Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Indian J Med Microbiol ; 49: 100574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38561026

RESUMO

PURPOSE: The Shewanella genus is a rare pathogen of marine origin. In recent years, there has been a continuous increase in infection cases caused by this bacterium, and we have observed the uniqueness of infections caused by this microorganism. MATERIALS AND METHODS: This study conducted a retrospective analysis of the medical history and laboratory examination data of patients infected with the Shewanella genus over the past decade. Additionally, it employed bioinformatics methods to analyze the relevant virulence factors and antibiotic resistance genes associated with the Shewanella genus. RESULTS: Over the past 10 years, we have isolated 51 cases of Shewanella, with 68.82% being Shewanella putrefaciens (35/51 cases) and 31.37% being Shewanella algae (16/51 cases). Infected individuals often had underlying diseases, with 39.22% (20/51) having malignant tumors and 25.49% (13/51) having liver and biliary system diseases primarily characterized by stones. The majority of patients, 62.74% (32/51), exhibited mixed infections, including one case with a combination of infections from three other types of bacteria and five cases with a combination of infections from two other types of bacteria. The identified microorganisms were commonly resistant to ticarcillin-clavulanic acid (23.5%), followed by cefoperazone-sulbactam (19.6%), ciprofloxacin (17.6%), and cefotaxime (17.6%). Bioinformatics analysis indicates that Shewanella can express bile hydrolysis regulators and fatty acid metabolism regulators that aid in adapting to the unique environment of the biliary tract. Additionally, it expresses abundant catalase, superoxide dismutase, and two-component signal transduction system proteins, which may be related to environmental adaptation. Shewanella also expresses various antibiotic resistance genes, including beta-lactamases and aminoglycoside modification enzymes. Iron carriers may be one of its important virulence factors. CONCLUSIONS: We speculate that the Shewanella genus may exist as a specific colonizer in the human body, and under certain conditions, it may act as a pathogen, leading to biliary infections in the host.


Assuntos
Infecções por Bactérias Gram-Negativas , Shewanella , Fatores de Virulência , Humanos , Shewanella/genética , Shewanella/classificação , Shewanella/isolamento & purificação , Shewanella/patogenicidade , Estudos Retrospectivos , Infecções por Bactérias Gram-Negativas/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Fatores de Virulência/genética , Idoso , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Adulto Jovem , Adolescente , Shewanella putrefaciens/genética , Shewanella putrefaciens/isolamento & purificação , Shewanella putrefaciens/classificação
2.
Food Microbiol ; 120: 104467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431319

RESUMO

The luxS mutant strains of Shewanella putrefaciens (SHP) were constructed to investigate the regulations of gene luxS in spoilage ability. The potential regulations of AI-2 quorum sensing (QS) system and activated methyl cycle (AMC) were studied by analyzing the supplementation roles of key circulating substances mediated via luxS, including S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), homocysteine (Hcy) and 4,5-dihydroxy-2,3-pentanedione (DPD). Growth experiments revealed that the luxS deletion led to certain growth limitations of SHP, which were associated with culture medium and exogenous additives. Meanwhile, the decreased biofilm formation and diminished hydrogen sulfide (H2S) production capacity of SHP were observed after luxS deletion. The relatively lower total volatile base nitrogen (TVB-N) contents and higher sensory scores of fish homogenate with luxS mutant strain inoculation also indicated the weaker spoilage-inducing effects after luxS deletion. However, these deficiencies could be offset with the exogenous supply of circulating substances mentioned above. Our findings suggested that the luxS deletion would reduce the spoilage ability of SHP, which was potentially attributed to the disorder of AMC and AI-2 QS system.


Assuntos
Percepção de Quorum , Shewanella putrefaciens , Animais , Percepção de Quorum/genética , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metionina/genética , Metionina/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
3.
Proc Natl Acad Sci U S A ; 117(34): 20826-20835, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788349

RESUMO

Bacterial flagella differ in their number and spatial arrangement. In many species, the MinD-type ATPase FlhG (also YlxH/FleN) is central to the numerical control of bacterial flagella, and its deletion in polarly flagellated bacteria typically leads to hyperflagellation. The molecular mechanism underlying this numerical control, however, remains enigmatic. Using the model species Shewanella putrefaciens, we show that FlhG links assembly of the flagellar C ring with the action of the master transcriptional regulator FlrA (named FleQ in other species). While FlrA and the flagellar C-ring protein FliM have an overlapping binding site on FlhG, their binding depends on the ATP-dependent dimerization state of FlhG. FliM interacts with FlhG independent of nucleotide binding, while FlrA exclusively interacts with the ATP-dependent FlhG dimer and stimulates FlhG ATPase activity. Our in vivo analysis of FlhG partner switching between FliM and FlrA reveals its mechanism in the numerical restriction of flagella, in which the transcriptional activity of FlrA is down-regulated through a negative feedback loop. Our study demonstrates another level of regulatory complexity underlying the spationumerical regulation of flagellar biogenesis and implies that flagellar assembly transcriptionally regulates the production of more initial building blocks.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Fenômenos Bioquímicos , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo
4.
J Inorg Biochem ; 162: 207-215, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26723537

RESUMO

Cultures of Shewanella putrefaciens grown in medium containing 10mM 1,4-diamino-2-butanone (DBO) as an inhibitor of ornithine decarboxylase and 10mM 1,5-diaminopentane (cadaverine) showed the simultaneous biosynthesis of the macrocyclic dihydroxamic acids: putrebactin (pbH2), avaroferrin (avH2) and bisucaberin (bsH2). The level of DBO did not completely repress the production of endogenous 1,4-diaminobutane (putrescine) as the native diamine substrate of pbH2. The relative concentration of pbH2:avH2:bsH2 was 1:2:1, which correlated with the substrate selection of putrescine:cadaverine in a ratio of 1:1. The macrocycles were characterised using LC-MS as free ligands and as 1:1 complexes with Fe(III) of the form [Fe(pb)]+, [Fe(av)]+ or [Fe(bs)]+, with labile ancillary ligands in six-coordinate complexes displaced during ESI-MS acquisition; or with Mo(VI) of the form [Mo(O)2(pb)], [Mo(O)2(av)] or [Mo(O)2(bs)]. Chromium(V) complexes of the form [CrO(pb)]+ were detected from solutions of Cr(VI) and pbH2 in DMF using X-band EPR spectroscopy. Supplementation of S. putrefaciens medium with DBO and 1,3-diaminopropane, 1,6-diaminohexane or 1,4-diamino-2(Z)-butene (Z-DBE) resulted only in the biosynthesis of pbH2. The work has identified a native system for the simultaneous biosynthesis of a suite of three macrocyclic dihydroxamic acid siderophores and highlights both the utility of precursor-directed biosynthesis for expanding the structural diversity of siderophores, and the breadth of their coordination chemistry.


Assuntos
Cromo/química , Ferro/química , Molibdênio/química , Peptídeos Cíclicos/biossíntese , Putrescina/análogos & derivados , Shewanella putrefaciens/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cadaverina/metabolismo , Complexos de Coordenação/química , Diaminas/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Expressão Gênica , Ácidos Hidroxâmicos/antagonistas & inibidores , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase/farmacologia , Peptídeos Cíclicos/antagonistas & inibidores , Putrescina/antagonistas & inibidores , Putrescina/biossíntese , Putrescina/farmacologia , Shewanella putrefaciens/efeitos dos fármacos , Shewanella putrefaciens/genética , Succinatos/antagonistas & inibidores
5.
BMC Microbiol ; 13: 267, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24274142

RESUMO

BACKGROUND: The completion of genome sequencing in a number of Shewanella species, which are most renowned for their metal reduction capacity, offers a basis for comparative studies. Previous work in Shewanella oneidensis MR-1 has indicated that some genes within a cluster (mtrBAC-omcA-mtrFED) were involved in iron reduction. To explore new features of iron reduction pathways, we experimentally analyzed Shewanella putrefaciens W3-18-1 since its gene cluster is considerably different from that of MR-1 in that the gene cluster encodes only four ORFs. RESULTS: Among the gene cluster, two genes (mtrC and undA) were shown to encode c-type cytochromes. The ΔmtrC deletion mutant revealed significant deficiencies in reducing metals of Fe2O3, α-FeO(OH), ß-FeO(OH), ferric citrate, Mn(IV) and Co(III), but not organic compounds. In contrast, no deficiency of metal reduction was observed in the ΔundA deletion mutant. Nonetheless, undA deletion resulted in progressively slower iron reduction in the absence of mtrC and fitness loss under the iron-using condition, which was indicative of a functional role of UndA in iron reduction. CONCLUSIONS: These results provide physiological and biochemical evidences that UndA and MtrC of Shewanella putrefaciens W3-18-1 are involved in iron reduction.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Shewanella putrefaciens/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Família Multigênica , Oxirredução , Shewanella putrefaciens/genética
6.
Mol Microbiol ; 83(2): 335-50, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22151089

RESUMO

Bacterial flagellar motors are intricate nanomachines in which the stator units and rotor component FliM may be dynamically exchanged during function. Similar to other bacterial species, the gammaproteobacterium Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system along with a corresponding stator unit. Expression of the secondary system occurs during planktonic growth in complex media and leads to the formation of a subpopulation with one or more additional flagella at random positions in addition to the primary polar system. We used physiological and phenotypic characterizations of defined mutants in concert with fluorescent microscopy on labelled components of the two different systems, the stator proteins PomB and MotB, the rotor components FliM(1) and FliM(2), and the auxiliary motor components MotX and MotY, to determine localization, function and dynamics of the proteins in the flagellar motors. The results demonstrate that the polar flagellum is driven by a Na(+)-dependent FliM(1)/PomAB/MotX/MotY flagellar motor while the secondary system is rotated by a H(+)-dependent FliM(2)/MotAB motor. The components were highly specific for their corresponding motor and are unlikely to be extensively swapped or shared between the two flagellar systems under planktonic conditions. The results have implications for both specificity and dynamics of flagellar motor components.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/fisiologia , Locomoção , Proteínas Motores Moleculares/metabolismo , Shewanella putrefaciens/fisiologia , Proteínas de Bactérias/genética , Flagelos/genética , Flagelos/metabolismo , Genes Reporter , Microscopia de Fluorescência , Proteínas Motores Moleculares/genética , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , Bombas de Próton/metabolismo , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Coloração e Rotulagem/métodos
7.
J Am Chem Soc ; 130(32): 10458-9, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18630910

RESUMO

Putrebactin is a dihydroxamate iron chelator produced by the metabolically versatile marine bacterium Shewanella putrefaciens. It is a macrocyclic dimer of N-hydroxy-N-succinyl-putrescine (HSP) and is structurally related to desferrioxamine E, which is a macrocyclic trimer of N-hydroxy-N-succinyl-cadaverine (HSC). We recently showed that DesD, a member of the NIS synthetase superfamily, catalyzes the key step in desferrioxamine E biosynthesis: ATP-dependent trimerisation and macrocylization of HSC. Here we report identification of a conserved gene cluster in the sequenced genomes of several Shewanella species, including Shewanella putrefaciens, which is hypothesized to direct putrebactin biosynthesis from putrescine, succinyl-CoA and molecular oxygen. The pubC gene within this gene cluster encodes a protein with 65% similarity to DesD. We overexpressed pubC from Shewanella species MR-4 and MR-7 in E. coli. The resulting His6-PubC fusion proteins were purified by Ni-NTA affinity and gel filtration chromatography. The recombinant proteins were shown to catalyze ATP-dependent cyclodimerization of HSP to form putrebactin. The uncyclized dimer of HSP pre-putrebactin was shown to be an intermediate in the conversion of two molecules of HSP to putrebactin. The data indicate that pre-putrebactin is converted to putrebactin via PubC-catalyzed activation of the carboxyl group by adenylation, followed by PubC-catalyzed nucleophilic attack of the amino group on the carbonyl carbon of the acyl adenylate. This mechanism for macrocycle formation is very different from the mechanism involved in the biosynthesis of many other macrocyclic natural products, where already-activated acyl thioesters are converted by thioesterase domains of polyketide synthases and nonribosomal peptide synthetases to macrocycles via covalent enzyme bound intermediates. The results of this study demonstrate that two closely related enzymes, PubC and DesD, catalyze specific cyclodimerization and cyclotrimerization reactions, respectively, of structurally similar substrates, raising intriguing questions regarding the molecular mechanism of specificity.


Assuntos
Proteínas de Bactérias/química , Genes Bacterianos , Família Multigênica , Putrescina/análogos & derivados , Shewanella putrefaciens/metabolismo , Succinatos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Ciclização , Dimerização , Putrescina/biossíntese , Putrescina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shewanella putrefaciens/genética
8.
J Colloid Interface Sci ; 266(1): 60-7, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12957582

RESUMO

A modified regularized least squares pK(a) spectrum approach is applied to determine disassociation constants and proton binding site concentrations on bacteria, hydrous ferric oxide (HFO), and bacteria/HFO composite surfaces. This involves fitting experimental acid-base titration data to a continuous binding site model for a chemically heterogeneous surface with a variety of reactive groups yielding a pK(a) spectrum. The modified parameter fitting method optimizes simultaneously for both smoothness of the pK(a) spectrum and goodness of fit, whereas other methods optimize for goodness of fit given a fixed smoothness factor. Uncertainty estimates in pK(a) spectra were made by taking the mean and standard deviation of the spectra from replicate titration data. Titration of Shewanella putrefaciens strain CN32, a facultative iron-reducing bacterial species, demonstrate five types of binding sites consistent with known cell surface groups on bacteria, with mean pK(a) values of 3.62, 4.97, 6.92, 8.22, and 9.97. Composite surfaces formed by precipitation of HFO onto bacteria surfaces were also titrated. These surfaces no longer yielded low pK(a) sites in pK(a) spectra, indicating that ferric iron interacts with the bacteria via carboxylic (low pK(a)) sites during precipitation. In addition, mechanically mixed HFO bacterial samples also showed removal of carboxylic binding sites, suggesting that solid phase HFO interacts directly with carboxylic sites on bacterial cells. Moreover, the pK(a) spectra for HFO bacterial composites were not dependent on how the composite was formed; the mechanically mixed or surface-precipitated samples exhibited very similar binding site distributions. The determined pK(a) spectra imply that the overall binding mechanism for bacteria interactions with HFO involve carboxylic groups on the bacteria binding to the most basic sites on the HFO surface in approximately 1:1 stoichiometry.


Assuntos
Compostos Férricos/química , Shewanella putrefaciens/química , Análise Espectral/métodos , Compostos Férricos/metabolismo , Cinética , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo , Propriedades de Superfície , Titulometria
9.
Biotechnol Bioeng ; 83(6): 627-37, 2003 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12889027

RESUMO

Microbial reduction is a promising strategy for chromium remediation, but the effects of competing electron acceptors are still poorly understood. We investigated chromate (Cr(VI)) reduction in batch cultures of Shewanella oneidensis MR-1 under aerobic and denitrifying conditions and in the absence of an additional electron acceptor. Growth and Cr(VI) removal patterns suggested a cometabolic reduction; in the absence of nitrate or oxygen, MR-1 reduced Cr(VI), but without any increase in viable cell counts and rates gradually decreased when cells were respiked. Only a small fraction (1.6%) of the electrons from lactate were transferred to Cr(VI). The 48-h transformation capacity (Tc) was 0.78 mg (15 micromoles) Cr(VI) reduced. [mg protein](-1) for high levels of Cr(VI) added as a single spike. For low levels of Cr(VI) added sequentially, Tc increased to 3.33 mg (64 micromoles) Cr(VI) reduced. [mg protein](-1), indicating that it is limited by toxicity at higher concentrations. During denitrification and aerobic growth, MR-1 reduced Cr(VI), with much faster rates under denitrifying conditions. Cr(VI) had no effect on nitrate reduction at 6 microM, was strongly inhibitory at 45 microM, and stopped nitrate reduction above 200 microM. Cr(VI) had no effect on aerobic growth at 60 microM, but severely inhibited growth above 150 microM. A factor that likely plays a role in Cr(VI) toxicity is intracellular reduced chromium. Transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of denitrifying cells exposed to Cr(VI) showed reduced chromium precipitates both extracellularly on the cell surface and, for the first time, as electron-dense round globules inside cells.


Assuntos
Cromo/metabolismo , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo , Biodegradação Ambiental , Carcinógenos Ambientais/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados , Inibidores do Crescimento/biossíntese , Inibidores do Crescimento/metabolismo , Microscopia Eletrônica , Oxirredução , Shewanella putrefaciens/crescimento & desenvolvimento , Solubilidade , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA