Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
IET Nanobiotechnol ; 2024: 4391833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863970

RESUMO

The massive growth of various microorganisms on the orthodontic bracket can form plaques and cause diseases. A novel amine-terminated hyperbranched zirconium-polysiloxane (HPZP) antimicrobial coating was developed for an orthodontic stainless steel tank (SST). After synthesizing HPZP and HPZP-Ag coatings, their structures were characterized by nuclear magnetic resonance spectroscopy, scanning electron microscopy, thickness measurement, contact angle detection, mechanical stability testing, and corrosion testing. The cell toxicity of the two coatings to human gingival fibroblasts (hGFs) and human oral keratinocytes (hOKs) was detected by cell counting kit eight assays, and SST, HPZP@SST, and HPZP-Ag@SST were cocultured with Staphylococcus aureus, Escherichia coli, and Streptococcus mutans for 24 hr to detect the antibacterial properties of the coatings, respectively. The results show that the coatings are about 10 µm, and the water contact angle of HPZP coating is significantly higher than that of HPZP-Ag coating (P < 0.01). Both coatings can be uniformly and densely distributed on SST and have good mechanical stability and corrosion resistance. The cell counting test showed that HPZP coating and HPZP-Ag coating were less toxic to cells compared with SST, and the toxicity of HPZP-Ag coating was greater than that of HPZP coating, with the cell survival rate greater than 80% after 72 hr cocultured with hGFs and hOKs. The antibacterial test showed that the number of bacteria on the surface of different materials was ranked from small to large: HPZP@SST < HPZP-Ag@SST < SST and 800 µg/mL HPZP@SST showed a better bactericidal ability than 400 µg/mL after cocultured with S. aureus, E. coli, and S. mutans, respectively (all P < 0.05). The results showed that HPZP coating had a better effect than HPZP-Ag coating, with effective antibacterial and biocompatible properties, which had the potential to be applied in orthodontic process management.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Braquetes Ortodônticos , Siloxanas , Aço Inoxidável , Zircônio , Aço Inoxidável/química , Aço Inoxidável/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Braquetes Ortodônticos/microbiologia , Zircônio/química , Zircônio/farmacologia , Siloxanas/química , Siloxanas/farmacologia , Fibroblastos/efeitos dos fármacos , Teste de Materiais , Aminas/química , Aminas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Escherichia coli/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Gengiva/citologia , Gengiva/efeitos dos fármacos
2.
Photodiagnosis Photodyn Ther ; 38: 102867, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35436574

RESUMO

AIM: The present study was intended to evaluate the antimicrobial effect of PDT, H2O2, and MI on the contact angle, strain-in-compression, and tear strength of siloxane impression material formerly colonized with E. coli, S.aureus and S.mutans. MATERIAL AND METHODS: One hundred and twenty disk-shaped specimens (diameter 10 mm and thickness 2 mm) were prepared by polyvinylsiloxane impression material and inoculated by the American Type Culture Collection (ATCC) of E.coli, S.mutans, and S.aureus in an in-vitro situation. The specimens were broadly divided into six groups then exposed to the various disinfection approaches for 3 min per each group: group 1: Control (no treatment), group 2:PDT 5-ALA, group 3: H2O2, group 4: MI, group 5: H2O2 + MI, group 6: PDT + MI. After disinfection, assessment of mechanical properties (contact angle, strain-in-compression, and tear strength) of impression materials were instigated. Statistical analysis was executed for CFU/mL (log10) for exposed E. coli, S.aureus, and S.mutans, by two-way ANOVA and Tukey's honestly significant test (p>0.05). RESULTS: The highest anti-microbial values against all inspected microbial colonies were unveiled when disinfection was performed in combination i.e., H2O2 + MI and PDT + MI and the least cleansing of impression material was seen by the control group as no treatment was provided. Solo application of MI was more effective than control, H2O2 and 5-ALA activated by PDT but less active when used in combination method H2O2 with MI and PDT with MI. PDT and control group showed the least antimicrobial effectiveness against E. coli (p<0.05) CONCLUSION: Disinfection of impression materials with combination therapies including photodynamic therapy with microwave irradiation and hydrogen peroxide with microwave irradiation displayed highest antimicrobial efficacies against E. coli, S. aureus, and S. mutans with no adverse effects on mechanical properties of impression material.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Ácido Aminolevulínico/farmacologia , Descontaminação , Desinfecção/métodos , Escherichia coli , Peróxido de Hidrogênio/farmacologia , Micro-Ondas , Fotoquimioterapia/métodos , Siloxanas/farmacologia , Staphylococcus aureus
3.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443480

RESUMO

Within this study, new materials were synthesized and characterized based on polysiloxane modified with different ratios of N-acetyl-l-cysteine (NAC) and crosslinked via UV-assisted thiol-ene addition, in order to obtain efficient membranes able to resist bacterial adherence and biofilm formation. These membranes were subjected to in vitro testing for microbial adherence against S. pneumoniae using standardized tests. WISTAR rats were implanted for 4 weeks with crosslinked siloxane samples without and with NAC. A set of physical characterization methods was employed to assess the chemical structure and morphological aspects of the new synthetized materials before and after contact with the microbiological medium.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Implantes Cocleares/microbiologia , Otite/tratamento farmacológico , Polímeros/química , Siloxanas/química , Acetilcisteína/química , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Implantes Cocleares/efeitos adversos , Polímeros/farmacologia , Polímeros/uso terapêutico , Ratos Wistar , Siloxanas/farmacologia , Siloxanas/uso terapêutico , Streptococcus pneumoniae/efeitos dos fármacos , Compostos de Sulfidrila/química , Propriedades de Superfície
4.
ACS Appl Mater Interfaces ; 13(27): 31355-31370, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34218662

RESUMO

The development of cancer resistance continues to represent a bottleneck of cancer therapy. It is one of the leading factors preventing drugs to exhibit their full therapeutic potential. Consequently, it reduces the efficacy of anticancer therapy and causes the survival rate of therapy-resistant patients to be far from satisfactory. Here, an emerging strategy for overcoming drug resistance is proposed employing a novel two-dimensional (2D) nanomaterial polysiloxane (PSX). We have reported on the synthesis of PSX nanosheets (PSX NSs) and proved that they have favorable properties for biomedical applications. PSX NSs evinced unprecedented cytocompatibility up to the concentration of 300 µg/mL, while inducing very low level of red blood cell hemolysis and were found to be highly effective for anticancer drug binding. PSX NSs enhanced the efficacy of the anticancer drug doxorubicin (DOX) by around 27.8-43.4% on average and, interestingly, were found to be especially effective in the therapy of drug-resistant tumors, improving the effectiveness of up to 52%. Fluorescence microscopy revealed improved retention of DOX within the drug-resistant cells when bound on PSX NSs. DOX bound on the surface of PSX NSs, i.e., PSX@DOX, improved, in general, the DOX cytotoxicity in vitro. More importantly, PSX@DOX reduced the growth of DOX-resistant tumors in vivo with 3.5 times better average efficiency than the free drug. Altogether, this paper represents an introduction of a new 2D nanomaterial derived from silicane and pioneers its biomedical application. As advances in the field of material synthesis are rapidly progressing, novel 2D nanomaterials with improved properties are being synthesized and await thorough exploration. Our findings further provide a better understanding of the mechanisms involved in the cancer resistance and can promote the development of a precise cancer therapy.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Siloxanas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/uso terapêutico , Feminino , Humanos , Teste de Materiais , Camundongos , Nanoestruturas/química , Siloxanas/química
5.
Molecules ; 25(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260260

RESUMO

Multidrug resistance (MDR) that occurs in cancer cells constitutes one of the major reasons for chemotherapy failure. The main molecular mechanism of MDR is overexpression of protein transporters from the ATP-binding cassette (ABC) superfamily, such as ABCB1 (multidrug resistance protein 1 (MDR1), P-glycoprotein). At the expense of ATP hydrolysis, ABCB1 pumps a diverse range of substrates (including anticancer drugs) out of the cell, thereby reducing their intracellular concentration. In the present study, the ability of two patented disiloxanes (SILA-409 and SILA-421) to reverse drug resistance in human colon adenocarcinoma cell lines LoVo and LoVo/Dx was investigated. It was demonstrated that both compounds in concentrations of 0.5-1 µM strongly increased the sensitivity of LoVo/Dx cells to doxorubicin. By means of an accumulation test in which rhodamine 123 was used as an ABCB1 substrate analogue, both organosilicon compounds were also shown to inhibit ABCB1 transport activity. The intracellular accumulation of doxorubicin was also increased, and more drug entered the cellular nuclei of resistant cells in the presence of the studied compounds. In conclusion, both SILA-409 and SILA-421 were demonstrated to be effective MDR reversal agents in resistant human colon cancer cells.


Assuntos
Neoplasias do Colo/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperazinas/farmacologia , Siloxanas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
7.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022884

RESUMO

Antibiofilm strategies may be based on the prevention of initial bacterial adhesion, the inhibition of biofilm maturation or biofilm eradication. N-acetyl-L-cysteine (NAC), widely used in medical treatments, offers an interesting approach to biofilm destruction. However, many Eubacteria strains are able to enzymatically decompose the NAC molecule. This is the first report on the action of two hybrid materials, NAC-Si-1 and NAC-Si-2, against bacteria isolated from a water environment: Agrobacterium tumefaciens, Aeromonas hydrophila, Citrobacter freundii, Enterobacter soli, Janthinobacterium lividum and Stenotrophomonas maltophilia. The NAC was grafted onto functional siloxane polymers to reduce its availability to bacterial enzymes. The results confirm the bioactivity of NAC. However, the final effect of its action was environment- and strain-dependent. Moreover, all the tested bacterial strains showed the ability to degrade NAC by various metabolic routes. The NAC polymers were less effective bacterial inhibitors than NAC, but more effective at eradicating mature bacterial biofilms.


Assuntos
Acetilcisteína/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Água Potável/microbiologia , Siloxanas/farmacologia , Acetilcisteína/química , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Siloxanas/química , Purificação da Água
8.
Mater Sci Eng C Mater Biol Appl ; 93: 380-389, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274070

RESUMO

Long-term live cell tracking is desirable and necessary to understand the dynamics and complexity of biological interactions in stem cells and cancer cells. Conventional live cells fluorescence trackers are generally non-degradable and are showing increased toxicity concerns during the long-term application. Previously we developed biodegradable fluorescent poly(citrate)-based hybrid elastomers for bone regeneration applications. Here, we fabricated the photoluminescent poly(citrate-siloxane) nanoparticles (PCSNPs) through an oil/water emulsion method and demonstrated their long-term live stem cells/cancer cells imaging applications. PCSNPs showed a uniform size distribution (mean diameter 120 nm) and highly stable dispersability (above 30 days) in various physiological medium, as well as excellent fluorescent properties and photostability. PCSNPs possess excellent cellular biocompatibility, which could be efficiently internalized by cells and selectively image the cell lysosome with a high photostability. Compared with commercial Cell Tracker™ Green and Cell Tracker™ Red, the adipose-derived mesenchymal stem cells or human hepatoma cells were stably labeled by PCSNPs for over 14 days as they grew and developed (7 passages). Additionally, PCSNPs efficiently tracked cells up to 7 days in vivo through a non-invasively way compared with 1 day of commercial tracker. This study demonstrates an important strategy to design biodegradable multifunctional delivery platforms for biomedical applications such as long-term bioimaging.


Assuntos
Rastreamento de Células/métodos , Elastômeros , Medições Luminescentes/métodos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Siloxanas , Elastômeros/química , Elastômeros/farmacologia , Células Hep G2 , Humanos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Siloxanas/química , Siloxanas/farmacologia
9.
Arch Toxicol ; 92(5): 1685-1702, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632997

RESUMO

The European Commission has recently proposed draft criteria for the identification of endocrine disrupting chemicals (EDCs) that pose a significant hazard to humans or the environment. Identifying and characterizing toxic hazards based on the manner by which adverse effects are produced rather than on the nature of those adverse effects departs from traditional practice and requires a proper interpretation of the evidence regarding the chemical's ability to produce physiological effect(s) via a specific mode of action (MoA). The ability of any chemical to produce a physiological effect depends on its pharmacokinetics and the potency by which it acts via the various MoAs that can lead to the particular effect. A chemical's potency for a specific MoA-its mechanistic potency-is determined by two properties: (1) its affinity for the functional components that comprise the MoA, i.e., its specific receptors, enzymes, transporters, transcriptional elements, etc., and (2) its ability to alter the functional state of those components (activity). Using the agonist MoA via estrogen receptor alpha, we illustrate an empirical method for determining a human-relevant potency threshold (HRPT), defined as the minimum level of mechanistic potency necessary for a chemical to be able to act via a particular MoA in humans. One important use for an HRPT is to distinguish between chemicals that may be capable of, versus those likely to be incapable of, producing adverse effects in humans via the specified MoA. The method involves comparing chemicals that have different ERα agonist potencies with the ability of those chemicals to produce ERα-mediated agonist responses in human clinical trials. Based on this approach, we propose an HRPT for ERα agonism of 1E-04 relative to the potency of the endogenous estrogenic hormone 17ß-estradiol or the pharmaceutical estrogen, 17α-ethinylestradiol. This approach provides a practical way to address Hazard Identification according to the draft criteria for identification of EDCs recently proposed by the European Commission.


Assuntos
Receptor alfa de Estrogênio/agonistas , Estrogênios/metabolismo , Testes de Toxicidade/métodos , Adolescente , Criança , Disruptores Endócrinos/farmacologia , Disruptores Endócrinos/toxicidade , Determinação de Ponto Final , Estradiol/farmacologia , Estrogênios/farmacologia , Etinilestradiol/farmacologia , Feminino , Humanos , Ciclo Menstrual/fisiologia , Puberdade , Siloxanas/farmacologia
10.
J Biomed Mater Res B Appl Biomater ; 106(3): 1138-1147, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28544508

RESUMO

A series of sol-gel derived silicon based coatings were developed to improve the osseointegration of commercial titanium dental implants. The osseointegration starts with a positive interaction between the implant surface and surrounding tissues, which is facilitated by the adsorption of plasma proteins onto the biomaterial surface immediately after implantation. It is likely that the enhancement of protein adsorption to titanium implants leads to a better implant/tissue integration. In addition, silica based biomaterials have been shown to promote osteoblast differentiation. To improve the protein adsorption and the osteogenesis, methyltrimethoxysilane (MTMOS), tetraethoxysilane (TEOS), 3-glycidoxypropyltrimethoxysilane (GPTMS), and gelatin were selected to coat titanium surfaces. Compared with non-coated titanium, the functionalized coatings enhanced the adsorption of adhesive proteins such as fibronectin and collagen. The Si release was successfully modulated by the control of the chemical composition of the coating, showing a higher dissolution rate with the gelatin and GPTMS incorporation. While the roughness of commercial implants seemed to promote the adhesion of mesenchymal stem cells (MSC), the osteogenic differentiation was greater on surfaces with Si-coatings. In this study, an improved osteogenic surface has been achieved by using the siloxane-gelatin coatings and such coatings can be used in dental implants to promote osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1138-1147, 2018.


Assuntos
Proteínas Sanguíneas/química , Materiais Revestidos Biocompatíveis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Siloxanas/farmacologia , Titânio/farmacologia , Adesão Celular , Células Cultivadas , Colágeno/química , Fibronectinas/química , Humanos , Osseointegração , Próteses e Implantes
11.
Dental press j. orthod. (Impr.) ; 22(4): 77-85, July-Aug. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-891079

RESUMO

ABSTRACT Introduction: Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Methods: Hexamethyldisiloxane (HMDSO) polymer films were deposited on conventional (n = 10) and self-ligating (n = 10) stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM) analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region) and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI) and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Results: Significant statistical differences (p< 0.05) for surface roughness and bacterial adhesion reduction were observed on conventional brackets after surface treatment and between conventional and self-ligating brackets; no significant statistical differences were observed between self-ligating groups (p> 0.05). Conclusion: Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film.


RESUMO Introdução: a deposição de filme de polímero a plasma foi criada para modificar as propriedades de superfície dos braquetes ortodônticos metálicos, com o intuito de inibir a adesão bacteriana. Métodos: filmes finos de polímero de hexametildisiloxano (HMDSO) foram depositados em braquetes ortodônticos de aço inoxidável convencionais (n = 10) e autoligáveis (n = 10), utilizando a técnica de radiofrequência PECVD (Plasma-Enhanced Chemical Vapor Deposition). As amostras foram divididas em dois grupos, de acordo com o tipo de braquete, e dois subgrupos após o tratamento de superfície. A microscopia eletrônica de varredura (MEV) foi realizada para avaliar a presença de adesão bacteriana sobre as superfícies das amostras (região de ranhura horizontal e aletas) e a integridade da camada de filme. A Interferometria Confocal (CI) avaliou a rugosidade, e a molhabilidade superficial foi avaliada por goniometria. Para análise de adesão bacteriana, as amostras foram expostas durante 72 horas a uma solução de Streptococcus mutans, para formação de biofilme. Os valores obtidos para a rugosidade da superfície foram analisados pelo teste de Mann-Whitney, enquanto a adesão do biofilme foi avaliada pelos testes de Kruskal-Wallis e SNK. Resultados: observaram-se diferenças estatisticamente significativas (p <0,05) para a rugosidade superficial e redução da adesão bacteriana em braquetes convencionais após o tratamento da superfície, e entre braquetes convencionais e autoligáveis. Não foram observadas diferenças estatísticas significativas entre os grupos autoligáveis (p> 0,05). Conclusão: a deposição de polímero a plasma só foi efetiva na redução da rugosidade superficial e adesão bacteriana em braquetes convencionais. Observou-se, também, que os braquetes convencionais apresentaram menor adesão ao biofilme do que os braquetes autoligáveis, apesar da ausência de filme.


Assuntos
Siloxanas/farmacologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Aderência Bacteriana/efeitos dos fármacos , Braquetes Ortodônticos/microbiologia , Biofilmes/efeitos dos fármacos , Plasma , Streptococcus mutans/isolamento & purificação , Propriedades de Superfície , Desenho de Aparelho Ortodôntico , Polimerização
12.
Ann Biomed Eng ; 44(3): 816-27, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26597417

RESUMO

Cell therapy represents a promising therapeutic for a myriad of medical conditions, including cancer, traumatic brain injury, and cardiovascular disease among others. A thorough understanding of the efficacy and cellular dynamics of these therapies necessitates the ability to non-invasively track cells in vivo. Magnetic resonance imaging (MRI) provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. We recently reported a new nanoprobe platform for cell labeling and imaging using fluorophore doped siloxane core nanoemulsions as dual modality ((1)H MRI/Fluorescence), dual-functional (oximetry/detection) nanoprobes. Here, we successfully demonstrate the labeling, dual-modality imaging, and oximetry of neural progenitor/stem cells (NPSCs) in vitro using this platform. Labeling at a concentration of 10 µL/10(4) cells with a 40%v/v polydimethylsiloxane core nanoemulsion, doped with rhodamine, had minimal effect on viability, no effect on migration, proliferation and differentiation of NPSCs and allowed for unambiguous visualization of labeled NPSCs by (1)H MR and fluorescence and local pO2 reporting by labeled NPSCs. This new approach for cell labeling with a positive contrast (1)H MR probe has the potential to improve mechanistic knowledge of current therapies, and guide the design of future cell therapies due to its clinical translatability.


Assuntos
Rastreamento de Células/métodos , Corantes Fluorescentes , Imagem Molecular/métodos , Nanopartículas/química , Células-Tronco Neurais , Siloxanas , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Siloxanas/química , Siloxanas/farmacologia , Coloração e Rotulagem/métodos
13.
J Biomed Mater Res A ; 104(3): 775-787, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26540140

RESUMO

Tissue-engineered cardiac patch aims at regenerating an infarcted heart by improving cardiac function and providing mechanical support to the diseased myocardium. In order to take advantages of electroactivity, a new synthetic method was developed for the introduction of an electroactive oligoaniline into the backbone of prepared patches. For this purpose, a series of electroactive polyurethane/siloxane films containing aniline tetramer (AT) was prepared through sol-gel reaction of trimethoxysilane functional intermediate polyurethane prepolymers made from castor oil and poly(ethylene glycol). Physicochemical, mechanical, and electrical conductivity of samples were evaluated and the recorded results were correlated to their structural characteristics. The optimized films were proved to be biodegradable and have tensile properties suitable for cardiac patch application. The embedded AT moieties in the backbone of the prepared samples preserved their electroactivity with the electrical conductivity in the range of 10-4 S/cm. The prepared films were compatible with proliferation of C2C12 and had potential for enhancing myotube formation even without external electrical stimulation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 775-787, 2016.


Assuntos
Óleo de Rícino/química , Diferenciação Celular/efeitos dos fármacos , Condutividade Elétrica , Mioblastos/citologia , Poliuretanos/síntese química , Poliuretanos/farmacologia , Siloxanas/síntese química , Siloxanas/farmacologia , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Elasticidade , Técnicas Eletroquímicas , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Poliuretanos/química , Siloxanas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Engenharia Tecidual/métodos , Viscosidade
14.
Arch Toxicol ; 89(4): 607-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24888373

RESUMO

ORganically MOdified SILica (ORMOSIL) nanoparticles (NPs) appear promising carriers for the delivery of drugs to target tissues but concerns on possible cytotoxic effects exist. Here, we studied the in vitro responses to ORMOSIL NPs in different types of human lung cells to determine the effects of polyethylene glycol (PEG) coating on NP cytotoxicity. Non-PEG NPs caused a concentration-dependent decrease of viability of all types of cells, while PEG NPs induced deleterious effects and death in carcinoma alveolar type II A549 cells but not in CCD-34Lu fibroblasts and NCI-H2347 adenocarcinoma cells. Reactive oxygen species were detected in cells incubated with PEG NPs, but their deactivation by superoxide dismutase and catalase did not protect A549 cells from death, suggesting that the oxidative stress was not the main determinant of cytotoxicity. Only in A549 cells PEG NPs modulated the transcription of genes involved in inflammation, signal transduction and cell death. Transmission electron microscopy evidenced a unique intracellular localization of PEG NPs in the lamellar bodies of A549 cells, which could be the most relevant factor leading to cytotoxicity by reducing the production of surfactant proteins and by interfering with the pulmonary surfactant system.


Assuntos
Portadores de Fármacos/farmacologia , Pulmão/efeitos dos fármacos , Nanopartículas/química , Polietilenoglicóis/farmacologia , Siloxanas/farmacologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Surfactantes Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Siloxanas/química , Siloxanas/farmacocinética , Propriedades de Superfície , Transcriptoma/efeitos dos fármacos
15.
Nanoscale ; 5(13): 6106-16, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23728482

RESUMO

PEGylated and non-PEGylated ORMOSIL nanoparticles prepared by microemulsion condensation of vinyltriethoxy-silane (VTES) were investigated in detail for their micro-structure and ability to deliver photoactive agents. With respect to pure silica nanoparticles, organic modification substantially changes the microstructure and the surface properties. This in turn leads to a modulation of both the photophysical properties of embedded photosensitizers and the interaction of the nanoparticles with biological entities such as serum proteins. The flexibility of the synthetic procedure allows the rapid preparation and screening of multifunctional nanosystems for photodynamic therapy (PDT). Selective targeting of model cancer cells was tested by using folate, an integrin specific RGD peptide and anti-EGFR antibodies. Data suggest the interference of the stealth-conferring layer (PEG) with small targeting agents, but not with bulky antibodies. Moreover, we showed that selective photokilling of tumour cells may be limited even in the case of efficient targeting because of intrinsic transport limitations of active cellular uptake mechanisms or suboptimum localization.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Siloxanas , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Siloxanas/química , Siloxanas/farmacologia
16.
Mater Sci Eng C Mater Biol Appl ; 33(4): 2440-5, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23498280

RESUMO

The paper introduces a new class of materials with azo-polysiloxanic structure bearing the property to generate nano-structured surfaces by laser irradiation. The ability to modulate the optical response of the film, through a modification of the polymer chemical structure, has been investigated. The azo-materials were tested for their ability to support cell adhesion and growth, with very promising results. A future use of these materials as growth support in cell cultures is of great interest, due to an easy, one step-method to generate the surface relief grating and to the possibility to introduce a large range of chemical modifications due to the presence of the chlorobenzyl groups in the polymeric side-chain.


Assuntos
Compostos Azo/farmacologia , Técnicas de Cultura de Células/métodos , Siloxanas/farmacologia , Compostos Azo/química , Linhagem Celular Tumoral , Células Cultivadas , Imunofluorescência , Humanos , Microscopia de Força Atômica , Siloxanas/química
17.
Dent Mater ; 28(7): 743-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22480720

RESUMO

OBJECTIVES: Silorane-based dental monomers contain an epoxy functional group. Less is known about the toxicological and inflammatory potential of silorane-based composites. Therefore we compared the release of 24 cytokines from human leukocytes after incubation with silorane-based Filtek™ Silorane (Silo) and methacrylate-based TetricEvo Flow® (TC). METHODS: Leukocytes from nine healthy test persons (P) were incubated with Silo or TC for up to 72h. All 24h cytokines were quantified with a magnetic bead assay. RESULTS: Silo stimulates the leukocytes to higher release of cytokines when compared to TC. 72h after beginning the experiment, leukocytes from P6 incubated with Silo secreted more than an 18-fold amount of interleukin (IL)-6 when compared with leukocytes incubated with TC (771.8 vs 42.1pg/ml). Only leukocytes from P8 incubated with Silo release up to 14.4pg/ml IL-2 after 72h. SIGNIFICANCE: The significantly higher induction of cytokines with Silo in comparison to TC is test person independent. This indicates a higher sensitization potential for Silo. Because of the cytokine release pattern (especially the release of T-cell dependent IL-2) from leukocytes from P8 after incubation with Silo it is likely that P8 can develop an allergic Type IV sensitization to Silo. Therefore the cytokine release assay is a helpful tool for providing information about possible immunological reactions to dental resins in individual cases as well as for a general risk assessment and comparison between different dental materials.


Assuntos
Citocinas/biossíntese , Hipersensibilidade a Drogas/imunologia , Leucócitos/efeitos dos fármacos , Metacrilatos/farmacologia , Siloxanas/farmacologia , Humanos , Inflamação/imunologia , Interleucina-2/biossíntese , Interleucina-6/biossíntese , Leucócitos/metabolismo , Metacrilatos/efeitos adversos , Siloxanas/efeitos adversos
18.
Anticancer Agents Med Chem ; 12(6): 663-71, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22263791

RESUMO

1,3-dimethyl-1,3-bis(4-fluorophenyl)-1,3-bis{3-[1(4-butylpiperazinyl)]-propyl}-disiloxan-tetrahydrochlorid (SILA 421) is a compound that was developed as modulator of the ABC cassette transporter P-glycoprotein. Furthermore, it exerted antimicrobial toxicity, vascular effects, downregulation of chaperone induction and plasmid curing in bacterial cells. Here, this drug was found to possess cytotoxic activity against a panel of human cancer cell lines that do not overexpress P-gp, with 50% inhibitory concentrations ranging between 1.75±0.38 µM for GLC14 small cell lung cancer and 34.00±4.75 µM for PC-3 prostate cancer cells. HL-60 leukemia and MDA-MB-435 breast cancer cells exhibited cell cycle arrest and apoptotic cell death in response to SILA 421. Assessment of global gene expression of SILA 421-treated HL-60 cells was employed to identify cellular pathways affected by the compound and revealed disturbance of DNA replication, transcription and production of apparently misfolded proteins. Endoplasmatic reticulum stress and downregulation of cell cycle, cellular repair mechanisms and growth factor-related signaling cascades eventually resulted in induction of apoptosis in this cell line. In addition to the well established P-gp inhibitory effect of SILA compounds, reversal of resistance to taxanes, which had been reported for SILA 421 and the related molecule SILA 409, may be linked to downregulation of gene expression of kinesins. Interference with DNA replication and transcription seems to be the common denominator of antimicrobial activity and plasmid curing, as well as anticancer toxicity in human cell lines. Thus, in consideration of the full range of putative cellular targets found in the present work, the application of these SILA compounds for treatment of tumors should be further evaluated.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Piperazinas/farmacologia , Siloxanas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Células HL-60 , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Cinesinas/metabolismo , Especificidade de Órgãos , Piperazinas/química , Dobramento de Proteína , Transdução de Sinais/efeitos dos fármacos , Siloxanas/química
19.
Biofouling ; 27(8): 869-80, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21864210

RESUMO

The antimicrobial performance of two fouling-release coating systems, Intersleek 700® (IS700; silicone technology), Intersleek 900® (IS900; fluoropolymer technology) and a tie coat (TC, control surface) was investigated in a short term (10 days) field experiment conducted at a depth of ca 0.5 m in the Marina Bandar Rawdha (Muscat, Oman). Microfouling on coated glass slides was analyzed using epifluorescence microscopy and adenosine-5'-triphosphate (ATP) luminometry. All the coatings developed biofilms composed of heterotrophic bacteria, cyanobacteria, seven species of diatoms (2 species of Navicula, Cylindrotheca sp., Nitzschia sp., Amphora sp., Diploneis sp., and Bacillaria sp.) and algal spores (Ulva sp.). IS900 had significantly thinner biofilms with fewer diatom species, no algal spores and the least number of bacteria in comparison with IS700 and the TC. The ATP readings did not correspond to the numbers of bacteria and diatoms in the biofilms. The density of diatoms was negatively correlated with the density of the bacteria in biofilms on the IS900 coating, and, conversely, diatom density was positively correlated in biofilms on the TC. The higher antifouling efficacy of IS900 over IS700 may lead to lower roughness and thus lower fuel consumption for those vessels that utilise the IS900 fouling-release coating.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Biofilmes , Incrustação Biológica/prevenção & controle , Siloxanas/farmacologia , Água do Mar/microbiologia , Navios , Silicones/farmacologia , Clima Tropical
20.
Colloids Surf B Biointerfaces ; 85(2): 323-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21450443

RESUMO

Antibacterial agents receive a great deal of attention around the world due to the interesting academic problems of how to combat bacteria and of the beneficial health, social and economic effects of successful agents. Scientists are actively developing new antibacterial agents for biomaterial applications. This paper reports the novel antibacterial agent siloxane sulfopropylbetaine (SSPB), which contains reactive alkoxysilane groups. The structure and properties of SSPB were systematically investigated, with the results showing that SSPB contains both quaternary ammonium compounds and reactive siloxane groups. SSPB has good antibacterial activity against both Escherichia coli (E. coli, 8099) and Staphylococcus aureus (S. aureus, ATCC 6538). The minimal inhibition concentration is 70 µmol/ml SSPB against both E. coli and S. aureus. In addition, the SSPB antibacterial agent can be used in both weak acid and weak alkaline environments, functioning within the wide pH range of 4.0-9.0. The SSPB-modified glass surface killed 99.96% of both S. aureus and E. coli organisms within 24 h. No significant decrease was observed in this antibacterial activity after 20 washes. Moreover, SSPB does not induce a skin reaction and is nontoxic to animals. Thus, SSPB is an ideal candidate for future applications as a safe, environmentally friendly antibacterial agent.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Betaína/química , Siloxanas/farmacologia , Animais , Antibacterianos/química , Bactérias/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Feminino , Masculino , Estrutura Molecular , Espectroscopia Fotoeletrônica , Coelhos , Ratos , Siloxanas/química , Pele/efeitos dos fármacos , Pele/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA