Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Exp Eye Res ; 238: 109743, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056550

RESUMO

Pigment epithelium-derived factor (PEDF) is widely recognized as a neuroprotective factor expressed in the retina and has shown therapeutic potential in several retinal diseases. Our study aimed to identify the neuroprotective fragment in PEDF and investigate its protective activity in retinas under ischemia-reperfusion (IR) condition. We synthesized a series of shorter synthetic peptides, 6-mer (Ser93-Gln98) and its d-form variant (6 dS) derived from the 44-mer (Val78-Thr121; a PEDF neurotrophic fragment), to determine their cytoprotective activity in IR injury, which was induced in rat retinas by injection of saline into the anterior chamber to increase the intraocular pressure (IOP) followed by reperfusion. We found the cytoprotective effect of 6-mer on glutamate-treated Neuro-2a cells and tert-butyl hydroperoxide (tBHP)-treated 661W cells were 2.6-fold and 1.5-fold higher than the 44-mer, respectively. The cytoprotective effect was blocked by a chemical inhibitor atglistatin and blocking antibody targeting PEDF receptor (PEDF-R). IR induced several impairments in retina, including cell apoptosis, activation of microglia/macroglia, degeneration of retinal capillaries, reduction in electroretinography (ERG) amplitudes, and retinal atrophy. Such IR injuries were ameliorated by treatment with 6-mer and 6 dS eye drops. Also, the neuroprotective activity of 6-mer and 6 dS in ischemic retinas were dramatically reversed by atglistatin preconditioning. Taken together, our data demonstrate smallest neuroprotective fragment of PEDF has potential to treat retinal degeneration-related diseases.


Assuntos
Proteínas do Olho , Fatores de Crescimento Neural , Traumatismo por Reperfusão , Retina , Retinite , Serpinas , Animais , Ratos , Coelhos , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Proteínas do Olho/administração & dosagem , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Serpinas/administração & dosagem , Serpinas/química , Serpinas/metabolismo , Retina/metabolismo , Retina/patologia , Traumatismo por Reperfusão/metabolismo , Citoproteção , Apoptose , Neurônios/metabolismo , Retinite/tratamento farmacológico , Retinite/metabolismo , Administração Tópica , Peptídeos/administração & dosagem , Peptídeos/metabolismo
2.
Cell Mol Life Sci ; 79(3): 172, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244780

RESUMO

Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.


Assuntos
Doenças do Sistema Nervoso/patologia , Neuropeptídeos/metabolismo , Serpinas/metabolismo , Axônios/metabolismo , Comunicação Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Doenças do Sistema Nervoso/metabolismo , Plasticidade Neuronal , Neuropeptídeos/química , Plasminogênio/metabolismo , Serpinas/química , Transdução de Sinais , Ativador de Plasminogênio Tecidual/metabolismo , Neuroserpina
3.
J Mol Biol ; 434(2): 167359, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34798132

RESUMO

Biliverdin-binding serpins (BBSs) are proteins that are responsible for coloration in amphibians and fluoresce in the near-infrared (NIR) spectral region. Here we produced the first functional recombinant BBS of the polka-dot treefrog Boana punctata (BpBBS), assembled with its biliverdin (BV) chromophore, and report its biochemical and photochemical characterization. We determined the crystal structure of BpBBS at 2.05 Å resolution, which demonstrated its structural homology to the mammalian protease inhibitor alpha-1-antitrypsin. BV interaction with BpBBS was studied and it was found that the N-terminal polypeptide (residues 19-50) plays a critical role in the BV binding. By comparing BpBBS with the available NIR fluorescent proteins and expressing it in mammalian cells, we demonstrated its potential as a NIR imaging probe. These results provide insight into the non-inhibitory function of serpins, provide a basis for improving their performance in mammalian cells, and suggest possible paths for the development of BBS-based fluorescent probes.


Assuntos
Biliverdina/química , Biliverdina/metabolismo , Serpinas/química , Serpinas/metabolismo , Animais , Proteínas de Bactérias/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Fitocromo/química , Tetrapirróis/química
4.
Acta Crystallogr D Struct Biol ; 77(Pt 9): 1183-1196, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473088

RESUMO

Iripin-5 is the main Ixodes ricinus salivary serpin, which acts as a modulator of host defence mechanisms by impairing neutrophil migration, suppressing nitric oxide production by macrophages and altering complement functions. Iripin-5 influences host immunity and shows high expression in the salivary glands. Here, the crystal structure of Iripin-5 in the most thermodynamically stable state of serpins is described. In the reactive-centre loop, the main substrate-recognition site of Iripin-5 is likely to be represented by Arg342, which implies the targeting of trypsin-like proteases. Furthermore, a computational structural analysis of selected Iripin-5-protease complexes together with interface analysis revealed the most probable residues of Iripin-5 involved in complex formation.


Assuntos
Anti-Inflamatórios , Inibidores Enzimáticos , Ixodes/metabolismo , Serpinas , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Células Cultivadas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Eritrócitos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Coelhos , Serpinas/química , Serpinas/isolamento & purificação
5.
Biosci Biotechnol Biochem ; 85(8): 1861-1868, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34077500

RESUMO

Amyloid beta (Aß) 42 peptide accumulated in Alzheimer disease (AD) patients' brain, often colocalized with serine protease inhibitor family A member 3 (SERPINA3). Being a chaperon, SERPINA3 accelerated Aß42 fibrillization. While analyzing chaperon activity of human SERPINA3 polymorphisms, we found SERPINA3-R124C played a role in protecting cells from Aß42 cytotoxicity. SH-SY5Y cells exposed to Aß42 preincubated with wild-type SERPINA3 (SERPINA3-WT) resulted in extended toxicity leading cell death whereas Aß42 with SERPINA3-R124C resulted in less cytotoxicity. Transmission electron microscope and thioflavin T assay revealed that SERPINA3-R124C shortened lifetime of small soluble oligomer and maintained ß-sheet rich protofibril-like aggregates for longer time compared to that of with SERPINA3-WT. Western blot assay confirmed that SERPINA3-R124C converted Aß42 mostly into high molecular aggregates. Here, we demonstrate first time that polymorphic SERPINA3 acts as a benign chaperon by modulating the transition states of Aß42, which may contribute to the reduction of AD risk.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Biopolímeros/metabolismo , Fragmentos de Peptídeos/metabolismo , Serpinas/metabolismo , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/química , Benzotiazóis/metabolismo , Western Blotting , Catálise , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serpinas/química
6.
Biochemistry ; 60(20): 1578-1586, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33956428

RESUMO

Chicken ovalbumin (cOVA) has been studied for decades primarily due to the robust genetic and molecular resources that are available for experimental investigations. cOVA is a member of the serpin superfamily of proteins that function as protease inhibitors, although cOVA does not exhibit this activity. As a serpin, cOVA possesses a protease-sensitive reactive center loop that lies adjacent to the OVA 323-339 CD4+ T-cell epitope. We took advantage of the previously described single-substitution variant, OVA R339T, which can undergo the dramatic structural transition observed in serpins, to study how changes in loop size and protein stability influence the processing and presentation of the OVA 323-339 epitope. We observed that the OVA R339T loop insertion increases the stability and protease resistance, resulting in the reduced presentation of the OVA 323-339 epitope in vitro. These findings have implications for the design of more effective vaccines for the treatment of infectious diseases and cancer as well as the development of more robust CD4+ T-cell epitope prediction tools.


Assuntos
Ovalbumina/genética , Ovalbumina/imunologia , Serpinas/metabolismo , Animais , Sítios de Ligação , Galinhas/metabolismo , Epitopos , Cinética , Ovalbumina/metabolismo , Fragmentos de Peptídeos/imunologia , Serpinas/química , Serpinas/imunologia , Termodinâmica
7.
Biomed Res Int ; 2021: 5584788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997018

RESUMO

The inner ear is an essential part of a well-developed and well-coordinated hearing system. However, hearing loss can make communication and interaction more difficult. Inherited hearing loss (HL) can occur from pathogenic genetic variants that negatively alter the intricate inner ear sensory mechanism. Recessively inherited forms of HL are highly heterogeneous and account for a majority of prelingual deafness. The current study is designed to investigate genetic causes of HL in three consanguineous Pakistani families. After IRB approval, the clinical history and pure tone audiometric data was obtained for the clinical diagnosis of HL segregating in these three Pakistani families. We performed whole exome sequencing (WES) followed by Sanger sequencing in order to identify and validate the HL-associated pathogenic variants, respectively. The 3-D molecular modeling and the Ramachandran analysis of the identified missense variants were compiled to evaluate the impact of the variants on the encoded proteins. Clinical evaluation revealed prelingual severe to profound sensorineural HL segregating among the affected individuals in all three families. Genetic analysis revealed segregation of several novel variants associated with HL, including a canonical splice-site variant (c.55-2A>G) of PTPRQ in family GCFHL-01, a missense variant [c.1079G>A; p.(Arg360Gln)] of SERPINB6 in family LUHL-01, and an insertion variant (c.10208-10211insCCACCAGGCCCGTGCCTC) within MYO15A in family LUHL-011. All the identified variants had very low frequencies in the control databases. The molecular modeling of p.Arg360Gln missense variant also predicted impaired folding of SERPINB6 protein. This study reports the identification of novel disease-causing variants in three known deafness genes and further highlights the genetic heterogeneity of HL in Pakistani population.


Assuntos
Predisposição Genética para Doença , Perda Auditiva/genética , Mutação/genética , Miosinas/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Serpinas/genética , Alelos , Análise Mutacional de DNA , Família , Feminino , Humanos , Masculino , Modelos Moleculares , Miosinas/química , Paquistão , Linhagem , Fenótipo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/química , Serpinas/química
8.
Int J Biol Macromol ; 176: 117-125, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33516851

RESUMO

Neuroserpin (NS) is an inhibitory protein of serpin super family, its shutter region variants have high propensity to aggregate leading to pathological disorders like familial encephalopathy with NS inclusion bodies (FENIB). Helix F and ß-sheet A of NS participate in the tissue plasminogen activator (tPA) inhibition but the mechanism is not yet completely understood. A microsecond (µs) molecular dynamics simulation of the helix F and strand 3A variants showed predominant fluctuations in the loop connecting the strands of ß-sheet A. Therefore to understand the role of helix F and strand 3A of ß-sheet A, cysteine was incorporated at the position N182 in stand 3A (N182C) and position W154 (W154C) in the helix F using site-directed mutagenesis. Purified variants were further labeled with Alexa Fluor488 C5 maleimide dye. Temperature dependent study using non-denaturing PAGE showed the formation of large aggregates of helix F variant W154C but not the strand 3A N182C variant. Interestingly tPA inhibition was found to be decreased in the labeled N182C with decreased tPA-complex formation as compared to labeled W154C NS variant. The fluorescence emission intensity of the labeled helix F variant W154C decreased in the presence of an increasing concentration of tPA, whereas an increase in emission intensity was observed in labeled strand 3A variant N182C, indicating more exposure of strand 3A and shielding of helix F. Taken together the data shows that helix F has a predominant role in the aggregation but a minor role in the inhibition mechanism.


Assuntos
Neuropeptídeos/química , Serpinas/química , Corantes Fluorescentes , Humanos , Maleimidas , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/genética , Agregados Proteicos , Conformação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serpinas/genética , Ativador de Plasminogênio Tecidual/farmacologia , Neuroserpina
9.
Sci Rep ; 10(1): 11497, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661389

RESUMO

One innate immune response in insects is the proteolytic activation of hemolymph prophenoloxidase (proPO), regulated by protease inhibitors called serpins. In the inhibition reaction of serpins, a protease cleaves a peptide bond in a solvent-exposed reactive center loop (RCL) of the serpin, and the serpin undergoes a conformational change, incorporating the amino-terminal segment of the RCL into serpin ß-sheet A as a new strand. This results in an irreversible inhibitory complex of the serpin with the protease. We synthesized four peptides with sequences from the hinge region in the RCL of Manduca sexta serpin-3 and found they were able to block serpin-3 inhibitory activity, resulting in suppression of inhibitory protease-serpin complex formation. An RCL-derived peptide with the sequence Ser-Val-Ala-Phe-Ser (SVAFS) displayed robust blocking activity against serpin-3. Addition of acetyl-SVAFS-amide to hemolymph led to unregulated proPO activation. Serpin-3 associated with Ac-SVAFS-COO- had an altered circular dichroism spectrum and enhanced thermal resistance to change in secondary structure, indicating that these two molecules formed a binary complex, most likely by insertion of the peptide into ß-sheet A. The interference of RCL-derived peptides with serpin activity may lead to new possibilities of "silencing" arthropod serpins with unknown functions for investigation of their physiological roles.


Assuntos
Catecol Oxidase/química , Precursores Enzimáticos/química , Manduca/química , Peptídeos/farmacologia , Serpinas/química , Animais , Catecol Oxidase/antagonistas & inibidores , Catecol Oxidase/ultraestrutura , Precursores Enzimáticos/antagonistas & inibidores , Precursores Enzimáticos/ultraestrutura , Hemolinfa/enzimologia , Imunidade Inata/efeitos dos fármacos , Peptídeo Hidrolases/química , Peptídeo Hidrolases/ultraestrutura , Peptídeos/síntese química , Peptídeos/química , Conformação Proteica em Folha beta/efeitos dos fármacos , Serpinas/ultraestrutura
10.
Molecules ; 25(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344508

RESUMO

Visceral adipose tissue derived serine protease inhibitor (vaspin) is a member of the serpin family and has been shown to have beneficial effects on glucose tolerance, insulin stability as well as adipose tissue inflammation, parameters seriously affected by obesity. Some of these effects require inhibition of target proteases such as kallikrein 7(KLK7) and many studies have demonstrated vaspin-mediated activation of intracellular signaling cascades in various cells and tissues. So far, little is known about the exact mechanism how vaspin may trigger these intracellular signaling events. In this study, we investigated and characterized the interaction of vaspin with membrane lipids and polyphosphates as well as their potential regulatory effects on serpin activity using recombinant vaspin and KLK7 proteins and functional protein variants thereof. Here, we show for the first time that vaspin binds to phospholipids and polyphosphates with varying effects on KLK7 inhibition. Vaspin binds strongly to monophosphorylated phosphatidylinositol phosphates (PtdInsP) with no effect on vaspin activation. Microscale thermophoresis (MST) measurements revealed high-affinity binding to polyphosphate 45 (KD: 466 ± 75 nM) and activation of vaspin in a heparin-like manner. Furthermore, we identified additional residues in the heparin binding site in ß-sheet A by mutating five basic residues resulting in complete loss of high-affinity heparin binding. Finally, using lipid overlay assays, we show that these residues are additionally involved in PtdInsP binding. Phospholipids play a major role in membrane trafficking and signaling whereas polyphosphates are procoagulant and proinflammatory agents. The identification of phospholipids and polyphosphates as binding partners of vaspin will contribute to the understanding of vaspins involvement in membrane trafficking, signaling and beneficial effects associated with obesity.


Assuntos
Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Polifosfatos/metabolismo , Serpinas/metabolismo , Sítios de Ligação , Heparina/química , Heparina/metabolismo , Humanos , Cinética , Lipídeos de Membrana/química , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Fosfolipídeos/química , Polifosfatos/química , Ligação Proteica , Serpinas/química , Relação Estrutura-Atividade
11.
Sci Rep ; 10(1): 2371, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047224

RESUMO

Immunopathogenesis in systemic viral infections can induce a septic state with leaky capillary syndrome, disseminated coagulopathy, and high mortality with limited treatment options. Murine gammaherpesvirus-68 (MHV-68) intraperitoneal infection is a gammaherpesvirus model for producing severe vasculitis, colitis and lethal hemorrhagic pneumonia in interferon gamma receptor-deficient (IFNγR-/-) mice. In prior work, treatment with myxomavirus-derived Serp-1 or a derivative peptide S-7 (G305TTASSDTAITLIPR319) induced immune protection, reduced disease severity and improved survival after MHV-68 infection. Here, we investigate the gut bacterial microbiome in MHV-68 infection. Antibiotic suppression markedly accelerated MHV-68 pathology causing pulmonary consolidation and hemorrhage, increased mortality and specific modification of gut microbiota. Serp-1 and S-7 reduced pulmonary pathology and detectable MHV-68 with increased CD3 and CD8 cells. Treatment efficacy was lost after antibiotic treatments with associated specific changes in the gut bacterial microbiota. In summary, transkingdom host-virus-microbiome interactions in gammaherpesvirus infection influences gammaherpesviral infection severity and reduces immune modulating therapeutic efficacy.


Assuntos
Microbioma Gastrointestinal , Infecções por Herpesviridae/microbiologia , Animais , Antibacterianos/farmacologia , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/imunologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Linfócitos/imunologia , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Serpinas/química
12.
Biomed Res Int ; 2019: 5320902, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886225

RESUMO

Pregnancy is a period in a woman's life in which changes can occur that affect different physiological processes. Common conditions during this period include vascular changes, such as lower extremity venous insufficiency (VI). This is an observational, analytical, and prospective cohort study in which 114 pregnant women were analyzed, of which 62 were clinically diagnosed with VI. In parallel, 52 control patients without VI (HC) were studied. The aim of this study was to observe changes in angiogenesis and inflammation markers as well as the presence of calcium deposits. The expression of vascular endothelial growth factor (VEGF), transforming growth factor-ß (TGF-ß), and pigment epithelium-derived factor (PEDF) was analyzed by immunohistochemistry and RT-qPCR. The presence of calcium deposits was revealed using the von Kossa method. In the placentas of mothers with VI, gene expression of VEGF (34.575 [32.380-36.720] VI vs 32.965 [30.580-36.320] HC) and PEDF (25.417 [24.459-27.675] VI vs 24.400 [23.102-30.223] HC) significantly increased, as was protein expression in the placental villi. An increase in calcium deposits was observed in the placentas of women with VI (72.58% VI/53.84% HC). This study revealed the existence of cellular damage in the placental villi of mothers with VI with tissue implications such as increased calcification.


Assuntos
Calcinose/metabolismo , Proteínas do Olho/análise , Fatores de Crescimento Neural/análise , Placenta , Complicações Cardiovasculares na Gravidez/metabolismo , Serpinas/análise , Fator A de Crescimento do Endotélio Vascular/análise , Insuficiência Venosa/metabolismo , Adolescente , Adulto , Calcinose/fisiopatologia , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Feminino , Humanos , Extremidade Inferior/fisiopatologia , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Placenta/irrigação sanguínea , Placenta/química , Placenta/patologia , Gravidez , Complicações Cardiovasculares na Gravidez/fisiopatologia , Estudos Prospectivos , Serpinas/química , Serpinas/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Insuficiência Venosa/fisiopatologia , Adulto Jovem
13.
Exp Eye Res ; 188: 107798, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520600

RESUMO

Abnormal migration and proliferation of endothelial cells (EC) drive neovascular retinopathies. While anti-VEGF treatment slows progression, pathology is often supported by decrease in intraocular pigment epithelium-derived factor (PEDF), an endogenous inhibitor of angiogenesis. A surface helical 34-mer peptide of PEDF, comprising this activity, is efficacious in animal models of neovascular retina disease but remains impractically large for therapeutic use. We sought smaller fragments within this sequence that mitigate choroidal neovascularization (CNV). Expecting rapid intravitreal (IVT) clearance, we also developed a method to reversibly attach peptides to nano-carriers for extended delivery. Synthetic fragments of 34-mer yielded smaller anti-angiogenic peptides, and N-terminal capping with dicarboxylic acids did not diminish activity. Charge restoration via substitution of an internal aspartate by asparagine improved potency, achieving low nM apoptotic response in VEGF-activated EC. Two optimized peptides (PEDF 335, 8-mer and PEDF 336, 9-mer) were tested in a mouse model of laser-induced CNV. IVT injection of either peptide, 2-5 days before laser treatment, gave significant CNV decrease at day +14 post laser treatment. The 8-mer also decreased CNV, when administered as eye drops. Also examined was a nanoparticle-conjugate (NPC) prodrug of the 9-mer, having positive zeta potential, expected to display longer intraocular residence. This NPC showed extended efficacy, even when injected 14 days before laser treatment. Neither inflammatory cells nor other histopathologic abnormalities were seen in rabbit eyes harvested 14 days following IVT injection of PEDF 336 (>200 µg). No rabbit or mouse eye irritation was observed over 12-17 days of PEDF 335 eye drops (10 mM). Viability was unaffected in 3 retinal and 2 choroidal cell types by PEDF 335 up to 100 µM, PEDF 336 (100 µM) gave slight growth inhibition only in choroidal EC. A small anti-angiogenic PEDF epitope (G-Y-D-L-Y-R-V) was identified, variants (adipic-Sar-Y-N-L-Y-R-V) mitigate CNV, with clinical potential in treating neovascular retinopathy. Their shared active motif, Y - - - R, is found in laminin (Ln) peptide YIGSR, which binds Ln receptor 67LR, a known high-affinity ligand of PEDF 34-mer.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/prevenção & controle , Proteínas do Olho/uso terapêutico , Fatores de Crescimento Neural/uso terapêutico , Oligopeptídeos/uso terapêutico , Serpinas/uso terapêutico , Administração Oftálmica , Inibidores da Angiogênese/química , Animais , Apoptose , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Portadores de Fármacos , Eletrorretinografia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Proteínas do Olho/química , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/química , Oligopeptídeos/química , Soluções Oftálmicas , Pró-Fármacos , Coelhos , Ratos , Serpinas/química
14.
Biomed Pharmacother ; 118: 109257, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31377472

RESUMO

Combination treatment through simultaneous delivery of anticancer drugs and gene with nano-formulation has been demonstrated to be an elegant and efficient approach for colorectal cancer therapy. Recently, sorafenib being studied in combination therapy in colorectal cancer (CRC) attracted attention of researchers. On the basis of our previous study, pigment epithelium-derived factor (PEDF) loaded nanoparticles showed good effect on CRC in vitro and in vivo. Herein, we designed a combination therapy for sorafenib (Sora), a multi-kinase inhibitor and PEDF, a powerful antiangiogenic gene, in a nano-formulation aimed to increase anti-tumor effect on CRC for the first time. Sora and PEDF were simultaneously encapsulated in PEG-PLGA based nanoparticles by a modified double-emulsion solvent evaporation method. The obtained co-encapsulated nanoparticles (Sora@PEDF-NPs) showed high entrapment efficiency of both Sora and PEDF - and exhibited a uniform spherical morphology. The release profiles of Sora and PEDF were in a sustained manner. The most effective tumor growth inhibition in the C26 cells and C26-bearing mice was observed in the Sora@PEDF-NPs in comparison with none-drug nanoparticles, free Sora, mono-drug nanoparticles (Sora-NPs and PEDF-NPs) and the mixture of Sora-NPs and equivalent PEDF-NPs (Mix-NPs). More importantly, Sora@PEDF-NPs showed lower toxicity than free Sora in mice according to the acute toxicity test. The serologic biochemical analysis and mice body weight during therapeutic period revealed that Sora@PEDF-NPs had no obvious toxicity. All the data demonstrated that the simultaneously loaded nanoparticles with multi-kinase inhibitor and anti-angiogenic gene might be one of the most potential formulations in the treatment of colorectal carcinoma in clinic and worthy of further investigation.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Terapia Genética , Nanopartículas/química , Polímeros/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Proteínas do Olho/química , Células HEK293 , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Fatores de Crescimento Neural/química , Serpinas/química , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Testes de Toxicidade Aguda , Resultado do Tratamento
15.
Biochim Biophys Acta Proteins Proteom ; 1867(9): 854-865, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31247344

RESUMO

Falcipain-2(FP2), a cysteine protease from Plasmodium falciparum, cleaves host erythrocyte hemoglobin and specific membrane skeleton components during the parasite life cycle. Therefore its inhibition has been considered as an attractive approach to combat the disease. SerpinB3 (SPB3) belongs to the ovalbumin-serpin family and is a potent cross-class inhibitor of cysteine cathepsins L, K, S and papain. This study explored the possibility of inhibition of FP2 by SPB3. It turned out that general proteolytic activities as well as specific hemoglobinolytic activity of FP2 have been inhibited by SPB3. Furthermore, studies have been designed to investigate and characterize the mechanism of inhibition in comparison with proteases Cathepsin L (CTSL) and papain. The Ki value of inhibition for FP2, measured against its specific substrate (VLK-pNA), is 338.11 nM and stoichiometry (I/E ratio) of inhibition is 1. These values are comparable to CTSL and papain. Analytical gel filtration profile and CD spectroscopy data confirm FP2-SPB3 complex formation. Our studies revealed that interaction of SPB3 with FP2 is non-covalent type like that of CTSL and papain but unlike other serine protease-inhibiting serpins. An in-silico docking and simulation study have been performed with FP2 as well as CTSL and results suggest different binding mode for FP2 and CTSL, though both the complexes are stable with significant contribution from electrostatic energy of interaction. We further showed a disease state mutant SPB3-Gly351Ala performed better anti-protease activity against FP2. This study, for the first time, has shown a serpin family inhibitor from human could efficiently inhibit activity of FP2.


Assuntos
Antígenos de Neoplasias/química , Cisteína Endopeptidases/química , Simulação de Acoplamento Molecular , Plasmodium falciparum/enzimologia , Serpinas/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Catepsina L/antagonistas & inibidores , Catepsina L/química , Catepsina L/genética , Catepsina L/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Papaína/antagonistas & inibidores , Papaína/química , Papaína/genética , Papaína/metabolismo , Plasmodium falciparum/genética , Serpinas/genética , Serpinas/metabolismo
16.
Methods Mol Biol ; 1826: 255-265, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30194606

RESUMO

Serine protease inhibitors, or serpins, function as central regulators for many vital processes in the mammalian body, maintaining homeostasis for clot formation and breakdown, immune responses, lung function, and hormone or central nervous system activity, among many others. When serine protease activity or serpin-mediated regulation becomes unbalanced or dysfunctional, then severe disease states and pathogenesis can ensue. With serpinopathies, genetic mutations lead to inactive serpins or protein aggregation with loss of function. With other disorders, such as sepsis, atherosclerosis, cancer, obesity, and the metabolic syndrome, the thrombotic and thrombolytic cascades and/or inflammatory responses become unbalanced, with excess bleeding and clotting and upregulation of adverse immune responses. Returning overall balance can be engineered through introduction of a beneficial serpin replacement as a therapeutic or through blockade of serpins that are detrimental. Several drugs have been developed and are currently in use and/or in development both to replace dysfunctional serpins and to block adverse effects induced by aberrant protease or serpin actions.With this chapter, we provide a general overview of the development of a virus-derived serpin, Serp-1, and serpin reactive center loop (RCL) peptides, as therapeutics. Serp-1 is a virus-derived serpin developed as a new class of immune modulator. We will use the development of Serp-1 as a general introduction to serpin-based drug development.


Assuntos
Desenvolvimento de Medicamentos , Fatores Imunológicos , Myxoma virus , Peptídeos , Serpinas , Proteínas Virais , Animais , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/genética , Fatores Imunológicos/uso terapêutico , Myxoma virus/química , Myxoma virus/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/uso terapêutico , Serpinas/química , Serpinas/genética , Serpinas/uso terapêutico , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/uso terapêutico
17.
Biochemistry ; 57(37): 5415-5426, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30148614

RESUMO

Although ovalbumin (OVA), a main component of hen egg white and a non-inhibitory serpin superfamily protein, has been reported to form fibrillar aggregates, its relationship with amyloid fibrils associated with various degenerative diseases is unclear. We studied the heat-induced aggregation of intact OVA using an amyloid-specific thioflavin T assay with a fluorometer or direct imaging with a light-emitting diode lamp and several physicochemical approaches, and the results confirmed that intact OVA forms aggregates with a small part of amyloid cores and dominantly amorphous aggregates. We isolated the amyloidogenic core peptide by proteolysis with trypsin. The isolated 23-residue peptide, pOVA, with marked amyloidogenicity, corresponded to one (ß-strand 3A) of the key regions involved in serpin latency transition and domain-swap polymerization leading to serpinopathies. Although the strong amyloidogenicity of pOVA was suppressed in a mixture of tryptic digests, it was observed under acidic conditions in the presence of various salts, with which pOVA has a positive charge. Cytotoxicity measurements suggested that, although heat-treated OVA aggregates exhibited the strongest toxicity, it was attributed to a general property of amorphous aggregates rather than amyloid toxicity. Predictions indicated that the high amyloidogenicity of the ß-strand 3A region is common to various serpins. This suggests that the high amyloidogenicity of ß-strand 3A that is important for serpin latency transition and domain-swap polymerization is retained in OVA and constitutes ß-spine amyloid cores upon heat aggregation.


Assuntos
Amiloide/farmacologia , Neoplasias do Colo/patologia , Temperatura Alta , Ovalbumina/química , Agregados Proteicos , Serpinas/química , Amiloide/química , Animais , Galinhas , Neoplasias do Colo/tratamento farmacológico , Camundongos , Polimerização , Células Tumorais Cultivadas
18.
Curr Drug Targets ; 19(5): 467-478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-26424392

RESUMO

BACKGROUND: Bone defects can be severely debilitating and reduce quality of life. Osteoregeneration can alleviate some of the complications in bony defects. For therapeutic use in future, a single factor that can cause potent bone regeneration is highly preferred as it will be more costeffective, any off-target effects will be more easily monitored and potentially managed, and for ease of administration which would lead to better patient compliance and satisfaction. OBJECTIVE: We demonstrate that pigment epithelium-derived factor (PEDF), one such factor that is known to be potent against angiogenesis, promotes osteoblastogenesis in mesenchymal stem cells in vitro, but does not need co-encapsulation of cells in alginate bead scaffolds for osteogeneration in vivo. RESULTS: Osteogenic differentiation by PEDF in vitro was confirmed with immunoblotting and immunocytochemical staining for bone markers (alkaline phosphatase, osteocalcin, osteopontin, collagen I), calcified mineral deposition, and assay for alkaline phosphatase activity. PEDF-mediated bone formation in a muscle pocket in vivo model was confirmed by microcomputed tomography (microCT), histology (haematoxylin and eosin, Alcian blue staining), immunostaining for bone markers and for collagen I-processing proteins (heat shock protein 47 and membrane type I matrix metalloproteinase). CONCLUSION: PEDF therefore presents itself as a promising biological for osteogeneration.


Assuntos
Alginatos/química , Osso e Ossos/metabolismo , Proteínas do Olho/administração & dosagem , Células-Tronco Mesenquimais/citologia , Fatores de Crescimento Neural/administração & dosagem , Serpinas/administração & dosagem , Animais , Biomarcadores/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Composição de Medicamentos , Proteínas do Olho/química , Proteínas do Olho/farmacologia , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/farmacologia , Osteogênese/efeitos dos fármacos , Serpinas/química , Serpinas/farmacologia , Microtomografia por Raio-X
19.
Artigo em Inglês | MEDLINE | ID: mdl-29193264

RESUMO

Serine protease inhibitors play a key role in the immune system of invertebrates by controlling proteolytic cascades. Besides its importance, the knowledge on immune functions of serpins in most of insects is fragmentary. In the present study, we identified serpin-12 from Antheraea pernyi encoding a predicted 402 amino acid residue protein (Apserpin-12). We expressed the recombinant protein in Escherichia coli and the purified protein was used for the synthesis of rabbit anti-Apserpin-12 polyclonal antibodies and functional studies. Quantitative real-time ploymerase chain reaction (qRT-PCR) analysis revealed that the knock-down of Apserpin-12 enhanced the prophenoloxidase (PPO) cascade stimulated by Micrococcus luteus in hemolymph, whereas addition of recombinant Apserpin-12 protein along with same elicitor led to down-regulate PPO activation. Following different microbial challenge (E. coli, Beauveria bassiana, M. Luteus, and nuclear polyhedrosis virus), the expression of Apserpin-12 mRNA was induced significantly. Furthermore, the Apserpin-12 double-stranded RNA administration elicited the expression of antimicrobial peptides, while the treatment with recombinant protein suppressed their expression. Tissue profile of Apserpin-12 indicated that it is expressed in all examined tissues, that is, hemolymph, malpighian tubules, midgut, silk gland, integument, and fat body with variation in their transcript levels. We concluded that Apserpin-12 may regulate PPO activation and inhibit the production of antimicrobial peptides in A. pernyi, suggesting important role in its immune system.


Assuntos
Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Mariposas/química , Serpinas/isolamento & purificação , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ativação Enzimática , Escherichia coli , Mariposas/fisiologia , Filogenia , Serpinas/química , Serpinas/genética , Serpinas/metabolismo
20.
Biochemistry ; 57(7): 1096-1107, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29227673

RESUMO

The Myxomavirus-derived protein Serp-1 has potent anti-inflammatory activity in models of vasculitis, lupus, viral sepsis, and transplant. Serp-1 has also been tested successfully in a Phase IIa clinical trial in unstable angina, representing a "first-in-class" therapeutic. Recently, peptides derived from the reactive center loop (RCL) have been developed as stand-alone therapeutics for reducing vasculitis and improving survival in MHV68-infected mice. However, both Serp-1 and the RCL peptides lose activity in MHV68-infected mice after antibiotic suppression of intestinal microbiota. Here, we utilize a structure-guided approach to design and test a series of next-generation RCL peptides with improved therapeutic potential that is not reduced when the peptides are combined with antibiotic treatments. The crystal structure of cleaved Serp-1 was determined to 2.5 Å resolution and reveals a classical serpin structure with potential for serpin-derived RCL peptides to bind and inhibit mammalian serpins, plasminogen activator inhibitor 1 (PAI-1), anti-thrombin III (ATIII), and α-1 antitrypsin (A1AT), and target proteases. Using in silico modeling of the Serp-1 RCL peptide, S-7, we designed several modified RCL peptides that were predicted to have stronger interactions with human serpins because of the larger number of stabilizing hydrogen bonds. Two of these peptides (MPS7-8 and -9) displayed extended activity, improving survival where activity was previously lost in antibiotic-treated MHV68-infected mice (P < 0.0001). Mass spectrometry and kinetic assays suggest interaction of the peptides with ATIII, A1AT, and target proteases in mouse and human plasma. In summary, we present the next step toward the development of a promising new class of anti-inflammatory serpin-based therapeutics.


Assuntos
Fatores Imunológicos/química , Myxoma virus/química , Peptídeos/química , Serpinas/química , Proteínas Virais/química , Animais , Células CHO , Cricetulus , Cristalografia por Raios X , Humanos , Fatores Imunológicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Peptídeos/farmacologia , Infecções por Poxviridae/virologia , Conformação Proteica , Coelhos , Serpinas/farmacologia , Proteínas Virais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA