Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 847
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Med Oncol ; 41(5): 125, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652207

RESUMO

Plant-derived immunomodulators and antitumor factors have appealed lots of attention from natural product scientists for their efficiency and safety and their important contribution to well-designed targeted drug action and delivery mechanisms. Zerumbone (ZER), the chief component of Zingiber zerumbet rhizomes, has been examined for its wide-spectrum in the treatment of multi-targeted diseases. The rhizomes have been used as food flavoring agents in numerous cuisines and in flora medication. Numerous in vivo and in vitro experiments have prepared confirmation of ZER as a potent immunomodulator as well as a potential anti-tumor agent. This review is an interesting compilation of all the important results of the research carried out to date to investigate the immunomodulatory and anticancer properties of ZER. The ultimate goal of this comprehensive review is to supply updated information and a crucial evaluation on ZER, including its chemistry and immunomodulating and antitumour properties, which may be of principal importance to supply a novel pathway for subsequent investigation to discover new agents to treat cancers and immune-related sickness. In addition, updated information on the toxicology of ZER has been summarized to support its safety profile.


Assuntos
Glioma , Neoplasias , Sesquiterpenos , Animais , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Glioma/tratamento farmacológico , Neoplasias/tratamento farmacológico , Sesquiterpenos/uso terapêutico , Sesquiterpenos/farmacologia , Zingiberaceae/química
2.
J Ethnopharmacol ; 328: 118075, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513779

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tanacetum parthenium (L.) Schultz-Bip, commonly known as feverfew, has been traditionally used to treat fever, migraines, rheumatoid arthritis, and cancer. Parthenolide (PTL), the main bioactive ingredient isolated from the shoots of feverfew, is a sesquiterpene lactone with anti-inflammatory and antitumor properties. Previous studies showed that PTL exerts anticancer activity in various cancers, including hepatoma, cholangiocarcinoma, acute myeloid leukemia, breast, prostate, and colorectal cancer. However, the metabolic mechanism underlying the anticancer effect of PTL remains poorly understood. AIM OF THE STUDY: To explore the anticancer activity and underlying mechanism of PTL in human cholangiocarcinoma cells. MATERIAL AND METHODS: In this investigation, the effects and mechanisms of PTL on human cholangiocarcinoma cells were investigated via a liquid chromatography/mass spectrometry (LC/MS)-based metabolomics approach. First, cell proliferation and apoptosis were evaluated using cell counting kit-8 (CCK-8), flow cytometry analysis, and western blotting. Then, LC/MS-based metabolic profiling along with orthogonal partial least-squares discriminant analysis (OPLS-DA) has been constructed to distinguish the metabolic changes between the negative control group and the PTL-treated group in TFK1 cells. Next, enzyme-linked immunosorbent assay (ELISA) was applied to investigate the changes of metabolic enzymes associated with significantly alerted metabolites. Finally, the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established using MetaboAnalyst 5.0 and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database. RESULTS: PTL treatment could induce the proliferation inhibition and apoptosis of TFK1 in a concentration-dependent manner. Forty-three potential biomarkers associated with the antitumor effect of PTL were identified, which primarily related to glutamine and glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, nicotinate and nicotinamide metabolism, pyrimidine metabolism, fatty acid metabolism, phospholipid catabolism, and sphingolipid metabolism. Pathway analysis of upstream and downstream metabolites, we found three key metabolic enzymes, including glutaminase (GLS), γ-glutamyl transpeptidase (GGT), and carnitine palmitoyltransferase 1 (CPT1), which mainly involved in glutamine and glutamate metabolism, glutathione metabolism, and fatty acid metabolism. The changes of metabolic enzymes associated with significantly alerted metabolites were consistent with the levels of metabolites, and the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established. PTL may exert its antitumor effect against cholangiocarcinoma by disturbing metabolic pathways. Furthermore, we selected two positive control agents that are considered as first-line chemotherapy standards in cholangiocarcinoma therapy to verify the reliability and accuracy of our metabolomic study on PTL. CONCLUSION: This research enhanced our comprehension of the metabolic profiling and mechanism of PTL treatment on cholangiocarcinoma cells, which provided some references for further research into the anti-cancer mechanisms of other drugs.


Assuntos
Colangiocarcinoma , Sesquiterpenos , Masculino , Humanos , Glutamina , Reprodutibilidade dos Testes , Metabolômica/métodos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Colangiocarcinoma/tratamento farmacológico , Arginina , Fenilalanina , Glutationa , Ácidos Graxos , Glutamatos , Biomarcadores
3.
Biomed Pharmacother ; 173: 116426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471274

RESUMO

In the field of cancer therapy, sesquiterpene lactones (SLs) derived from diverse Dicoma species demonstrate noteworthy bioactivity. However, the translation of their full therapeutic potential into clinical applications encounters significant challenges, primarily related to solubility, bioavailability, and precise drug targeting. Despite these obstacles, our comprehensive review introduces an innovative paradigm shift that integrates the inherent therapeutic properties of SLs with the principles of green nanotechnology. To overcome issues of solubility, bioavailability, and targeted drug delivery, eco-friendly strategies are proposed for synthesizing nanocarriers. Green nanotechnology has emerged as a focal point in addressing environmental and health concerns linked to conventional treatments. This progressive approach of green nanotechnology holds promise for the development of safe and sustainable nanomaterials, particularly in the field of drug delivery. This groundbreaking methodology signifies a pioneering advancement in the creation of novel and effective anticancer therapeutics. It holds substantial potential for transforming cancer treatment and advancing the landscape of natural product research.


Assuntos
Nanoestruturas , Neoplasias , Sesquiterpenos , Humanos , Neoplasias/tratamento farmacológico , Nanotecnologia/métodos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Lactonas/uso terapêutico
4.
Clin Exp Pharmacol Physiol ; 51(4): e13847, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382534

RESUMO

The use of all-trans retinoic acid and arsenic trioxide resulted in favourable therapeutic responses in standard-risk acute promyelocytic leukaemia (APL) patients. However, resistance to these agents has made treating the high-risk subgroup more problematic, and possible side effects limit their clinical dosages. Numerous studies have proven the cytotoxic properties of Gaillardin, one of the Inula oculus-christi-derived sesquiterpene lactones. Due to the adverse effects of arsenic trioxide on the high-risk subgroup of APL patients, we aimed to assess the cytotoxic effect of Gaillardin on HL-60 cells as a single or combined-form approach. The results of the trypan blue and MTT assays outlined the potent cytotoxic properties of Gaillardin. The flow cytometric analysis and the mRNA expression levels revealed that Gaillardin attenuated the proliferative capacity of HL-60 cells through cell cycle arrest and induced apoptosis via reactive oxygen species generation. Moreover, the results of synergistic experiments indicated that this sesquiterpene lactone sensitizes HL-60 cells to the cytotoxic effects of arsenic trioxide. Taken together, the findings of the present investigation highlighted the antileukemic characteristics of Gaillardin by inducing G1 cell cycle arrest and triggering apoptosis. Gaillardin acts as an antileukemic metabolite against HL-60 cells and this study provides new insight into treating APL patients, especially in the high-risk subgroup.


Assuntos
Antineoplásicos , Leucemia , Sesquiterpenos , Humanos , Trióxido de Arsênio/farmacologia , Células HL-60 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Lactonas/farmacologia , Lactonas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Leucemia/tratamento farmacológico , Apoptose , Óxidos/farmacologia , Óxidos/uso terapêutico
5.
Drug Dev Res ; 85(1): e22150, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349256

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a progressive disease that can further evolve towards liver fibrosis and hepatocellular carcinoma in the end stage. Costunolide (Cos) is a natural sesquiterpene lactone that exhibits both anti-inflammatory and antioxidant properties. However, the therapeutic effect of Cos on NAFLD is not clear. In this study, we explored the potential protective effect and mechanism of Cos on NAFLD. C57BL/6 mice were fed with high-fat diet (HFD) to induce NAFLD. Cos was administered by gavage to observe the effect of Cos on NAFLD. We demonstrated that oral administration of Cos reduced HFD-induced hepatic fibrosis and the release of inflammatory cytokines, limiting the generation of reactive oxygen species. In vitro experiments revealed that pretreatment with Cos significantly decreased PA-induced production of inflammatory cytokines and fibrosis in AML-12 cells. Mechanism study showed that the effect of Cos was correlated to the induction of Nrf-2 and inhibition of NF-κB pathways. Collectively, these findings indicated that Cos exerts hepatoprotective effect against NAFLD through blocking inflammation and oxidative stress. Our study suggested that Cos might be an effective pharmacotherapy for the treatment of NAFLD.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Sesquiterpenos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo , Inflamação/tratamento farmacológico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Citocinas , Cirrose Hepática
6.
Acta Pharmacol Sin ; 45(4): 803-814, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172305

RESUMO

Overactivation of the NLRP3 inflammasomes induces production of pro-inflammatory cytokines and drives pathological processes. Pharmacological inhibition of NLRP3 is an explicit strategy for the treatment of inflammatory diseases. Thus far no drug specifically targeting NLRP3 has been approved by the FDA for clinical use. This study was aimed to discover novel NLRP3 inhibitors that could suppress NLRP3-mediated pyroptosis. We screened 95 natural products from our in-house library for their inhibitory activity on IL-1ß secretion in LPS + ATP-challenged BMDMs, found that Britannin exerted the most potent inhibitory effect with an IC50 value of 3.630 µM. We showed that Britannin (1, 5, 10 µM) dose-dependently inhibited secretion of the cleaved Caspase-1 (p20) and the mature IL-1ß, and suppressed NLRP3-mediated pyroptosis in both murine and human macrophages. We demonstrated that Britannin specifically inhibited the activation step of NLRP3 inflammasome in BMDMs via interrupting the assembly step, especially the interaction between NLRP3 and NEK7. We revealed that Britannin directly bound to NLRP3 NACHT domain at Arg335 and Gly271. Moreover, Britannin suppressed NLRP3 activation in an ATPase-independent way, suggesting it as a lead compound for design and development of novel NLRP3 inhibitors. In mouse models of MSU-induced gouty arthritis and LPS-induced acute lung injury (ALI), administration of Britannin (20 mg/kg, i.p.) significantly alleviated NLRP3-mediated inflammation; the therapeutic effects of Britannin were dismissed by NLRP3 knockout. In conclusion, Britannin is an effective natural NLRP3 inhibitor and a potential lead compound for the development of drugs targeting NLRP3.


Assuntos
Inflamassomos , Lactonas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sesquiterpenos , Animais , Humanos , Camundongos , Inflamassomos/agonistas , Interleucina-1beta/metabolismo , Lactonas/farmacologia , Lactonas/uso terapêutico , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
7.
J Biomol Struct Dyn ; 42(2): 885-902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029756

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disorder that leads to growth cysts in the kidney, ultimately resulting in loss of function. Currently, no effective drug therapy can be safely used in the clinic. So, looking for effective therapeutic drugs is urgent for treating ADPKD. Our natural product library was prepared based on the ZINC-15 database. Lipinski's rule of five, drug-likeness, and toxicity screening of the designed library were evaluated. Swiss model online server was used for modeling of GANAB target. Finally, docking-based screening against ADPKD targets was done by MOE 2019 software. The top 14 favorable druglike and non-toxic hits were selected for docking studies. Our results showed that compound-10 (ZINC 6073947) as a sesquiterpene coumarin had more negative binding interaction into the active site of PPARG, OXSR1, GANAB, AVPR2, and PC2 with docking scores of -8.22, -7.52, -6.98, -6.61 and -6.05 kcal/mol, respectively, in comparison to Curcumin, as a natural product that is now in phase 4 clinical trial in ADPKD disease, with an affinity of -8.03, -6.42, -6.82, -5.84 and -5.10 kcal/mol, respectively. Furthermore, seven sesquiterpene coumarins similar to compound 10 were generated and docked. Farnesiferol B (16), compared to compound-10, showed binding affinity of -8.16, -6.4, -7.46, -6.92, and -6.11 kcal/mol against the above targets, respectively. Molecular dynamics, which was done on the compound-10 and 16 (Farnesiferol B) in complex with PPARG, GANAB, and AVPR2, showed more negative binding free-energy than Pioglitazone, Miglitol, and Tolvaptan as FDA-approved drugs for each target, respectively.Communicated by Ramaswamy H. Sarma.


Assuntos
Rim Policístico Autossômico Dominante , Sesquiterpenos , Humanos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , PPAR gama , Sesquiterpenos/uso terapêutico , Zinco , Proteínas Serina-Treonina Quinases
8.
Curr Pharm Biotechnol ; 25(3): 313-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37287299

RESUMO

INTRODUCTION: Psoriasis is a chronic skin condition caused by an autoimmune response that accelerates the life cycle of skin cells, resulting in the characteristic symptoms of scaling, inflammation, and itching. METHODS: Palliative treatment options for psoriasis often prioritize the use of volatile oils. These oils contain monoterpenes, sesquiterpenes, and phenylpropanoids that are intricately linked to the molecular cascades involved in the pathogenesis and symptoms of psoriasis. To evaluate the antipsoriatic efficacy of volatile oils and their components, we conducted a systematic review of scientific studies. Our literature search encompassed various online databases, including PubMed, BIREME, SCIELO, Open Grey, Scopus, and ScienceDirect. The selected studies included experimental in vitro/in vivo assessments as well as clinical studies that examined the potential of volatile oils and their extracts as antipsoriatic agents. We excluded conference proceedings, case reports, editorials, and abstracts. Ultimately, we identified and evaluated a total of 12 studies for inclusion in our analysis. RESULTS: The data collected, compiled, and analyzed strongly support the interaction between volatile oils and their constituents with the key molecular pathways involved in the pathogenesis of psoriasis and the development of its symptoms. Volatile oils play a significant role in the palliative treatment of psoriasis, while their chemical constituents have the potential to reduce the symptoms and recurrence of this condition. CONCLUSION: The current review highlights that the constituents found in volatile oils offer distinct chemical frameworks that can be regarded as promising starting points for the exploration and development of innovative antipsoriatic agents.


Assuntos
Fármacos Dermatológicos , Óleos Voláteis , Psoríase , Sesquiterpenos , Humanos , Óleos Voláteis/uso terapêutico , Óleos Voláteis/química , Plantas , Monoterpenos , Psoríase/tratamento farmacológico , Sesquiterpenos/análise , Sesquiterpenos/uso terapêutico , Fármacos Dermatológicos/uso terapêutico
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1561-1573, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37672080

RESUMO

Zerumbone (ZER) is a phytochemical isolated from plants of the Zingiberaceae family. Numerous studies have demonstrated its diverse pharmacological properties, particularly its potent antitumorigenic activity. This study aimed to assess the antiproliferative effects of ZER on HT-29 cells cultivated in both two-dimensional (2D) monolayer and three-dimensional (3D) spheroid culture systems. The evaluation of growth (size), cell death, and cell cycle arrest in 3D spheroid HT-29 cells was correlated with mRNA expression data. Treatment of 2D cells revealed that ZER exhibited cytotoxicity at concentrations above 30 µM, and an IC50 of 83.54 µM (24-h post-ZER treatment) effectively suppressed cell migration. In the 3D model, ZER induced an increase in spheroid volume over a 72-h period attributed to disaggregation and reconfiguration of characteristic zones. Analysis of cell death demonstrated a significant rise in apoptotic cells after 24 h of ZER treatment, along with cell cycle arrest in the G1 phase. Furthermore, ZER treatment resulted in alterations in mRNA expression, affecting key signaling pathways involved in cell death (BCL2 and BBC3), endoplasmic reticulum stress (ERN1), DNA damage (GADD45A), cell cycle regulation (CDKN1A, NFKB1, MYC, and TP53), and autophagy (BECN1 and SQSTM1). These findings suggested that ZER holds promise as a potential candidate for the development of novel anticancer agents that can modulate crucial cell signaling pathways. Additionally, the use of the 3D culture system proved to be a valuable tool in our investigation.


Assuntos
Antineoplásicos , Sesquiterpenos , Humanos , Células HT29 , Apoptose , Antineoplásicos/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Linhagem Celular Tumoral , RNA Mensageiro
10.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 343-356, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439806

RESUMO

Lung cancer is the second most prevalent type of cancer and is responsible for the highest number of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) makes up the majority of lung cancer cases. Zerumbone (ZER) is natural compound commonly found in the roots of Zingiber zerumbet which has recently demonstrated anti-cancer activity in both in vitro and in vivo studies. Despite their medical benefits, ZER has low aqueous solubility, poor GI absorption and oral bioavailability that hinders its effectiveness. Liquid crystalline nanoparticles (LCNs) are novel drug delivery carrier that have tuneable characteristics to enhance and ease the delivery of bioactive compounds. This study aimed to formulate ZER-loaded LCNs and investigate their effectiveness against NSCLC in vitro using A549 lung cancer cells. ZER-LCNs, prepared in the study, inhibited the proliferation and migration of A549 cells. These inhibitory effects were superior to the effects of ZER alone at a concentration 10 times lower than that of free ZER, demonstrating a potent anti-cancer activity of ZER-LCNs. The underlying mechanisms of the anti-cancer effects by ZER-LCNs were associated with the transcriptional regulation of tumor suppressor genes P53 and PTEN, and metastasis-associated gene KRT18. The protein array data showed downregulation of several proliferation associated proteins such as AXL, HER1, PGRN, and BIRC5 and metastasis-associated proteins such as DKK1, CAPG, CTSS, CTSB, CTSD, and PLAU. This study provides evidence of potential for increasing the potency and effectiveness of ZER with LCN formulation and developing ZER-LCNs as a treatment strategy for mitigation and treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Sesquiterpenos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Apoptose , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Proliferação de Células
11.
Chin J Integr Med ; 30(1): 62-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882911

RESUMO

Elemene, derived from Curcuma wenyujin, one of the "8 famous genuine medicinal materials of Zhejiang province," exhibits remarkable antitumor activity. It has gained wide recognition in clinical practice for effectiveness on tumors. Dr. XIE Tian, introduced the innovative concept of "molecular compatibility theory" by combining Chinese medicine principles, specifically the "monarch, minister, assistant, and envoy" theory, with modern biomedical technology. This groundbreaking approach, along with a systematic analysis of Chinese medicine and modern biomedical knowledge, led to the development of elemene nanoliposome formulations. These novel formulations offer numerous advantages, including low toxicity, well-defined composition, synergistic effects on multiple targets, and excellent biocompatibility. Following the principles of the "molecular compatibility theory", further exploration of cancer treatment strategies and methods based on elemene was undertaken. This comprehensive review consolidates the current understanding of elemene's potential antitumor mechanisms, recent clinical investigations, advancements in drug delivery systems, and structural modifications. The ultimate goal of this review is to establish a solid theoretical foundation for researchers, empowering them to develop more effective antitumor drugs based on the principles of "molecular compatibility theory".


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Neoplasias , Sesquiterpenos , Humanos , Estudos Retrospectivos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
12.
J Pharmacol Exp Ther ; 388(3): 774-787, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135509

RESUMO

This study provides a unique translational research opportunity to help both humans and dogs diagnosed with diseases that carry dismal prognoses in both species: histiocytic sarcoma (HS), hemangiosarcoma (HSA), and disseminated mastocytosis/mast cell tumor (MCT). Although exceedingly rare in humans, these so called "orphan diseases" are relatively more common in dogs. For these and other more commonplace cancers like lymphoma (Lym), dogs are an excellent translational model for human disease due to remarkably similar disease biology. In this study, assays were performed to assess the therapeutic potential of parthenolide (PTL), a known canonical nuclear factor kappa B (NF-κB) signaling inhibitor with additional mechanisms of antineoplastic activity, including alteration of cellular reduction-oxidation balance. Canine cell lines and primary cells are sensitive to PTL and undergo dose-dependent apoptosis after exposure to drug. PTL exposure also leads to glutathione depletion, reactive oxygen species generation, and NF-κB inhibition in canine cells. Standard-of-care therapeutics broadly synergize with PTL. In two canine HS cell lines, expression of NF-κB pathway signaling partners is downregulated with PTL therapy. Preliminary data suggest that PTL inhibits NF-κB activity of cells and extends survival time in a mouse model of disseminated canine HS. These data support further investigation of compounds that can antagonize canonical NF-κB pathway signaling in these cancers and pave the way for clinical trials of PTL in affected dogs. As dogs are an excellent natural disease model for these cancers, these data will ultimately improve our understanding of their human disease counterparts and hopefully improve care for both species. SIGNIFICANCE STATEMENT: Disseminated neoplasms in human and canine cancers are challenging to treat, and novel therapeutic approaches are needed to improve outcomes. Parthenolide is a promising treatment for histiocytic sarcoma, hemangiosarcoma, and mast cell neoplasia.


Assuntos
Hemangiossarcoma , Sarcoma Histiocítico , Sesquiterpenos , Camundongos , Humanos , Animais , Cães , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Sarcoma Histiocítico/tratamento farmacológico , Hemangiossarcoma/tratamento farmacológico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Apoptose
13.
Int Immunopharmacol ; 124(Pt B): 110965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741124

RESUMO

Isolinderalactone is the main sesquiterpene lactone isolated from Lindera aggregata, a traditional Chinese medicine widely used to treat pain and inflammation. Although isolinderalactone has been demonstrated to possess anti-cancer effect, its anti-inflammatory activity and underlying mechanism has not been well characterized. Herein, isolinderalactone was able to significantly inhibit the production of NO and PGE2 by reducing the expressions of iNOS and COX2 in LPS-stimulated RAW264.7 macrophages and BMDMs, and decreased the mRNA levels of IL-1ß, IL-6, and TNF-α in LPS-induced RAW264.7 cells. In vivo, isolinderalactone effectively alleviated LPS-induced acute lung injury (ALI), which manifested as reduction in pulmonary inflammatory infiltration, myeloperoxidase activity, and production of PGE2, IL-1ß, IL-6, TNF-α, and malondialdehyde. Furthermore, isolinderalactone inhibited phosphorylation of IKKα/ß, phosphorylation and degradation of IκBα, and nuclear translocation of NF-κB p65, thereby blocking NF-κB pro-inflammatory pathway. Meanwhile, isolinderalactone reduced the intracellular ROS through promoting the activation of Nrf2-HMOX1 antioxidant axis. By using drug affinity responsive target stability assay and molecular docking, isolinderalactone was found to covalently interact with IKKα/ß and Keap1, which may contribute to its anti-inflammatory action. Additionally, a thiol donor ß-mercaptoethanol significantly abolished isolinderalactone-mediated anti-inflammatory action in vitro, indicating the crucial role of the unsaturated lactone of isolinderalactone on its anti-inflammatory effects. Taken together, isolinderalactone protected against LPS-induced ALI in mice, which may be associated with its inhibition of NF-κB pathway and activation of Nrf2 signaling in macrophages.


Assuntos
Lesão Pulmonar Aguda , Sesquiterpenos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/farmacologia , Quinase I-kappa B/metabolismo , Interleucina-6/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lactonas/farmacologia , Lactonas/uso terapêutico , Lactonas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
14.
Int Immunopharmacol ; 122: 110527, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392572

RESUMO

Cardiac remodeling is the final stage of almost all cardiovascular diseases, leading to heart failure and arrhythmias. However, the pathogenesis of cardiac remodeling is not fully understood, and specific treatment schemes are currently unavailable. Curcumol is a bioactive sesquiterpenoid that has anti-inflammatory, anti-apoptotic, and anti-fibrotic properties. This study aimed to investigate the protective effect of curcumol on cardiac remodeling and elucidate its relevant underlying mechanism. Curcumol significantly attenuated cardiac dysfunction, myocardial fibrosis, and hypertrophy in the animal model of isoproterenol (ISO)-induced cardiac remodeling. Curcumol also alleviated cardiac electrical remodeling, thereby reducing the risk of ventricular fibrillation (VF) after heart failure. Inflammation and apoptosis are critical pathological processes involved in cardiac remodeling. Curcumol inhibited the inflammation and apoptosis induced by ISO and TGF-ß1 in mouse myocardium and neonatal rat cardiomyocytes (NRCMs). Furthermore, the protective effects of curcumol were found to be mediated through the inhibition of the protein kinase B (AKT)/nuclear factor-kappa B (NF-κB) pathway. The administration of an AKT agonist reversed the anti-fibrotic, anti-inflammatory, and anti-apoptotic effects of curcumol and restored the inhibition of NF-κB nuclear translocation in TGF-ß1-induced NRCMs. Our study suggests that curcumol is a potential therapeutic agent for the treatment of cardiac remodeling.


Assuntos
Insuficiência Cardíaca , Sesquiterpenos , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Transdução de Sinais , Remodelação Ventricular , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Miócitos Cardíacos/metabolismo , Fibrose , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Insuficiência Cardíaca/tratamento farmacológico
15.
Eur J Pharmacol ; 955: 175917, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473982

RESUMO

Secretory diarrhea caused by bacteria and viruses is usually accompanied by activation of the cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated Cl- channels (CaCCs) in the intestinal epithelium. Inhibition of CFTR and CaCCs activities significantly reduces fluid losses and intestinal motility in diarrheal diseases. For this reason, CFTR and CaCCs are potential targets of therapeutic drug screening. Here, we reported that the sesquiterpene lactones, alantolactone (AL) and isoalantolactone (iAL), significantly inhibited ATP and Eact-induced short-circuit currents in T84, HT-29 and Fischer rat thyroid (FRT) cells expressing transmembrane protein 16A (TMEM16A) in a concentration-dependent manner. AL and iAL also inhibited the CaCC-mediated short-circuit currents induced by carbachol in the mouse colons. Both compounds inhibited forskolin-induced currents in T84 cells but did not significantly affect mouse colons. In vivo studies indicated that AL and iAL attenuated gastrointestinal motility and decreased watery diarrhea in rotavirus-infected neonatal mice. Preliminary mechanism studies showed that AL and iAL inhibited CaCCs at least partially by inhibiting Ca2+ release and basolateral membrane K+ channels activity. These findings suggest a new pharmacological activity of sesquiterpene lactone compounds that might lead to the development of treatments for rotaviral secretory diarrhea.


Assuntos
Rotavirus , Sesquiterpenos , Ratos , Camundongos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística , Diarreia/tratamento farmacológico , Diarreia/metabolismo , Canais de Cloreto/metabolismo , Mucosa Intestinal/metabolismo , Ratos Endogâmicos F344 , Lactonas/farmacologia , Lactonas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Sesquiterpenos/metabolismo , Cloretos/metabolismo
16.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3707-3721, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37306715

RESUMO

In this study, we determined the therapeutic effect of parthenolide (PTL), the active component of Tanacetum parthenium, on neuropathic pain caused by paclitaxel (PTX), a chemotherapeutic drug frequently used in cancer treatment, at the gene and protein levels. To this end, 6 groups were formed: control, PTX, sham, 1 mg/PTL, 2 mg/kg PTL, and 4 mg/kg PTL. Pain formation was tested by Randall-Selitto analgesiometry and locomotor activity behavioral analysis. Then, PTL treatment was performed for 14 days. After the last dose of PTL was taken, Hcn2, Trpa1, Scn9a, and Kcns1 gene expressions were measured in rat brain (cerebral cortex/CTX) tissues. In addition, changes in the levels of SCN9A and KCNS1 proteins were determined by immunohistochemical analysis. Histopathological hematoxylin-eosin staining was also performed to investigate the effect of PTL in treating tissue damage on neuropathic pain caused by PTX treatment. When the obtained data were analyzed, pain threshold and locomotor activity decreased in PTX and sham groups and increased with PTL treatment. In addition, it was observed that the expression of the Hcn2, Trpa1, and Scn9a genes decreased while the Kcns1 gene expression increased. When protein levels were examined, it was determined that SCN9A protein expression decreased and the KCNS1 protein level increased. It was determined that PTL treatment also improved PTX-induced tissue damage. The results of this study demonstrate that non-opioid PTL is an effective therapeutic agent in the treatment of chemotherapy-induced neuropathic pain, especially when used at a dose of 4 mg/kg acting on sodium and potassium channels.


Assuntos
Neuralgia , Sesquiterpenos , Ratos , Animais , Paclitaxel/toxicidade , Analgésicos/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
17.
J Ethnopharmacol ; 317: 116859, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390874

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Eugenia uniflora leaf infusion is widely used in folk medicine to treat gastroenteritis, fever, hypertension, inflammatory and diuretic diseases. AIM OF THE STUDY: This work evaluated the acute oral toxic, antinociceptive, and anti-inflammatory activities of the curzerene chemotype of Eugenia uniflora essential oil (EuEO). MATERIAL AND METHODS: EuEO was obtained by hydrodistillation and analyzed by GC and GC-MS. The antinociceptive action in mice was evaluated for the peripheral and central analgesic activity using abdominal contortion and hot plate tests (50, 100, and 200 mg/kg); xylene-induced ear swelling was carried out for the nociception test, and carrageenan-induced cell migration test. Spontaneous locomotor activity was assessed in the open field test to rule out any nonspecific sedative or muscle relaxant effects of EuEO. RESULTS: The EuEO displayed a yield of 2.6 ± 0.7%. The major compounds classes were oxygenated sesquiterpenoids (57.3 ± 0.2%), followed by sesquiterpene hydrocarbons (16.4 ± 2.6). The chemical constituents with the highest concentrations were curzerene (33.4 ± 8.5%), caryophyllene oxide (7.6 ± 2.8%), ß-elemene (6.5 ± 1.8%), and E-caryophyllene (4.1 ± 0.3%). Oral treatment with EuEO, at doses of 50, 300, and 2000 mg/kg, did not change the behavior patterns or mortality of the animals. EuEO (300 mg/kg) did not cause a reduction in the number of crossings in the open field compared to the vehicle group. The aspartate aminotransferase (AST) level was higher in EuEO-treated groups (50 and 2000 mg/kg) when compared to the control group (p < 0.05). EuEO, at doses of 50, 100, and 200 mg/kg, reduced the number of abdominal writhings by 61.66%, 38.33%, and 33.33%. EuEO did not show increased hot plate test time latency in any of the intervals analyzed. At 200 mg/kg, EuEO decreased paw licking time, with inhibition of 63.43%. In formalin-induced acute pain, EuEO decreased paw licking time at doses of 50, 100, and 200 mg/kg in the first phase, with inhibition of 30.54%, 55.02%, and 80.87%. The groups treated with EuEO at doses of 50, 100, and 200 mg/kg showed ear edema reduction of 50.26%, 55.17%, and 51.31%, respectively. Moreover, EuEO inhibited leukocyte recruitment only at a dose of 200 mg/kg. The inhibitory values of leukocyte recruitment after 4 h of carrageenan application were 4.86%, 4.93%, and 47.25% for 50, 100, and 200 mg/kg of essential oil, respectively. CONCLUSION: The EuEO, curzerene chemotype, has significant antinociceptive and anti-inflammatory activities and low acute oral toxicity. This work confirms the antinociceptive and anti-inflammatory of this species as the traditional use.


Assuntos
Eugenia , Óleos Voláteis , Sesquiterpenos , Camundongos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/química , Carragenina , Eugenia/química , Brasil , Dor/induzido quimicamente , Dor/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/química , Sesquiterpenos/uso terapêutico , Extratos Vegetais/efeitos adversos , Edema/induzido quimicamente , Edema/tratamento farmacológico
18.
Acta Pharmacol Sin ; 44(11): 2265-2281, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37344563

RESUMO

The majority of blood malignancies is incurable and has unforeseeable remitting-relapsing paths in response to different treatments. Cynaropicrin, a natural sesquiterpene lactone from the edible parts of the artichoke plant, has gained increased attention as a chemotherapeutic agent. In this study, we investigated the effects of cynaropicrin against multiple myeloma (MM) cells in vitro and assessed its in vivo effectiveness in a xenograft tumor zebrafish model. We showed that cynaropicrin exerted potent cytotoxicity against a panel of nine MM cell lines and two leukemia cell lines with AMO1 being the most sensitive cell line (IC50 = 1.8 ± 0.3 µM). Cynaropicrin (0.8, 1.9, 3.6 µM) dose-dependently reduced c-Myc expression and transcriptional activity in AMO1 cells that was associated with significant downregulation of STAT3, AKT, and ERK1/2. Cell cycle analysis showed that cynaropicrin treatment arrested AMO1 cells in the G2M phase along with an increase in the sub-G0G1 phase after 24 h. With prolonged treatment times, cells accumulated more in the sub-G0G1 phase, implying cell death. Using confocal microscopy, we revealed that cynaropicrin disrupted the microtubule network in U2OS cells stably expressing α-tubulin-GFP. Furthermore, we revealed that cynaropicrin promoted DNA damage in AMO1 cells leading to PAR polymer production by PARP1 hyperactivation, resulting in AIF translocation from the mitochondria to the nucleus and subsequently to a novel form of cell death, parthanatos. Finally, we demonstrated that cynaropicrin (5, 10 µM) significantly reduced tumor growth in a T-cell acute lymphoblastic leukemia (T-ALL) xenograft zebrafish model. Taken together, these results demonstrate that cynaropicrin causes potent inhibition of hematopoietic tumor cells in vitro and in vivo.


Assuntos
Mieloma Múltiplo , Parthanatos , Sesquiterpenos , Animais , Humanos , Tubulina (Proteína) , Peixe-Zebra/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Lactonas/farmacologia , Lactonas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Linhagem Celular Tumoral
19.
Int Immunopharmacol ; 119: 110229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167640

RESUMO

Natural products have attracted extensive attention from researchers in medical fields due to their abundant biological activities. Parthenolide (PTL) is a sesquiterpene lactone originally purified from herb Feverfew (Tanacetum parthenium), recent studies have showed its potential activities of anti-cancer and anti-inflammatory. Acting as the most studied inflammasome, NLRP3 inflammasome played an important role in human diseases including type-2 diabetes (T2D), Alzheimer's disease (AD) and cryopyrin-associated periodic syndromes (CAPS). In this article, we show that PTL specially inhibits the activation of NLRP3 inflammation by block the upstream signal and prevent the assembly of NLRP3 inflammasome complex. Furthermore, we showed the treatment of PTL significantly attenuates the symptoms of lipopolysaccharide (LPS)-induced systemic inflammation and dextran sulfate sodium (DSS)-induced colitis in mice models. Thus, our results demonstrate that PTL alleviates inflammation by targeting NLRP3 inflammasome, which indicate that PTL acting as a promising natural product for the treatment of NLRP3 inflammasome-related diseases.


Assuntos
Inflamassomos , Sesquiterpenos , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Inflamação , Camundongos Endogâmicos C57BL , Sulfato de Dextrana
20.
Eur Rev Med Pharmacol Sci ; 27(8): 3270-3287, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140277

RESUMO

OBJECTIVE: ß-Elemene, a sesquiterpene with a broad anti-cancer spectrum, is particularly effective against drug-resistant and complex tumors. It can also be efficient against FLT3-expressed acute myeloid leukemia. This research aims to determine whether ß-Elemene has cytotoxic effects on FLT3 ITD-mutated AML cells. MATERIALS AND METHODS: Cytotoxicity, cell morphology, mRNA analysis with apoptotic markers, and analysis of 43 distinct protein markers related to cell death, survival, and resistance were all performed to elucidate its mechanism. Additionally, in order to understand how ß-Elemene and FLT3 interact, molecular docking, molecular dynamics simulations, and computational ADME investigations were performed. RESULTS: ß-Elemene exhibited cytotoxic activity against FLT3-mutated MV4-11 and FLT3 wild-type THP-1 cells, with an IC50 of around 25 µg/ml. The molecular studies revealed that ß-Elemene inhibited cell proliferation by inducing p53, and the involvement of p21, p27, HTRA, and HSPs were also demonstrated. The interactive inhibition in proliferation was confirmed via molecular docking and dynamics analyses. ß-Elemene occupied the FLT3 enzymatic pocket with good stability at the FLT3 active site. CONCLUSIONS: We concluded from our observations that ß-Elemene causes cell death in ITD mutant AML cells, together with the effects of stress factors and inhibiting cell division.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Sesquiterpenos , Humanos , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Proliferação de Células , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/farmacologia , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Linhagem Celular Tumoral , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA