Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
ESC Heart Fail ; 11(3): 1352-1376, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38419326

RESUMO

Heart failure is the final stage of several cardiovascular diseases, and the key to effectively treating heart failure is to reverse or delay ventricular remodelling. Levosimendan is a novel inotropic and vasodilator agent used in heart failure, whereas the impact of levosimendan on ventricular remodelling is still unclear. This study aims to investigate the impact of levosimendan on ventricular remodelling in patients with left ventricular systolic dysfunction. Electronic databases were searched to identify eligible studies. A total of 66 randomized controlled trials involving 7968 patients were included. Meta-analysis results showed that levosimendan increased left ventricular ejection fraction [mean difference (MD) = 3.62, 95% confidence interval (CI) (2.88, 4.35), P < 0.00001] and stroke volume [MD = 6.59, 95% CI (3.22, 9.96), P = 0.0001] and significantly reduced left ventricular end-systolic volume [standard mean difference (SMD) = -0.52, 95% CI (-0.67, -0.37), P < 0.00001], left ventricular end-diastolic volume index [SMD = -1.24, 95% CI (-1.61, -0.86), P < 0.00001], and left ventricular end-systolic volume index [SMD = -1.06, 95% CI (-1.43, -0.70), P < 0.00001]. In terms of biomarkers, levosimendan significantly reduced the level of brain natriuretic peptide [SMD = -1.08, 95% CI (-1.60, -0.56), P < 0.0001], N-terminal pro-brain natriuretic peptide [SMD = -0.99, 95% CI (-1.41, -0.56), P < 0.00001], and interleukin-6 [SMD = -0.61, 95% CI (-0.86, -0.35), P < 0.00001]. Meanwhile, levosimendan may increase the incidence of hypotension [risk ratio (RR) = 1.24, 95% CI (1.12, 1.39), P < 0.0001], hypokalaemia [RR = 1.57, 95% CI (1.08, 2.28), P = 0.02], headache [RR = 1.89, 95% CI (1.50, 2.39), P < 0.00001], atrial fibrillation [RR = 1.31, 95% CI (1.12, 1.52), P = 0.0005], and premature ventricular complexes [RR = 1.86, 95% CI (1.27, 2.72), P = 0.001]. In addition, levosimendan reduced all-cause mortality [RR = 0.83, 95% CI (0.74, 0.94), P = 0.002]. In conclusion, our study found that levosimendan might reverse ventricular remodelling when applied in patients with left ventricular systolic dysfunction, especially in patients undergoing cardiac surgery, decompensated heart failure, and septic shock.


Assuntos
Simendana , Disfunção Ventricular Esquerda , Remodelação Ventricular , Simendana/uso terapêutico , Simendana/farmacologia , Simendana/administração & dosagem , Humanos , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia , Função Ventricular Esquerda/efeitos dos fármacos , Volume Sistólico/fisiologia , Volume Sistólico/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Sístole
2.
Clin Transplant ; 37(12): e15122, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37694497

RESUMO

INTRODUCTION: The postoperative hemodynamic management after lung transplant (LUTX) is guided by limited evidence. We aimed to describe and evaluate risk factors and outcomes of postoperative vasoactive support of LUTX recipients. METHODS: In a single-center retrospective analysis of consecutive adult LUTX, two cohorts were identified: (1) patients needing prolonged vasoactive support (>12 h from ICU admission) (VASO+); (2) or not (VASO-). Postoperative hemodynamic characteristics were thoroughly analyzed. Risk factors and outcomes of VASO+ versus VASO- cohorts were assessed by multivariate logistic regression and propensity score matching. RESULTS: One hundred and thirty-eight patients were included (86 (62%) VASO+ versus 52 (38%) VASO-). Vasopressors (epinephrine, norepinephrine, dopamine) were used in the first postoperative days (vasoactive inotropic score at 12 h: 6 [4-12]), while inodilators (dobutamine, levosimendan) later. Length of vasoactive support was 3 [2-4] days. Independent predictors of vasoactive use were: LUTX indication different from cystic fibrosis (p = .003), higher Oto score (p = .020), longer cold ischemia time (p = .031), but not preoperative cardiac catheterization. VASO+ patients showed concomitant hemodynamic and graft impairment, with longer mechanical ventilation (p = .010), higher primary graft dysfunction (PGD) grade at 72 h (PGD grade > 0 65% vs. 31%, p = .004, OR 4.2 [1.54-11.2]), longer ICU (p < .001) and hospital stay (p = .013). Levosimendan as a second-line inodilator appeared safe. CONCLUSIONS: Vasoactive support is frequently necessary after LUTX, especially in recipients of grafts of lesser quality. Postoperative hemodynamic dysfunction requiring vasopressor support and graft dysfunction may represent a clinical continuum with immediate and long-term consequences. Further studies may elucidate if this represents a possible treatable condition.


Assuntos
Transplante de Pulmão , Disfunção Primária do Enxerto , Adulto , Humanos , Estudos Retrospectivos , Simendana/farmacologia , Transplante de Pulmão/efeitos adversos , Norepinefrina , Vasoconstritores/uso terapêutico , Hemodinâmica , Disfunção Primária do Enxerto/etiologia
3.
Exp Mol Med ; 55(3): 612-627, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914856

RESUMO

Tau oligomers play critical roles in tau pathology and are responsible for neuronal cell death and transmitting the disease in the brain. Accordingly, preventing tau oligomerization has become an important therapeutic strategy to treat tauopathies, including Alzheimer's disease. However, progress has been slow because detecting tau oligomers in the cellular context is difficult. Working toward tau-targeted drug discovery, our group has developed a tau-BiFC platform to monitor and quantify tau oligomerization. By using the tau-BiFC platform, we screened libraries with FDA-approved and passed phase I drugs and identified levosimendan as a potent anti-tau agent that inhibits tau oligomerization. 14C-isotope labeling of levosimendan revealed that levosimendan covalently bound to tau cysteines, directly inhibiting disulfide-linked tau oligomerization. In addition, levosimendan disassembles tau oligomers into monomers, rescuing neurons from aggregation states. In comparison, the well-known anti-tau agents methylene blue and LMTM failed to protect neurons from tau-mediated toxicity, generating high-molecular-weight tau oligomers. Levosimendan displayed robust potency against tau oligomerization and rescued cognitive declines induced by tauopathy in the TauP301L-BiFC mouse model. Our data present the potential of levosimendan as a disease-modifying drug for tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Proteínas tau/metabolismo , Simendana/farmacologia , Simendana/uso terapêutico , Simendana/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Tauopatias/patologia , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
4.
ESC Heart Fail ; 10(2): 1326-1335, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36722665

RESUMO

AIMS: Heart failure with reduced ejection fraction (HFrEF) is a disease with high mortality and morbidity. Recent positive inotropic drug developments focused on cardiac myofilaments, that is, direct activators of the myosin molecule and Ca2+ sensitizers for patients with advanced HFrEF. Omecamtiv mecarbil (OM) is the first direct myosin activator with promising results in clinical studies. Here, we aimed to elucidate the cellular mechanisms of the positive inotropic effect of OM in a comparative in vitro investigation where Ca2+ -sensitizing positive inotropic agents with distinct mechanisms of action [EMD 53998 (EMD), which also docks on the myosin molecule, and levosimendan (Levo), which binds to troponin C] were included. METHODS: Enzymatically isolated canine cardiomyocytes with intact cell membranes were loaded with Fura-2AM, a Ca2+ -sensitive, ratiometric, fluorescent dye. Changes in sarcomere length (SL) and intracellular Ca2+ concentration were recorded in parallel at room temperature, whereas cardiomyocyte contractions were evoked by field stimulation at 0.1 Hz in the presence of different OM, EMD, or Levo concentrations. RESULTS: SL was reduced by about 23% or 9% in the presence of 1 µM OM or 1 µM EMD in the absence of electrical stimulation, whereas 1 µM Levo had no effect on resting SL. Fractional sarcomere shortening was increased by 1 µM EMD or 1 µM Levo to about 152%, but only to about 128% in the presence of 0.03 µM OM. At higher OM concentrations, no significant increase in fractional sarcomere shortening could be recorded. Contraction durations largely increased, whereas the kinetics of contractions and relaxations decreased with increasing OM concentrations. One-micromole EMD or 1 µM Levo had no effects on contraction durations. One-micromole Levo, but not 1 µM EMD, accelerated the kinetics of cardiomyocyte contractions and relaxations. Ca2+ transient amplitudes were unaffected by all treatments. CONCLUSIONS: Our data revealed major distinctions between the cellular effects of myofilament targeted agents (OM, EMD, or Levo) depending on their target proteins and binding sites, although they were compatible with the involvement of Ca2+ -sensitizing mechanisms for all three drugs. Significant part of the cardiotonic effect of OM relates to the prolongation of systolic contraction in combination with its Ca2+ -sensitizing effect.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Cães , Miócitos Cardíacos/metabolismo , Volume Sistólico , Simendana/farmacologia , Miosinas
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 669-682, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36445386

RESUMO

Levosimendan (up to 10 µM) given alone failed to increase force of contraction in isolated electrically stimulated (1 Hz) left atrial (LA) preparations from wild-type mice. Only in the additional presence of 0.1 µM rolipram, an inhibitor of the activity of phosphodiesterase IV, levosimendan increased force of contraction in LA and increased the phosphorylation state of phospholamban at amino acid serine 16. Levosimendan alone increased the beating rate in isolated spontaneously beating right atrial preparations from mice and this effect was potentiated by rolipram. The positive inotropic and the positive chronotropic effects of levosimendan in mouse atrial preparations were attenuated by 10 µM propranolol. Finally, we studied the contractile effects of levosimendan in isolated electrically stimulated (1 Hz) right atrial preparations from the human atrium (HAP), obtained during cardiac surgery. We detected concentration-dependent positive inotropic effects of levosimendan alone that reached plateau at 1 µM levosimendan in HAP (n = 11). Levosimendan shortened time of tension relaxation in HAP. Cilostamide (1 µM), an inhibitor of phosphodiesterase III, or propranolol (10 µM) blocked the positive inotropic effect of levosimendan in HAP. Levosimendan (1 µM) alone increased in HAP the phosphorylation state of phospholamban. In conclusion, we present evidence that levosimendan acts via phosphodiesterase III inhibition in the human atrium leading to phospholamban phosphorylation and thus explaining the positive inotropic effects of levosimendan in HAP.


Assuntos
Fibrilação Atrial , Propranolol , Humanos , Camundongos , Animais , Simendana/farmacologia , Rolipram/farmacologia , Fosforilação , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Propranolol/farmacologia , Contração Miocárdica , Cardiotônicos/farmacologia
6.
Acta Cardiol ; 78(2): 170-187, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36222590

RESUMO

Inotropic agents are generally recommended to use in patients with acute decompensated heart failure (HF) with reduced ejection fraction (HFrEF) concurrent to end-organ dysfunction. However, due to certain pharmacological limitations like developing life threatening arrhythmia and tolerance, cannot be employed as much as needed. Meanwhile, Calcium ion (Ca2+) sensitisers exhibits their inotropic action by increasing the sensitivity of the cardiomyocyte to intracellular Ca2+ ion and have been reported as emerging therapeutic alternative in HF cases. Levosimendan (LEVO) is an inodilator and with its unique pharmacology justifying its use in a wide range of cardiac alterations in HF particularly in undergoing cardiac surgery. It is also reported to be better than classical inotropes in maintaining cardiac mechanical efficacy and reducing congestion in acute HF with hypotension. This review paper was designed to compile various evidence about basic pharmacology and potential clinical aspects of LEVO in cardiac surgery and other HF associated alterations. This will benefit directly to the researcher in initiating research and to fill the gaps in the area of thrust.


Assuntos
Insuficiência Cardíaca , Piridazinas , Humanos , Simendana/farmacologia , Simendana/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Hidrazonas/farmacologia , Hidrazonas/uso terapêutico , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Volume Sistólico , Miócitos Cardíacos
7.
J Healthc Eng ; 2022: 2988756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132355

RESUMO

BACKGROUND: Levosimendan preconditioning has been shown to attenuate myocardial apoptosis in animal models. However, protective effects of levosimendan postconditioning against myocardial apoptosis following myocardial infarction (MI) have not been evaluated. Therefore, we investigated the effects of levosimendan postconditioning on myocardial apoptosis in MI rat models. METHODS: In an anoxia/reoxygenation (A/R) model, H9c2 cells were pretreated with or without levosimendan postconditioning after which their apoptosis rates were assessed by flow cytometry, RT-qPCR, and western blot analyses. Then, postconditioning was performed with or without levosimendan in MI rat models. Myocardiocyte apoptosis was evaluated by echocardiography, TTC staining, TUNEL staining, immunohistochemical staining, RT-qPCR, and western blot analysis. RESULTS: Levosimendan postconditioning inhibited H9c2 cell apoptosis in A/R models by elevating Bcl-2 while suppressing Caspase-3 and Bax at both mRNA and protein levels. Moreover, it improved cardiac functions and reduced the left ventricle infarction area in MI rat models. Compared to the MI control group, cardiomyocyte apoptosis rates in the levosimendan postconditioning group were low. The reduced cardiomyocyte apoptosis rates were associated with downregulation of Bax and Caspase-3 as well as with upregulation of Bcl-2 at mRNA and protein levels. CONCLUSIONS: Levosimendan postconditioning of MI rat models protected against cardiomyocyte apoptosis, implying that it is a potential strategy for preventing cardiomyocyte apoptosis in the treatment of cardiac dysfunction following MI.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Apoptose , Caspase 3/metabolismo , Caspase 3/farmacologia , Humanos , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , RNA Mensageiro , Ratos , Simendana/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
8.
Biomed Pharmacother ; 148: 112745, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35202913

RESUMO

BACKGROUND: Cardiorenal syndrome (CRS) remains the leading cause of death in hospitalized patients for all disease entities. Sacubitril/Valsartan (Sac/Val) therapy has been proved to improve prognostic outcome in patients with heart failure or chronic kidney disease. This study tested the hypothesis that combined levosimendan and Sac/Val was superior to just one therapy on protecting the heart and kidney against simultaneous heart and kidney ischemia (I) (for 50-min)-reperfusion (R) (for 7-days) (i.e., double IR) injury (defined as CRS). METHODS AND RESULTS: Adult-male Spraque-Dawley rats (n = 40) were equally categorized into group 1 (sham-operated control), group 2 (double IR), group 3 [double IR+levosimendan (10 mg/kg by intra-peritoneum administration at 30 min/followed by days 1-5 once daily after IR procedure)], group 4 [double IR+Sac/Val (10 mg/kg, orally at 30 min/followed by days 1-5 twice daily after IR procedure)], and group 5 (double IR+Sac/Val+levosimendan). By day 7 after double-IR, the left-ventricular-ejection fraction (LVEF)/left-ventricular-fraction-shortening (LVFS) were highest in group 1, lowest in group 2 and significantly higher in group 5 than in groups 3/4, but they showed no difference between groups 3/4, whereas the circulatory heart-failure (brain-natriuretic peptide)/proinflammatory (suppression of tumorigenicity-2) biomarkers, blood-urea-nitrogen/creatinine and ratio of urine protein to creatinine (all p < 0.0001) exhibited an opposite pattern of LVEF among the groups. The protein expressions of inflammatory (tumor necrosis factor-α/interleukin-1ß/matrix metalloproteinase-9)/oxidative-stress (NOX-1/NOX-2/NOX-4)/apoptotic (mitochondrial-Bax/caspase-3/poly-(ADP-ribose)-polymerase)/fibrotic (Smad3/transforming growth factor-ß)/mitochondrial-damaged (cytosolic-cytochrome-C)/myocardial-hypertrophic (ß-MHC) biomarkers in LV myocardium exhibited an opposite pattern of LVEF among the groups (all p < 0.0001). The cellular expressions of inflammatory (CD68)/DNA-damaged (γ-H2AX) biomarkers and infarct/fibrotic areas in LV myocardium and kidney displayed an opposite pattern of LVEF among the groups (all p < 0.0001). CONCLUSION: Combined levosimendan and Sac/Val was superior to merely one therapy on protecting the heart and kidney as well as preserving their functions against double IR injury.


Assuntos
Aminobutiratos/farmacologia , Compostos de Bifenilo/farmacologia , Síndrome Cardiorrenal/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Simendana/farmacologia , Valsartana/farmacologia , Animais , Apoptose/efeitos dos fármacos , Síndrome Cardiorrenal/metabolismo , Fármacos Cardiovasculares/farmacologia , Combinação de Medicamentos , Fibrose/tratamento farmacológico , Humanos , Inflamação/metabolismo , Rim/patologia , Masculino , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Volume Sistólico , Função Ventricular Esquerda
9.
J Neurointerv Surg ; 14(4): 408-412, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34039684

RESUMO

BACKGROUND: Poor patient outcomes after aneurysmal subarachnoid hemorrhage (SAH) occur due to a multifactorial process, mainly involving cerebral inflammation (CI), delayed cerebral vasospasm (DCVS), and delayed cerebral ischemia, followed by neurodegeneration. CI is mainly triggered by enhanced synthesis of serotonin (5-HT), prostaglandin F2alpha (PGF2a), and cytokines such as interleukins. Levosimendan (LV), a calcium-channel sensitizer, has already displayed anti-inflammatory effects in patients with severe heart failure. Therefore, we wanted to elucidate its potential anti-inflammatory role on the cerebral vasculature after SAH. METHODS: Experimental SAH was induced by using an experimental double-hemorrhage model. Sprague Dawley rats were harvested on day 3 and day 5 after the ictus. The basilar artery was used for isometric investigations of the muscular media tone. Vessel segments were either preincubated with LV or without, with precontraction performed with 5-HT or PGF2a followed by application of acetylcholine (ACh) or LV. RESULTS: After preincubation with LV 10-4 M and 5-HT precontraction, ACh triggered a strong vasorelaxation in sham segments (LV 10-4 M, Emax 65%; LV 10-5 M, Emax 48%; no LV, Emax 53%). Interestingly, SAH D3 (LV 10-4, Emax 76%) and D5 (LV 10-4, Emax 79%) segments showed greater vasorelaxation compared with sham. An LV series after PGF2a precontraction showed significantly enhanced relaxation in the sham (P=0.004) and SAH groups (P=0.0008) compared with solvent control vessels. CONCLUSIONS: LV application after SAH seems to beneficially influence DCVS by antagonizing 5-HT- and PGF2a-triggered vasoconstriction. Considering this spasmolytic effect, LV might have a role in the treatment of SAH, additionally in selected patients suffering takotsubo cardiomyopathy.


Assuntos
Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Animais , Artéria Basilar , Humanos , Doenças Neuroinflamatórias , Ratos , Ratos Sprague-Dawley , Simendana/farmacologia , Simendana/uso terapêutico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Vasoespasmo Intracraniano/tratamento farmacológico , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/prevenção & controle
10.
Eur Radiol Exp ; 5(1): 49, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34786647

RESUMO

BACKGROUND: We investigated whether levosimendan prevents contrast medium nephrotoxicity with glycerol aggravation in rats. METHODS: Forty-eight Wistar albino rats were assigned to eight groups (n = 6 × 8). No medication was administered to group I (controls); glycerol (intramuscular injection of 25% glycerol, 10 mL/kg) group II; intravenous iohexol 10 mL/kg to group III; glycerol and iohexol to group IV; iohexol and intraperitoneal levosimendan 0.25 mg/kg to group V; glycerol, iohexol, and levosimendan 0.25 mg/kg to group VI; iohexol and levosimendan 0.5 mg/kg to group VII; and glycerol, iohexol, and levosimendan 0.5 mg/kg to group VIII. One-day water withdrawal and glycerol injection prompted renal damage; iohexol encouraged nephrotoxicity; levosimendan was administered 30 min after glycerol injection and continued on days 2, 3, and 4. The experiment was completed on day 5. Serum blood urea nitrogen (BUN) and creatinine levels, superoxide dismutase (SOD) activity, glutathione (GSH), malondialdehyde (MDA) levels, tumour necrosis factor-α (TNF-α), nuclear factor kappa ß (NFK-ß), interleukin 6 (IL-6), and histopathological marks were assessed. One-way analysis of variance and Duncan's multiple comparison tests were used. RESULTS: Levosimendan changed serum BUN (p = 0.012) and creatinine (p = 0.018), SOD (p = 0.026), GSH (p = 0.012), and MDA (p = 0.011). Levosimendan significantly downregulated TNF-α (p = 0.022), NFK-ß (p = 0.008), and IL-6 (p = 0.033). Histopathological marks of hyaline and haemorrhagic cast were improved in levosimendan-injected groups. CONCLUSION: Levosimendan showed nephroprotective properties due to its vasodilator, oxidative distress decreasing and inflammatory cytokine preventing belongings.


Assuntos
Fármacos Cardiovasculares , Glicerol , Animais , Fármacos Cardiovasculares/farmacologia , Glicerol/farmacologia , Estresse Oxidativo , Ratos , Ratos Wistar , Simendana/farmacologia
11.
Med Sci Monit ; 27: e932001, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34588413

RESUMO

BACKGROUND The aim of this study was to explore the effect of levosimendan in patients after heart valve replacement and its influence on postoperative recovery. MATERIAL AND METHODS This prospective study included 185 patients with valvular diseases undergoing conventional valve replacement. Patients were divided into 2 groups using a random number table before surgery. Patients in the levosimendan group were administrated levosimendan intravenous infusion immediately after entering the Intensive Care Unit (ICU). The left ventricular ejection fraction (LVEF), cardiac output, and heart failure-related index, such as B-type natriuretic peptide (BNP) level, were recorded at 1, 3, and 7 days after surgery. The dosage and administration time of dopamine and epinephrine, mechanical ventilation time, ICU length of stay, and postoperative adverse events were recorded. RESULTS Cardiac output and LVEF of patients in the levosimendan group were significantly higher than those in the control group at different time points (P<0.05), and BNP level was lower than that of the control group (P<0.0001). Dosage and administration time of dopamine and epinephrine in the levosimendan group were lower than those of the control group (P<0.0001, P<0.0001, respectively). ICU length of stay and total incidence of postoperative adverse events were lower than those of the control group (P<0.0001, P=0.002, respectively). CONCLUSIONS Levosimendan administration immediately after heart valve replacement effectively improved the heart function of patients, reduced administration of vasoactive drugs, shortened length of ICU stay, reduced incidence of postoperative adverse events, and promoted recovery of patients after surgery.


Assuntos
Cardiotônicos/farmacologia , Doenças das Valvas Cardíacas/cirurgia , Implante de Prótese de Valva Cardíaca/métodos , Cuidados Pós-Operatórios/métodos , Complicações Pós-Operatórias/prevenção & controle , Simendana/farmacologia , Idoso , Feminino , Valvas Cardíacas/cirurgia , Humanos , Tempo de Internação/tendências , Masculino , Estudos Prospectivos
12.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502534

RESUMO

Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.


Assuntos
Cardiomiopatias/genética , Mutação de Sentido Incorreto , Miofibrilas/metabolismo , Troponina I/genética , Adenosina Trifosfatases/metabolismo , Adulto , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Catequina/análogos & derivados , Catequina/farmacologia , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Miofibrilas/efeitos dos fármacos , Miofibrilas/ultraestrutura , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Índice de Gravidade de Doença , Simendana/farmacologia , Tropomiosina/metabolismo , Troponina I/metabolismo
13.
Drug Des Devel Ther ; 15: 3391-3409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34376973

RESUMO

Levosimendan is a distinctive inodilator combing calcium sensitization, phosphodiesterase inhibition and vasodilating properties through the opening of adenosine triphosphate-dependent potassium channels. It was first approved in Sweden in 2000 for the short-term treatment of acutely decompensated severe chronic heart failure when conventional therapy is not sufficient, and in cases where inotropic support is considered appropriate. After more than 20 years, clinical applications have considerably expanded across critical care and emergency medicine, and levosimendan is now under investigation in different cardiac settings (eg, septic shock, pulmonary hypertension) and for non-cardiac applications (eg, amyotrophic lateral sclerosis). This narrative review outlines key milestones in levosimendan history, by addressing regulatory issues, pharmacological peculiarities and clinical aspects (efficacy and safety) of a drug that did not receive great attention in the heart failure guidelines. A brief outlook to the ongoing clinical trials is also offered.


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Simendana/farmacologia , Trifosfato de Adenosina/metabolismo , Cardiotônicos/efeitos adversos , Insuficiência Cardíaca/fisiopatologia , Humanos , Inibidores da Fosfodiesterase 3/efeitos adversos , Inibidores da Fosfodiesterase 3/farmacologia , Vasodilatadores/efeitos adversos , Vasodilatadores/farmacologia
14.
Ulus Travma Acil Cerrahi Derg ; 27(4): 381-388, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34213003

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) is cellular damage that emerges from re-oxygenation of a hypoxic organ. In the present study, we aimed to examine the effects of a combination of levosimendan, an inotropic agent, and N-Acetylcysteine, the precursor of antioxidants and glutathione, in an experimental liver IRI model. METHODS: In this study, 38 rats were randomly divided into five groups. Before the ischemia, study arms were given physiological saline solution, N-Acetylcysteine (NAS), levosimendan or a combination of NAS+levosimendan in a predetermined amount and duration, and the infusion was continued until the end of this study. The hepatic pedicle was occluded using an atraumatic vein clamp, and 60 minutes of ischemia was achieved. The clamp was then opened and 60 minutes of reperfusion was ensured. Liver tissue samples were obtained after sacrifice, and tissue malondialdehyde (MDA) and myeloperoxidase (MPO) levels were determined. Serum Tumor Necrosis Factor (TNF)-α, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and MPO levels of blood samples were also measured. RESULTS: Among the histopathological changes in the liver tissue after IRI, differences between groups were statistically significant in the injury scoring system based on congestion, vacuolization and necrosis levels. Histopathological injury score, plasma MPO, AST, ALT, tissue MPO and tissue MDA values were statistically significantly lower in the treatment groups, prominently in the levosimendan and NAS combination group concerning liver histopathological damage. CONCLUSION: The use of a levosimendan plus NAS combination in liver IRI markedly suppressed inflammation and oxidative stress and significantly reduced liver ischemia-reperfusion injury and can be recommended for decreasing IRI instead of single agent use of levosimendan or NAS.


Assuntos
Acetilcisteína/farmacologia , Hepatopatias/metabolismo , Fígado , Traumatismo por Reperfusão/metabolismo , Simendana/farmacologia , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ratos
15.
Expert Opin Drug Saf ; 20(11): 1411-1420, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34214005

RESUMO

OBJECTIVE: Levosimendan, an inotrope, is widely used in the management of heart failure (HF) and cardiac surgery, but it remains uncertain whether levosimendan can improve renal function in patients with left ventricular dysfunction (LVD). METHODS: PubMed, Embase, and Cochrane CENTRAL from the inception to June 2020 were systematically screened for randomized controlled trials (RCTs) to investigate whether levosimendan offers kidney-related advantages in cardiovascular patients with LVD. We pooled the effects using a random-effect model. RESULTS: Twenty-eight studies enrolling 5069 patients were included. Levosimendan reduced the sCr (SMD -0.28, 95% CI (-0.48, -0.09), P = 0.005, I2 = 52.5%, high quality) and the risk of ARF (relative risk 0.75, 95%CI (0.60, 0.95), P = 0.017, I2 = 11.3%, moderate-quality) in patients with LVD compared with control group. The reduction of sCr was more pronounced in patients with a relatively higher baseline sCr level. For secondary outcomes, levosimendan therapy was associated with the improvement of GFR (SMD 0.32, 95%CI (-0.05, 0.68), P = 0.092, I2 = 55.1%, low-quality) and urine output (SMD 0.42, 95%CI (0.06, 0.79), P = 0.024, I2 = 50.0%, very low-quality), but there was no significant reduction in BUN (SMD -0.14, 95%CI (-0.97, 0.70), P = 0.774, I2 = 77.9%, very low-quality). CONCLUSIONS: Levosimendan might improve renal function of patients with LVD.


Assuntos
Cardiotônicos/administração & dosagem , Simendana/administração & dosagem , Disfunção Ventricular Esquerda/tratamento farmacológico , Cardiotônicos/farmacologia , Taxa de Filtração Glomerular , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Testes de Função Renal , Ensaios Clínicos Controlados Aleatórios como Assunto , Simendana/farmacologia , Disfunção Ventricular Esquerda/fisiopatologia
16.
Crit Care ; 25(1): 207, 2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118980

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common and serious complication after cardiac surgery, and current strategies aimed at treating AKI have proven ineffective. Levosimendan, an inodilatating agent, has been shown to increase renal blood flow and glomerular filtration rate in uncomplicated postoperative patients and in patients with the cardiorenal syndrome. We hypothesized that levosimendan through its specific effects on renal vasculature, a preferential vasodilating effect on preglomerular resistance vessels, could improve renal function in AKI-patients with who did not have clinical indication for inotropic support. METHODS: In this single-center, double-blind, randomized controlled study, adult patients with postoperative AKI within 2 days after cardiac surgery, who were hemodynamically stable with a central venous oxygen saturation (ScvO2) ≥ 60% without inotropic support were eligible for inclusion. After randomization, study drug infusions, levosimendan (n = 16) or placebo (n = 13) were given for 5 h. A bolus infusion of levosimendan (12 µg/kg), were given for 30 min followed by 0.1 µg/kg/min for 5 h. Renal blood flow and glomerular filtration rate were measured using infusion clearance of para-aminohippuric acid and a filtration marker, respectively. As a safety issue, norepinephrine was administered to maintain mean arterial pressure between 70-80 mmHg. Intra-group differences were tested by Mann-Whitney U-tests, and a linear mixed model was used to test time and group interaction. RESULTS: Twenty-nine patients completed the study. At inclusion, the mean serum creatinine was higher in the patients randomized to levosimendan (148 ± 29 vs 127 ± 22 µmol/L, p = 0.030), and the estimated GFR was lower (46 ± 12 vs 57 ± 11 ml/min/1.73 m2, p = 0.025). Levosimendan induced a significantly (p = 0.011) more pronounced increase in renal blood flow (15%) compared placebo (3%) and a more pronounced decrease in renal vascular resistance (- 18% vs. - 4%, respectively, p = 0.043). There was a trend for a minor increase in glomerular filtration rate with levosimendan (4.5%, p = 0.079), which did differ significantly from the placebo group (p = 0.440). The mean norepinephrine dose was increased by 82% in the levosimedan group and decreased by 29% in the placebo group (p = 0.012). CONCLUSIONS: In hemodynamically stable patients with AKI after cardiac surgery, levosimendan increases renal blood flow through renal vasodilatation. Trial registration NCT02531724, prospectly registered on 08/20/2015. https://clinicaltrials.gov/ct2/show/NCT02531724?cond=AKI&cntry=SE&age=1&draw=2&rank=1.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Circulação Renal/efeitos dos fármacos , Simendana/farmacologia , Injúria Renal Aguda/fisiopatologia , Adulto , Idoso , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/métodos , Método Duplo-Cego , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Placebos , Simendana/efeitos adversos , Estatísticas não Paramétricas , Suécia , Vasodilatadores/efeitos adversos , Vasodilatadores/farmacologia
17.
J Cardiovasc Pharmacol ; 77(3): 378-385, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662980

RESUMO

ABSTRACT: The calcium sensitizer levosimendan is indicated for the hemodynamic stabilization of patients with acutely decompensated heart failure and has been shown to be protective against reperfusion injury after myocardial infarction. However, affected forms of cell death and underlying signaling pathways remain controversial. Therefore, the aim of this study was to examine the influence of levosimendan preconditioning and postconditioning on anoxia/reoxygenation-induced apoptosis, necrosis, and autophagy in H9c2 myoblasts. To mimic conditions of myocardial ischemia/reperfusion, rat cardiac H9c2 myoblasts were exposed to anoxia/starvation, followed by reoxygenation/refeeding. Apoptosis, necrosis, autophagy, cell viability, survival signaling, and mitochondrial permeability transition pore (mPTP) opening were measured. Both, pharmacological preconditioning and postconditioning with levosimendan were capable to reduce apoptosis as well as necrosis in stressed H9c2 cells. However, preconditioning showed to have the stronger impact compared with postconditioning. Moreover, levosimendan preconditioning increased autophagy, suggesting enhanced repair processes initiated by the early presence of the drug. Underlying mechanisms differ between both interventions: Although both are associated with PI3/Akt activation and reduced mPTP opening, only postconditioning but not preconditioning depended on mKATP activation. This variation might indicate that a pharmacological treatment after the onset of reoxygenation at least in part directly addresses mitochondrial structures for protection. In conclusion, we demonstrate that both pharmacological preconditioning and postconditioning with levosimendan protect anoxia/reoxygenation-stressed cells but differ in the underlying mechanisms. These results are decisive to obtain more insights into the beneficial effects of levosimendan in the treatment of reperfusion-mediated damage.


Assuntos
Fármacos Cardiovasculares/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Simendana/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Necrose , Canais de Potássio/metabolismo , Ratos , Transdução de Sinais
18.
Anaesthesist ; 70(3): 204-212, 2021 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-33001236

RESUMO

BACKGROUND: Levosimendan is a cardiac inotrope that augments myocardial contractility without increasing myocyte oxygen consumption. Additionally, levosimendan has been shown to exhibit anti-inflammatory, antioxidative, and other cardioprotective properties and is approved for treatment of heart failure. Recent studies indicated that these beneficial effects can be achieved with doses lower than the standard dose of 12.5 mg. Patients with preoperatively diagnosed left ventricular ejection fraction (LVEF) ≤40% received 1.25 mg levosimendan after induction of anesthesia. After surgery, administration of low-dose levosimendan was repeated until cardiovascular stability was achieved. OBJECTIVE: This study aimed to evaluate if pharmacological preconditioning with 1.25 mg levosimendan in patients with LVEF ≤40% altered the postoperative need for inotropic agents, the incidence of newly occurring atrial fibrillation, renal replacement therapy, mechanical circulatory support and 30-day mortality. The cumulative dosage of levosimendan was recorded to assess the required dosage in the context of individualized treatment. MATERIAL AND METHODS: This retrospective study included patients with preoperatively diagnosed LVEF ≤40% who underwent cardiac surgery at this institution between January 2015 and December 2018 and who received 1.25 mg levosimendan after induction of anesthesia to prevent postoperative low cardiac output syndrome. Based on echocardiography results, invasive hemodynamic monitoring, and central venous or mixed venous oxygen saturation and lactate clearance, repetitive doses of levosimendan in 1.25 mg increments could be postoperatively administered until cardiovascular stability was achieved. The results were compared to the current literature. RESULTS: We identified 183 patients with LVEF <40% who received pharmacological preconditioning with 1.25 mg levosimendan. Maximum doses of epinephrine, incidence of atrial fibrillation, need for renal replacement therapy and 30-day mortality were found to be below the published rates of comparable patient collectives. In 73.2% of patients, a cumulative dosage of 5 mg levosimendan or less was considered sufficient. CONCLUSION: The presented concept of pharmacological preconditioning with 1.25 mg levosimendan followed by individualized additional dosing in cardiac surgery patients with preoperative LVEF ≤40% suggests that this concept is safe, with possible advantages regarding the need of inotropic agents, renal replacement therapy, and 30-day mortality, compared to the current literature. Individualized treatment with levosimendan to support hemodynamics and a timely reduction of inotropic agents needs further confirmation in randomized trials.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Piridazinas , Baixo Débito Cardíaco/tratamento farmacológico , Baixo Débito Cardíaco/prevenção & controle , Cardiotônicos/uso terapêutico , Humanos , Hidrazonas/uso terapêutico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Piridazinas/uso terapêutico , Estudos Retrospectivos , Simendana/farmacologia , Volume Sistólico , Função Ventricular Esquerda
19.
Drugs R D ; 21(1): 79-89, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33367965

RESUMO

OBJECTIVE: The aim was to test the hypothesis that preoperative infusion of levosimendan would decrease patients' cardiac biomarker profiles during the immediate postoperative stage (troponin I and B-type natriuretic peptide levels) more efficiently than placebo after cardiopulmonary bypass. METHODS: In a randomised, placebo-controlled, double-blinded study, 30 paediatric patients were scheduled for congenital heart disease surgery. 15 patients (50%) received prophylactic levosimendan and 15 patients (50%) received placebo from 12 h before cardiopulmonary bypass to 24 h after surgery. RESULTS: Troponin I levels were higher in the placebo group at 0, 12, and 24 h after cardiopulmonary bypass, although the mean differences between the study groups and the 95% confidence intervals (CIs) for troponin I levels did not present statistically significant differences at any of the three time points considered (mean differences [95% CIs] - 3.32 pg/ml [- 19.34 to 12.70], - 2.42 pg/ml [- 19.78 to 13.95], and - 79.94 pg/ml [- 266.99 to 16.39] at 0, 12, and 24 h, respectively). A similar lack of statistically significant difference was observed for B-type natriuretic peptide (mean differences [95% CIs] 36.86 pg/dl [- 134.16 to 225.64], - 350.79 pg/dl [- 1459.67 to 557.45], and - 310.35 pg/dl [- 1505.76 to 509.82]). Lactic acid levels were significantly lower with levosimendan; the mean differences between the study groups and the 95% CIs for lactate levels present statistically significant differences at 0 h (- 1.52 mmol/l [- 3.19 to - 0.25]) and 12 h (- 1.20 mmol/l [- 2.53 to - 0.10]) after cardiopulmonary bypass. Oxygen delivery (DO2) was significantly higher at 12 h and 24 h after surgery (mean difference [95% CI] 627.70 ml/min/m2 [122.34-1162.67] and 832.35 ml/min/m2 [58.15 to 1651.38], respectively). CONCLUSIONS: Levosimendan does not significantly improve patients' postoperative troponin I and B-type natriuretic peptide profiles during the immediate postoperative stage in comparison with placebo, although both were numerically higher with placebo. Levosimendan, however, significantly reduced lactic acid levels and improved patients' DO2 profiles. These results highlight the importance of this new drug and its possible benefit with regard to myocardial injury; however, evaluation in larger, adequately powered trials is needed to determine the efficacy of levosimendan. Trial registry number: EudraCT 2012-005310-19.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Cardiotônicos/farmacologia , Cardiopatias Congênitas/cirurgia , Traumatismos Cardíacos/prevenção & controle , Hemodinâmica/efeitos dos fármacos , Simendana/farmacologia , Biomarcadores/sangue , Ponte Cardiopulmonar/métodos , Cardiotônicos/administração & dosagem , Pré-Escolar , Método Duplo-Cego , Feminino , Traumatismos Cardíacos/sangue , Traumatismos Cardíacos/etiologia , Humanos , Lactente , Infusões Intravenosas , Unidades de Terapia Intensiva Pediátrica , Ácido Láctico/sangue , Tempo de Internação , Masculino , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/efeitos dos fármacos , Oxigênio/sangue , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Cuidados Pré-Operatórios/métodos , Respiração Artificial , Simendana/administração & dosagem , Taxa de Sobrevida , Troponina I/sangue , Troponina I/efeitos dos fármacos
20.
Asian Cardiovasc Thorac Ann ; 29(4): 260-267, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33143432

RESUMO

BACKGROUND: Levosimendan is an effective calcium sensitizer with complementary mechanisms of action: calcium sensitization and opening of adenosine triphosphate-dependent potassium channels, both on the sarcolemma of the smooth muscle cells in the vasculature and on the mitochondria of cardiomyocytes. Levosimendan has a long-acting metabolite with a half-life of approximately 80 h. There have been a few small studies on this drug regarding right ventricular function. In view of this, we investigated the effect of levosimendan on right ventricular function in patients with coronary artery disease. METHODS: This was a prospective, randomized, double-blind study on 50 patients with coronary artery disease and severe left ventricular dysfunction (left ventricular ejection fraction ≤35%) undergoing elective off-pump coronary artery bypass. RESULTS: Levosimendan had an inotropic effect on right ventricular myocardium and a vasodilatory effect on blood vessels. It caused a decline in pulmonary vascular resistance (p < 0.018), right ventricular systolic pressure (p < 0.001), and pulmonary artery systolic pressure (p < 0.001), and improved right ventricular diastolic function as shown by the decrease in right ventricular Tei index (p < 0.001), right ventricular end-diastolic pressure, and the ratio of early diastolic tricuspid inflow to tricuspid lateral annular velocity (p < 0.006). However, we found no beneficial effects on intensive care unit or hospital stay (p = 0.164, p = 0.349, respectively) nor a mortality benefit. CONCLUSIONS: Levosimendan has salutary effects on right ventricular function in patients with severe left ventricular dysfunction undergoing coronary artery bypass, in terms of improved hemodynamic parameters.


Assuntos
Piridazinas , Disfunção Ventricular Esquerda , Cardiotônicos/uso terapêutico , Ventrículos do Coração , Humanos , Hidrazonas/uso terapêutico , Estudos Prospectivos , Simendana/farmacologia , Volume Sistólico , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA