified stimulation- and time-dependent accumulations in liver, lung, and/or spleen as important systemic platelet behaviors. For example, intravenous, intraperitoneal, or intragingival injection of lipopolysaccharide (LPS, a cell-wall component of Gram-negative bacteria), interleukin (IL)-1, or tumor necrosis factor (TNF)-α induced hepatic platelet accumulation (HPA) and platelet translocation into the sinusoidal and perisinusoidal spaces or hepatocytes themselves. These events occurred "within a few hours" of the injection, caused hypoglycemia, and exhibited protective or causal effects on hepatitis. Intravenous injection of larger doses of LPS into normal mice, or intravenous antigen-challenge to sensitized mice, induced pulmonary platelet accumulation (PPA), as well as HPA. These reactions occurred "within a few min" of the LPS injection or antigen challenge and resulted in shock. Intravenous injection of 5HT or a catecholamine induced a rapid PPA "within 6 s." Intravenous LPS injection, within a minute, increased the pulmonary catecholamines that mediate the LPS-induced PPA. Macrophage-depletion from liver and spleen induced "day-scale" splenic platelet accumulation, suggesting the spleen is involved in clearing senescent platelets. These findings indicate the usefulness of 5HT as a marker of platelet behaviors, and provide a basis for a discussion of the roles of platelets as both "defenders" and "guardians."


Assuntos
Plaquetas/fisiologia , Fígado/fisiologia , Pulmão/fisiologia , Serotonina/fisiologia , Baço/fisiologia , Animais , Humanos , Camundongos
15.
Physiol Behav ; 209: 112621, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323296

RESUMO

Agonistic behaviour is common in an encounter between two crustaceans. It often causes limb disability and consumes a lot of energy, which is harmful for the growth and survival of commercially important crustaceans. In the present study, we mainly focused on the agonistic behaviour of the Chinese mitten crab, Eriocheir sinensis, which is an important species of the aquaculture industry in China. We recorded agnostic behaviour with a high-definition camera and preliminarily evaluated the role of serotonin (5-HT) or dopamine (DA)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway and eyestalk in the behaviour. The results showed that agonistic behaviour in E. sinensis consisted of three stages: approach, contact and fight. We found that the number of fights and cumulative time of fight were significantly higher in the male vs. male group than in the female vs. female and female vs. male groups (P < 0.05). After 1 h of agonistic behaviour, 5-HT concentration showed a significant increase and DA concentration showed a significant decrease when compared with the control group (no encounter; P < 0.05). 5-HT1B and 5-HT2B mRNA levels showed a significant increase in the eyestalk (P < 0.05). 5-HT7 mRNA levels showed significant downregulation in the thoracic ganglia and DA1A mRNA levels showed upregulation in the intestine (P < 0.05). DA2 mRNA levels showed a significant decrease in the eyestalk (P < 0.05). These changes were accompanied by a significant increase in cAMP level and significant decrease in PKA level in the haemolymph (P < 0.05). In addition, a significant decrease in glucose levels was detected after the agonistic behaviour. Crustacean hyperglycemic hormone (CHH) mRNA levels showed significant upregulation in the eyestalk and significant downregulation in the intestine (P < 0.05). The number of fights and cumulative time of fight in the left eyestalk ablation (L-X vs. L-X) group were more and longer than those in the intact eyestalk (C vs. C), right eyestalk ablation (R-X vs. R-X) and bilateral eyestalk ablation (D-X vs. D-X) groups. In short, E. sinensis shows special agonistic behaviour modulated by 5-HT or DA-cAMP-PKA pathway and eyestalk, especially the left eyestalk.


Assuntos
Comportamento Agonístico/fisiologia , Braquiúros/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/fisiologia , Dopamina/fisiologia , Serotonina/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Artrópodes/biossíntese , Proteínas de Artrópodes/metabolismo , Feminino , Glucose/metabolismo , Hemolinfa/metabolismo , Hormônios de Invertebrado/biossíntese , Hormônios de Invertebrado/metabolismo , Masculino , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/metabolismo , Receptores Dopaminérgicos/biossíntese , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina
16.
Brain Res Bull ; 149: 175-183, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022436

RESUMO

OBJECTIVE: The role of gonadal hormones in chronic intermittent hypoxia (CIH)-evoked hypoglossal nerve (XII) neuroplasticity has not been thoroughly studied. The purpose of this study was to reveal the effects of gonadal hormone concentration variations on the XII discharge activity of rats exposed to CIH and the corresponding relationship with 5-hydroxytryptamine (5-HT). METHODS: This study employed five groups of female rats and six groups of male rats. Gonadal hormone levels were modified through gonadal resection and daily supplementation with gonadal hormones in rats of both sexes. Rats in the CIH groups were exposed to an additional 4 weeks of CIH once the operative incision for gonadectomy had healed. Finally, XII spontaneous discharge activities were recorded, and serum estradiol, testosterone and 5-HT concentrations were detected by ELISA. RESULTS: Among the female rats, the normal estradiol level groups expressed XII neuroplasticity, while the low estradiol level group failed to express this phenomenon. XII neuroplasticity was related to the serum estradiol concentration. In the male rats, XII neuroplasticity was successfully evoked in the normal testosterone level group but was suppressed in the low testosterone level group and aromatase inhibitor group. XII neuroplasticity was not significantly related to serum testosterone concentrations. Both estradiol and testosterone concentrations were related to 5-HT concentrations. CONCLUSIONS: This is the first study to analyze the effects of gonadal hormones on XII neuroplasticity in both female and male rats. The results suggest that the estradiol level is related to XII neuroplasticity rather than the testosterone level, and testosterone may indirectly adjust XII neuroplasticity by converting to estradiol. Estradiol and testosterone levels are related to 5-HT levels in the respective genders.


Assuntos
Hormônios Gonadais/fisiologia , Nervo Hipoglosso/metabolismo , Hipóxia/metabolismo , Animais , Estradiol/farmacologia , Feminino , Hormônios Gonadais/metabolismo , Hormônios Gonadais/farmacologia , Hipóxia/fisiopatologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Serotonina/fisiologia , Testosterona/farmacologia
17.
PLoS One ; 14(1): e0210949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30677060

RESUMO

We show that in an animal model of anxiety the overall excitation, particularly in the infralimbic region of the medial prefrontal cortex (IL), is increased and that the activity ratio between excitatory pyramidal neurons and inhibitory interneurons (AR PN/IN) is shifted towards excitation. The same change in AR PN/IN is evident for wildtype mice, which have been exposed to an anxiety stimulus. We hypothesize, that an elevated activity and the imbalance of excitation (PN) and inhibition (IN) within the neuronal microcircuitry of the prefrontal cortex is responsible for anxiety behaviour and employed optogenetic methods in freely moving mice to verify our findings. Consistent with our hypothesis elevation of pyramidal neuron activity in the infralimbic region of the prefrontal cortex significantly enhanced anxiety levels in several behavioural tasks by shifting the AR PN/IN to excitation, without affecting motor behaviour, thus revealing a novel mechanism by which anxiety is facilitated.


Assuntos
Ansiedade/patologia , Ansiedade/fisiopatologia , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Células Piramidais/patologia , Células Piramidais/fisiologia , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Animais , Ansiedade/etiologia , Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/patologia , Transtornos de Ansiedade/fisiopatologia , Modelos Animais de Doenças , Núcleo Dorsal da Rafe/patologia , Núcleo Dorsal da Rafe/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Optogenética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor 5-HT1A de Serotonina/deficiência , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/fisiologia , Serotonina/fisiologia , Transmissão Sináptica
18.
Ann Card Anaesth ; 22(1): 79-82, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30648684

RESUMO

Tricuspid regurgitation in carcinoid syndrome leads to significant morbidity and mortality that may warrant a tricuspid valve replacement. However, for patients with high serotonin levels and known hypercoagulable risks, the optimum timing for surgery and postoperative anticoagulation approaches remain unclear. High serotonin-triggered hypercoagulability makes prosthetic valves susceptible to thrombosis. Despite appropriate management with a somatostatin analog, some patients continue to have high markers of serotonin that causes platelet aggregation and rapid clot formation. In severely symptomatic patients who require valve surgery, it may not be feasible to postpone surgery until these metabolites are normalized, which may add a substantial risk for postoperative valve thrombosis to an otherwise uneventful procedure. In some, there is a significant need to predict and prevent bioprosthetic valve thrombosis in carcinoid heart disease and to identify best anticoagulation practices across a spectrum of its complex coagulation dynamics and clinical presentation.


Assuntos
Bioprótese/efeitos adversos , Doença Cardíaca Carcinoide/cirurgia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Insuficiência da Valva Tricúspide/cirurgia , Anticoagulantes/uso terapêutico , Doença Cardíaca Carcinoide/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Serotonina/fisiologia , Trombose/cirurgia , Insuficiência da Valva Tricúspide/diagnóstico por imagem
19.
Pharmacol Res ; 140: 67-74, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30107202

RESUMO

A large number of studies have focused on the role of serotonin as a neurotransmitter in the central nervous system, although only a small percentage of the body's serotonin (∼5%) can be found in the mature brain of mammals. In the gut, the enterochromaffin cells are scattered in the enteric epithelium from the stomach through the colon and produce over 95% of the body's serotonin. Since the generation of tryptophan hydroxylase (Tph1 and Tph2) knockout mice, unsuspected roles have been identified for serotonin synthesized outside the brain. Moreover, the murine model deficient in peripheral serotonin (Tph1-/-) is a unique experimental tool for exploring the molecular and cellular mechanisms involving serotonin's local effects through microserotonergic systems. In this review, we focus on peripheral serotonin and its role on progenitor or stem cells as well as on hematopoietic progenitors. We discuss the possible role of serotonin in hematopoietic diseases, and whether targeting the serotonergic system could be of therapeutic value for the regulation of normal and pathological hematopoiesis.


Assuntos
Hematopoese , Serotonina/fisiologia , Células-Tronco/fisiologia , Animais , Desenvolvimento Embrionário , Humanos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
20.
Pharmacol Res ; 140: 33-42, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30208338

RESUMO

Heart valve disease (HVD) is a complex entity made by different pathological processes that ultimately lead to the abnormal structure and disorganization of extracellular matrix proteins resulting to dysfunction of the leaflets. At its final evolutionary step, treatments are limited to the percutaneous or surgical valve replacement, whatever the original cause of the degeneration. Understanding early molecular mechanisms that regulate valve interstitial cells remodeling and disease progression is challenging and could pave the way for future drugs aiming to prevent and/or reverse the process. Some valve degenerative processes such as the carcinoid heart disease, drug-induced valvulopathy and degenerative mitral valve disease in small-breed dogs are clearly linked to serotonin. The carcinoid heart is typically characterized by a right-sided valve dysfunction, observed in patients with carcinoid tumors developed from serotonin-producing gut enterochromaffin cells. Fenfluramine or ergot derivatives were linked to mitral and aortic valve dysfunction and share in common the pharmacological property of being 5-HT2B receptor agonists. Finally, some small-breed dogs, such as the Cavalier King Charles Spaniel are highly prone to degenerative mitral valve disease with a prevalence of 40% at 4 years-old, 70% at 7 years-old and 100% in 10-year-old animals. This degeneration has been linked to high serum serotonin, 5-HT2B receptor overexpression and SERT downregulation. Through the comprehension of serotonergic mechanisms involved into these specific situations, new therapeutic approaches could be extended to HVD in general. More recently, a serotonin dependent/ receptor independent mechanism has been suggested in congenital mitral valve prolapse through the filamin-A serotonylation. This review summarizes clinical and molecular mechanisms linking the serotonergic system and heart valve disease, opening the way for future pharmacological research in the field.


Assuntos
Doenças das Valvas Cardíacas/fisiopatologia , Valvas Cardíacas/fisiologia , Serotonina/fisiologia , Animais , Doenças das Valvas Cardíacas/tratamento farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA