RESUMO
Bitis arietans (Puff adder) is a poisonous snake and its bite causes pain, edema, blistering, tissue damage and neutrophilia. There are limited studies on inflammatory process involved in Bitis arietans envenomation. We therefore investigated the role of proinflammatory cytokines in Bitis arietans venom (BAV)-induced liver and kidney toxicities in rats. Adult male Sprague Dawley rats were treated with BAV (0.5 mg/kg) and were sacrificed after specific time intervals (2 h, 24 h, 1 week). Blood samples were collected for liver and renal function tests and tissues were collected for histopathology and gene expression analysis of IL-1ß, IL-6, and TNF-α in liver and kidneys. There was no significant difference in serum ALT activities among different treatment groups. Serum AST was significantly increased at 24 h following BAV injection. In both organs, injection of BAV resulted in mild inflammatory cell infiltration at 2 h post-dosing which normalized after 1 week. In liver, there was a significant increase in IL-1ß expression in BAV-treated rats at 2 and 24 h post-dosing that reduced after one week. Significant increases in IL-6 and TNF-α were observed at 24 h and 1 week after BAV exposure. In kidneys, there were significant increases in IL-1ß and TNF-α expression at 24 h that subsided after 1 week. In conclusion, a single sub-lethal dose of BAV caused an acute phase inflammation in liver and kidneys. It is most probable that a higher dose of BAV may result in greater and irreversible damage to these organs.
Assuntos
Citocinas , Rim , Fígado , Ratos Sprague-Dawley , Animais , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Citocinas/metabolismo , Citocinas/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Ratos , Interleucina-6/genética , Interleucina-6/metabolismo , Viperidae , Venenos de Serpentes/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Alanina Transaminase/sangue , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/induzido quimicamente , Venenos de Víboras/toxicidade , Viperinae , Serpentes PeçonhentasRESUMO
"True" cobras (genus Naja) are among the venomous snakes most frequently involved in snakebite accidents in Africa and Asia. The Cape cobra (Naja nivea) is one of the African cobras of highest medical importance, but much remains to be learned about its venom. Here, we used a shotgun proteomics approach to better understand the qualitative composition of N. nivea venom and tested its cytotoxicity and protease activity as well as its effect on intracellular Ca2+ release and NO synthesis. We identified 156 venom components representing 17 protein families, with the dominant ones being three-finger toxins, mostly of the short-chain type. Two-thirds of the three-finger toxin entries identified were assigned as cytotoxins, while the remainder were categorized as neurotoxins, including short-chain, long-chain, and ancestral three-finger toxins. We also identified snake venom metalloproteinases and members of CRISP, l-amino acid oxidase, and other families. Protease activity and its effect on intracellular Ca2+ release and NO synthesis were low. Phospholipase A2 activity was surprisingly high, despite this toxin family being marginally recovered in the analyzed venom. Cytotoxicity was relevant only at higher venom concentrations, with macrophage and neuroblastoma cell lines showing the lowest viability. These results are in line with the predominantly neurotoxic envenomation symptoms caused by Cape cobra bites. The present overview of the qualitatively complex and functionally intriguing venom of N. nivea may provide insights into the pathobiochemistry of this species' venom.
Assuntos
Venenos Elapídicos , Naja , Animais , Venenos Elapídicos/toxicidade , Venenos Elapídicos/enzimologia , Humanos , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Cálcio/metabolismo , Neurotoxinas/toxicidade , Proteômica , Linhagem Celular Tumoral , Fosfolipases A2/toxicidade , Fosfolipases A2/metabolismo , Serpentes PeçonhentasRESUMO
Disintegrins are a class of peptides found in snake venom that inhibit the activity of integrins, which are essential cell adhesion receptors in tumor progression and development. In this work, moojecin, a RGD disintegrin, was isolated from Bothrops moojeni snake venom, and its antitumor potential in acute myeloid leukemia (AML) HL-60 and THP-1 cells was characterized. The isolation was performed using a C18 reverse-phase column in two chromatographic steps, and its molecular mass is 7417.84 Da. N-terminal and de novo sequencing was performed to identify moojecin. Moojecin did not show cytotoxic or antiproliferative activity in THP-1 and HL-60 at tested concentrations, but it exhibited significant antimigratory activity in both cell lines, as well as inhibition of angiogenesis in the tube formation assay on Matrigel in a dose-dependent manner. A stronger interaction with integrin αVß3 was shown in integrin interaction assays compared to α5ß1, and the platelet aggregation assay indicated an IC50 of 5.039 µg/mL. Preliminary evaluation of disintegrin toxicity revealed no incidence of hemolysis or cytotoxic effects on peripheral blood mononuclear cells (PBMCs) across the tested concentrations. Thus, this is the first study to report the isolation, functional and structural characterization of a disintegrin from B. moojeni venom and bring a new perspective to assist in AML treatment.
Assuntos
Antineoplásicos , Bothrops , Desintegrinas , Leucemia Mieloide Aguda , Humanos , Desintegrinas/farmacologia , Desintegrinas/química , Desintegrinas/isolamento & purificação , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Células HL-60 , Venenos de Crotalídeos/química , Agregação Plaquetária/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Serpentes PeçonhentasRESUMO
Mexico has the highest diversity of snake species in the world, following Australia when considering just venomous snakes. Specifically, in Sonora, the second largest state in the country, more than 15 highly venomous species occur, including the northern black-tailed rattlesnake (Crotalus molossus). This specie's venom has not been as thoroughly researched in contrast with other Mexican vipers, nevertheless some studies report its biological activity and even pharmacological potential with antibacterial and cytotoxic activity. In this study we identified the main protein components from a pool of C. molossus venom through a gel-free proteomics approach, reporting â¼140 proteins belonging to the SVMP (38.76%), PLA2 (28.75%), CTL (11.93%), SVSP (6.03%) and LAAO (5.67%) toxin families. To study its biological activities, we evaluated its hemolytic, antibacterial, and cytotoxic activity in red blood cells, Gram positive and negative bacteria and a luminal A breast carcinoma cell line (T47D), respectively, in vitro. We report that concentrations <100 µg/mL are potentially not hemolytic and reduced the bacteria viability of E. coli and S. aureus with an IC50 of 10.27 and 11.51 µg/mL, respectively. Finally, we determined the C. molossus venom as cytotoxic against the T47D breast carcinoma cell line, with an IC50 of 1.55 µg/mL. We suggest that the evaluated cytotoxicity was due to a high abundance of SVMPs and PLA2s, since it's been reported that they affect the extracellular matrix and membrane permeation. This may provide a useful tool for pharmaceutical screening in the future.
Assuntos
Antibacterianos , Venenos de Crotalídeos , Crotalus , Escherichia coli , Staphylococcus aureus , Animais , Venenos de Crotalídeos/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Hemólise/efeitos dos fármacos , Feminino , Testes de Sensibilidade Microbiana , Eritrócitos/efeitos dos fármacos , Serpentes PeçonhentasRESUMO
This report describes Schizangiella infections in colubrid and viperid snakes. A captive eastern ratsnake (Pantherophis alleghaniensis) was presented for a large intraoral mass associated with the mandible. The mass was debulked and histologic examination revealed severe, granulomatous stomatitis with intralesional fungi exhibiting morphologic features consistent with Schizangiella serpentis. PCR and sequencing of affected tissues confirmed S. serpentis. Because of declining health, the ratsnake was euthanized and postmortem examination identified a disseminated S. serpentis infection involving the skeletal musculature, lung, kidney, mesentery, and mandible. A wild-caught timber rattlesnake (Crotalus horridus) was presented for cutaneous lesions, weakness, and lethargy and later died. Postmortem examination revealed a mass-like structure in the esophagus characterized by high numbers of Schizangiella-like fungi associated with extensive granulomatous inflammation; the snake also had cutaneous mycosis suggestive of ophidiomycosis. This is the first report to document the unique morphologic features of S. serpentis in tissues and the presentation of schizangiellosis in snakes. Schizangiellosis should be considered as a differential diagnosis for nodular lesions involving the oral cavity and/or the gastrointestinal tract of snakes.
Assuntos
Crotalus , Animais , Colubridae , Micoses/veterinária , Micoses/microbiologia , Micoses/patologia , Micoses/diagnóstico , Thelazioidea/isolamento & purificação , Animais de Zoológico , Masculino , Feminino , Serpentes PeçonhentasRESUMO
Metastatic melanoma is highly aggressive and challenging, often leading to a grim prognosis. Its progression is swift, especially when mutations like BRAFV600E continuously activate pathways vital for cell growth and survival. Although several treatments target this mutation, resistance typically emerges over time. In recent decades, research has underscored the potential of snake venoms and peptides as bioactive substances for innovative drugs, including anti-coagulants, anti-microbial, and anti-cancer agents. Leveraging this knowledge, we propose employing a bioinformatics simulation approach to: a) Predict how well a peptide (DisBa01) from Bothrops alternatus snake venom binds to the melanoma receptor BRAFV600E via Molecular Docking. b) Identify the specific peptide binding sites on receptors and analyze their proximity to active receptor sites. c) Evaluate the behavior of resulting complexes through molecular dynamics simulations. d) Assess whether this peptide qualifies as a candidate for anti-melanoma therapy. Our findings reveal that DisBa01 enhances stability in the BRAFV600E melanoma receptor structure by binding to its RGD motif, an interaction absent in the BRAF WT model. Consequently, both docking and molecular dynamics simulations suggest that DisBa01 shows promise as a BRAFV600E inhibitor.
Assuntos
Bothrops , Melanoma , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Humanos , Ligação Proteica , Peptídeos/química , Peptídeos/farmacologia , Sítios de Ligação , Serpentes PeçonhentasRESUMO
BACKGROUND: Photobiomodulation has exhibited promise in mitigating the local effects induced by Bothrops snakebite envenoming; however, the mechanisms underlying this protection are not yet fully understood. Herein, the effectiveness of photobiomodulation effects on regenerative response of C2C12 myoblast cells following exposure to Bothrops jararacussu venom (BjsuV), as well as the mechanisms involved was investigated. METHODOLOGY/PRINCIPAL FINDINGS: C2C12 myoblast cells were exposed to BjsuV (12.5 µg/mL) and irradiated once for 10 seconds with laser light of 660 nm (14.08 mW; 0.04 cm2; 352 mW/cm2) or 780 nm (17.6 mW; 0.04 cm2; 440 mW/ cm2) to provide energy densities of 3.52 and 4.4 J/cm2, and total energies of 0.1408 and 0.176 J, respectively. Cell migration was assessed through a wound-healing assay. The expression of MAPK p38-α, NF-Ðß, Myf5, Pax-7, MyoD, and myogenin proteins were assessed by western blotting analysis. In addition, interleukin IL1-ß, IL-6, TNF-alfa and IL-10 levels were measured in the supernatant by ELISA. The PBM applied to C2C12 cells exposed to BjsuV promoted cell migration, increase the expression of myogenic factors (Pax7, MyF5, MyoD and myogenin), reduced the levels of proinflammatory cytokines, IL1-ß, IL-6, TNF-alfa, and increased the levels of anti-inflammatory cytokine IL-10. In addition, PBM downregulates the expression of NF-kB, and had no effect on p38 MAKP. CONCLUSION/SIGNIFICANCE: These data demonstrated that protection of the muscle cell by PBM seems to be related to the increase of myogenic factors as well as the modulation of inflammatory mediators. PBM therapy may offer a new therapeutic strategy to address the local effects of snakebite envenoming by promoting muscle regeneration and reducing the inflammatory process.
Assuntos
Bothrops , Venenos de Crotalídeos , Citocinas , Terapia com Luz de Baixa Intensidade , Mioblastos , Miogenina , Animais , Mioblastos/efeitos dos fármacos , Mioblastos/efeitos da radiação , Mioblastos/metabolismo , Camundongos , Terapia com Luz de Baixa Intensidade/métodos , Citocinas/metabolismo , Linhagem Celular , Venenos de Crotalídeos/toxicidade , Miogenina/metabolismo , Miogenina/genética , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , NF-kappa B/metabolismo , Proteína MyoD/metabolismo , Proteína MyoD/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Fator Regulador Miogênico 5/metabolismo , Fator Regulador Miogênico 5/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Mordeduras de Serpentes/radioterapia , Serpentes PeçonhentasRESUMO
Disintegrins, a family of snake venom protein, which are capable of modulating the activity of integrins that play a fundamental role in the regulation of many physiological and pathological processes. The main purpose of this study is to obtain the recombinant disintegrin (r-DI) and evaluate its biological activity. In this study, we explored a high-level expression prokaryotic system and purification strategy for r-DI. Then, r-DI was treated to assay effects on cell growth, migration, and invasion. The affinity for the interactions of r-DI with integrin was determined using Surface plasmon resonance (SPR) analyses. The r-DI can be expressed in Escherichia coli and purified by one-step chromatography. The r-DI can inhibit B16F10 cells proliferation, migration, and invasion. Also, we found that r-DI could interact with the integrin αIIbß3 (GPIIb/IIIa). The r-DI can be expressed, purified, characterized through functional assays, and can also maintain strong biological activities. Thus, this study showed potential therapeutic effects of r-DI for further functional and structural studies.
Assuntos
Desintegrinas , Escherichia coli , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Animais , Desintegrinas/química , Desintegrinas/genética , Desintegrinas/isolamento & purificação , Desintegrinas/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Camundongos , Viperidae/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Linhagem Celular Tumoral , Expressão Gênica , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Venenos de Crotalídeos/química , Venenos de Crotalídeos/genética , Crotalinae , Serpentes PeçonhentasRESUMO
Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.
Assuntos
Inibidores da Angiogênese , Bothrops , Proliferação de Células , Venenos de Crotalídeos , Neoplasias Pulmonares , Animais , Humanos , Inibidores da Angiogênese/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Fosfolipases A2/farmacologia , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células A549 , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Serpentes PeçonhentasRESUMO
Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 µg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 µg/mL, respectively, and the number of tubules by 15.9 at 5 µg/mL and 21.6 at 40 µg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 µg/mL and by 66% at 40 µg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.
Assuntos
Bothrops , Células Endoteliais , Serpentes Peçonhentas , Animais , Feminino , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Bothrops/metabolismo , Metaloproteases/metabolismo , Venenos de Serpentes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inibidores da Angiogênese/farmacologiaRESUMO
Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.
Assuntos
Aorta , Bothrops , Oligopeptídeos , Peptídeos , Serpentes Peçonhentas , Animais , Ratos , Brasil , Aorta/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Bradicinina/farmacologia , Masculino , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/química , Ratos Wistar , Venenos de Serpentes/farmacologia , Vasodilatadores/farmacologia , Vasodilatadores/química , Estrutura MolecularRESUMO
Naja nivea (N. nivea) is classed as a category one snake by the World Health Organization since its envenomation causes high levels of mortality and disability annually. Despite this, there has been little research into the venom composition of N. nivea, with only one full venom proteome published to date. Our current study separated N. nivea venom using size exclusion chromatography before utilizing a traditional bottom-up proteomics approach to unravel the composition of the venom proteome. As expected by its clinical presentation, N. nivea venom was found to consist mainly of neurotoxins, with three-finger toxins (3FTx), making up 76.01% of the total venom proteome. Additionally, cysteine-rich secretory proteins (CRISPs), vespryns (VESPs), cobra venom factors (CVFs), 5'-nucleotidases (5'NUCs), nerve growth factors (NGFs), phospholipase A2s (PLA2), acetylcholinesterases (AChEs), Kunitz-type serine protease inhibitor (KUN), phosphodiesterases (PDEs), L-amino acid oxidases (LAAOs), hydrolases (HYDs), snake venom metalloproteinases (SVMPs), and snake venom serine protease (SVSP) toxins were also identified in decreasing order of abundance. Interestingly, contrary to previous reports, we find PLA2 toxins in N. nivea venom. This highlights the importance of repeatedly profiling the venom of the same species to account for intra-species variation. Additionally, we report the first evidence of covalent protein complexes in N. nivea venom, which likely contribute to the potency of this venom.
Assuntos
Naja , Proteômica , Toxinas Biológicas , Serpentes Peçonhentas , Proteômica/métodos , Proteoma/análise , Estrutura Quaternária de Proteína , Venenos Elapídicos/química , Toxinas Biológicas/análise , Venenos de Serpentes , Fosfolipases A2/metabolismo , Antivenenos/farmacologiaRESUMO
AIMS AND BACKGROUND: Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.). OBJECTIVE: Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects. METHODS: In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay. RESULTS: The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells. CONCLUSION: It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.
Assuntos
Antineoplásicos , Sobrevivência Celular , Quitosana , Ensaios de Seleção de Medicamentos Antitumorais , Nanopartículas , Quitosana/química , Quitosana/farmacologia , Humanos , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Venenos de Víboras/química , Venenos de Víboras/farmacologia , Proliferação de Células/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Tamanho da Partícula , Estrutura Molecular , Viperidae , Linhagem Celular Tumoral , Echis , Serpentes Peçonhentas , PolifosfatosRESUMO
In accidents involving Crotalus snakes, the crotoxin complex (CTX) plays lethal action due to its neurotoxic activity. On the other hand, CTX have potential biotechnological application due to its anti-tumoral, anti-inflammatory, antimicrobial, analgesic and immunomodulatory properties. CTX is a heterodimer composed of Crotoxin A (CA or crotapotin), the acidic nontoxic and non-enzymatic component and; Crotoxin B (CB), a basic, toxic and catalytic PLA2. Currently, there are two classes of CTX isoforms, whose differences in their biological activities have been attributed to features presented in CB isoforms. Here, we present the crystal structure of CB isolated from the Crotalus durissus collilineatus venom. It amino acid sequence was assigned using the SEQUENCE SLIDER software, which revealed that the crystal structure is a heterodimer composed of two new CB isoforms (colCB-A and colCB-B). Bioinformatic and biophysical analyses showed that the toxin forms a tetrameric assembly in solution similar to CB from Crotalus durissus terrificus venom, despite some differences observed at the dimeric interface. By the previously proposed classification, the colCB-B presents features of the class I isoforms while colCB-A cannot be classified into classes I and II based on its amino acid sequence. Due to similar features observed for other CB isoforms found in the NCBI database and the results obtained for colCB-A, we suggest that there are more than two classes of CTX and CB isoforms in crotalic venoms.
Assuntos
Venenos de Crotalídeos , Crotoxina , Serpentes Peçonhentas , Animais , Crotoxina/química , Fosfolipases A2/química , Crotalus/metabolismo , Venenos de Crotalídeos/química , Isoformas de Proteínas/metabolismoRESUMO
Cancer is indisputably one of the leading causes of death worldwide. Snake venoms are a potential source of bioactive compounds, complex mixtures constituted mainly of proteins and peptides with several pharmacological possibilities, including the potential to inhibit tumoral cell growth. In the present study, it was evaluated the antitumor effect of crude venom of Bothrops erythromelas (BeV), Bothrops jararaca (from Southern and Southeastern- BjsV and BjsdV, respectively) and Bothrops alternatus (BaV) in in vitro Chronic myeloid leukemia (CML) cancer cell line model. After 24 h of cell exposure to 10 and 50 µg/mL, BjsV, BjsdV, and BaV exerted a decrease in cell viability in both concentrations. BeV was not cytotoxic and, therefore wasn't chosen for further mechanism of action investigation. Furthermore, morphological alterations show modification typical of apoptosis. Also, was observes a significant cell cycle arrest in the S phase by BjsdV and BaV treatment. Flow cytometry evidenced the involvement of changes in the cell membrane permeability and the mitochondrial function by BjsV and BjsdV, corroborating with the triggering of the apoptotic pathway by the venom administration. BjsV, BjsdV, and BaV also led to extensive DNA damage and were shown to modulate the gene expression of transcripts related to the cell cycle progression and suppress the expression of the BCR-ABL1 oncogene. Altogether, these findings suggest that the venoms trigger the apoptosis pathway due to mitochondrial damage and cell cycle arrest, with modulation of intracellular pathways important for CML progression. Thus, indicating the pharmacological potential of these venoms in the development of new antitumoral compounds.