Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 15(12)2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-37994650

RESUMO

The molecular mechanism of aluminum toxicity in biological systems is not completely understood. Saccharomyces cerevisiae is one of the most used model organisms in the study of environmental metal toxicity. Using an unbiased metallomic approach in yeast, we found that aluminum treatment caused phosphorus deprivation, and the lack of phosphorus increased as the pH of the environment decreased compared to the control strain. By screening the phosphate signaling and response pathway (PHO pathway) in yeast with the synthetic lethality of a new phosphorus-restricted aluminum-sensitive gene, we observed that pho84Δ mutation conferred severe growth defect to aluminum under low-phosphorus conditions, and the addition of phosphate alleviated this sensitivity. Subsequently, the data showed that PHO84 determined the intracellular aluminum-induced phosphorus deficiency, and the expression of PHO84 was positively correlated with aluminum stress, which was mediated by phosphorus through the coordinated regulation of PHO4/PHO2. Moreover, aluminum reduced phosphorus absorption and inhibited tobacco plant growth in acidic media. In addition, the high-affinity phosphate transporter NtPT1 in tobacco exhibited similar effects to PHO84, and overexpression of NtPT1 conferred aluminum resistance in yeast cells. Taken together, positive feedback regulation of the PHO pathway centered on the high-affinity phosphate transporters is a highly conservative mechanism in response to aluminum toxicity. The results may provide a basis for aluminum-resistant microorganisms or plant engineering and acidic soil treatment.


Assuntos
Fósforo na Dieta , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Fósforo na Dieta/metabolismo , Fósforo , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Homeodomínio/metabolismo
2.
Bioengineered ; 10(1): 335-344, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31322471

RESUMO

Selenium-enriched yeast can transform toxic inorganic selenium into absorbable organic selenium, which is of great significance for human health and pharmaceutical industry. A yeast Rhodotorula glutinis X-20 we obtained before has good selenium-enriched ability, but its selenium content is still low for industrial application. In this study, strategies of process optimization and transport regulation of selenium were thus employed to further improve the cell growth and selenium enrichment. Through engineering phosphate transporters from Saccharomyces cerevisiae into R. glutinis X-20, the selenium content was increased by 21.1%. Through using mixed carbon culture (20 g L-1, glycerol: glucose 3:7), both biomass and selenium content were finally increased to 5.3 g L-1 and 5349.6 µg g-1 (cell dry weight, DWC), which were 1.14 folds and 6.77 folds compared to their original values, respectively. Our results indicate that high selenium-enrichment ability and biomass production can be achieved through combining process optimization and regulation of selenium transport.


Assuntos
Engenharia Metabólica/métodos , Fosfatos/metabolismo , Rhodotorula/genética , Saccharomyces cerevisiae/genética , Selênio/metabolismo , Transgenes , Transporte Biológico , Biomassa , Meios de Cultura/química , Meios de Cultura/farmacologia , Fermentação , Expressão Gênica , Glucose/química , Glucose/metabolismo , Glicerol/química , Glicerol/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Rhodotorula/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
3.
Cells ; 8(5)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096715

RESUMO

Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the Saccharomyces cerevisiae strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses. CRN/PPN1 exhibits enhanced resistance to manganese and peroxide due to its pre-adaptive state observed in normal conditions. The pre-adaptive state is characterized by up-regulated genes involved in response to an external stimulus, plasma membrane organization, and oxidation/reduction. The transcriptome-wide data allowed the identification of particular genes crucial for overcoming the manganese excess. The key gene responsible for manganese resistance is PHO84 encoding a low-affinity manganese transporter: Strong PHO84 down-regulation in CRN/PPN1 increases manganese resistance by reduced manganese uptake. On the contrary, PHM7, the top up-regulated gene in CRN/PPN1, is also strongly up-regulated in the manganese-adapted parent strain. Phm7 is an unannotated protein, but manganese adaptation is significantly impaired in Δphm7, thus suggesting its essential function in manganese or phosphate transport.


Assuntos
Polifosfatos/metabolismo , Simportadores de Próton-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hidrolases Anidrido Ácido/genética , Manganês/toxicidade , Estresse Oxidativo/fisiologia
4.
Exp Parasitol ; 173: 1-8, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27956087

RESUMO

Inorganic phosphate (Pi) is an essential nutrient for all organisms because it is required for a variety of biochemical processes, such as signal transduction and the synthesis of phosphate-containing biomolecules. Assays of 32Pi uptake performed in the absence or in the presence of Na+ indicated the existence of a Na+-dependent and a Na+-independent Pi transporter in Phytomonas serpens. Phylogenetic analysis of two hypothetical protein sequences of Phytomonas (EM1) showed similarities to the high-affinity Pi transporters of Saccharomyces cerevisiae: Pho84, a Na+-independent Pi transporter, and Pho89, a Na+-dependent Pi transporter. Plasma membrane depolarization by FCCP, an H+ ionophore, strongly decreased Pi uptake via both Na+-independent and Na+-dependent carriers, indicating that a membrane potential is essential for Pi influx. In addition, the furosemide-sensitive Na+-pump activity in the cells grown in low Pi conditions was found to be higher than the activity detected in the plasma membrane of cells cultivated at high Pi concentration, suggesting that the up-regulation of the Na+-ATPase pump could be related to the increase of Pi uptake by the Pho89p Na+:Pi symporter. Here we characterize for the first time two inorganic phosphate transporters powered by Na+ and H+ gradients and activated by low Pi availability in the phytopathogen P. serpens.


Assuntos
Fosfatos/metabolismo , Simportadores de Próton-Fosfato/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Trypanosomatina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Cinética , Potenciais da Membrana , Simportadores de Próton-Fosfato/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Trypanosomatina/genética , Regulação para Cima
5.
Adv Exp Med Biol ; 892: 253-269, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26721277

RESUMO

Inorganic ions such as phosphate and sulfate are essential macronutrients required for a broad spectrum of cellular functions and their regulation. In a constantly fluctuating environment microorganisms have for their survival developed specific nutrient sensing and transport systems ensuring that the cellular nutrient needs are met. This chapter focuses on the S. cerevisiae plasma membrane localized transporters, of which some are strongly induced under conditions of nutrient scarcity and facilitate the active uptake of inorganic phosphate and sulfate. Recent advances in studying the properties of the high-affinity phosphate and sulfate transporters by means of site-directed mutagenesis have provided further insight into the molecular mechanisms contributing to substrate selectivity and transporter functionality of this important class of membrane transporters.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Regulação Fúngica da Expressão Gênica , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Membrana Celular/química , Membrana Celular/metabolismo , Transporte de Íons , Mutagênese Sítio-Dirigida , Fosfatos/metabolismo , Simportadores de Próton-Fosfato/química , Simportadores de Próton-Fosfato/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Transportadores de Sulfato , Sulfatos/metabolismo
6.
Mol Cell Biol ; 34(24): 4420-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25266663

RESUMO

The yeast Saccharomyces cerevisiae has two main high-affinity inorganic phosphate (Pi) transporters, Pho84 and Pho89, that are functionally relevant at acidic/neutral pH and alkaline pH, respectively. Upon Pi starvation, PHO84 and PHO89 are induced by the activation of the PHO regulon by the binding of the Pho4 transcription factor to specific promoter sequences. We show that PHO89 and PHO84 are induced by alkalinization of the medium with different kinetics and that the network controlling Pho89 expression in response to alkaline pH differs from that of other members of the PHO regulon. In addition to Pho4, the PHO89 promoter is regulated by the transcriptional activator Crz1 through the calcium-activated phosphatase calcineurin, and it is under the control of several repressors (Mig2, Nrg1, and Nrg2) coordinately regulated by the Snf1 protein kinase and the Rim101 transcription factor. This network mimics the one regulating expression of the Na(+)-ATPase gene ENA1, encoding a major determinant for Na(+) detoxification. Our data highlight a scenario in which the activities of Pho89 and Ena1 are functionally coordinated to sustain growth in an alkaline environment.


Assuntos
Regulação Fúngica da Expressão Gênica , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Calcineurina/metabolismo , Meios de Cultura/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico , Concentração de Íons de Hidrogênio , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Simportadores de Próton-Fosfato/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Biochim Biophys Acta ; 1830(3): 2683-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23671929

RESUMO

BACKGROUND: Proliferation of Leishmania infantum depends on exogenous inorganic phosphate (P(i)) but little is known about energy metabolism and transport of P(i) across the plasma membrane in Leishmania sp. METHODS: We investigated the kinetics of 32P(i) transport, the influence of H+ and K+ ionophores and inhibitors, and expression of the genes for the Na+:P(i) and H+:P(i) cotransporters. RESULTS: The proton ionophore FCCP, bafilomycin A1 (vacuolar ATPase inhibitor), nigericin (K+ ionophore) and SCH28080 (an inhibitor of H+, K(+)-ATPase) all inhibited the transport of P(i). This transport showed Michaelis-Menten kinetics with K0.5 and V(max) values of 0.016 +/- 0.002 mM and 564.9 +/- 18.06 pmol x h(-1) x 10(-7) cells, respectively. These values classify the P(i) transporter of L. infantum among the high-affinity transporters, a group that includes Pho84 of Saccharomyces cerevisiae. Two sequences were identified in the L. infantum genome that code for phosphate transporters. However, transcription of the PHO84 transporter was 10-fold higher than the PHO89 transporter in this parasite. Accordingly, P(i) transport and LiPho84 gene expression were modulated by environmental P(i) variations. CONCLUSIONS: These findings confirm the presence of a P(i) transporter in L. infantum, similar to PHO84 in S. cerevisiae, that contributes to the acquisition of inorganic phosphate and could be involved in growth and survival of the promastigote forms of L. infantum. GENERAL SIGNIFICANCE: This work provides the first description of a PHO84-like P(i) transporter in a Trypanosomatide parasite of the genus Leishmania, responsible for many infections worldwide.


Assuntos
Leishmania infantum/enzimologia , Fosfatos/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Meios de Cultura , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Cinética , Leishmania infantum/genética , Macrolídeos/farmacologia , Dados de Sequência Molecular , Nigericina/farmacologia , Fosfatos/farmacologia , Radioisótopos de Fósforo , Filogenia , Ionóforos de Próton/farmacologia , Simportadores de Próton-Fosfato/antagonistas & inibidores , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Protozoários/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/antagonistas & inibidores , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo
8.
PLoS Genet ; 9(1): e1003232, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23358723

RESUMO

Large-scale genome rearrangements have been observed in cells adapting to various selective conditions during laboratory evolution experiments. However, it remains unclear whether these types of mutations can be stably maintained in populations and how they impact the evolutionary trajectories. Here we show that chromosomal rearrangements contribute to extremely high copper tolerance in a set of natural yeast strains isolated from Evolution Canyon (EC), Israel. The chromosomal rearrangements in EC strains result in segmental duplications in chromosomes 7 and 8, which increase the copy number of genes involved in copper regulation, including the crucial transcriptional activator CUP2 and the metallothionein CUP1. The copy number of CUP2 is correlated with the level of copper tolerance, indicating that increasing dosages of a single transcriptional activator by chromosomal rearrangements has a profound effect on a regulatory pathway. By gene expression analysis and functional assays, we identified three previously unknown downstream targets of CUP2: PHO84, SCM4, and CIN2, all of which contributed to copper tolerance in EC strains. Finally, we conducted an evolution experiment to examine how cells maintained these changes in a fluctuating environment. Interestingly, the rearranged chromosomes were reverted back to the wild-type configuration at a high frequency and the recovered chromosome became fixed in less selective conditions. Our results suggest that transposon-mediated chromosomal rearrangements can be highly dynamic and can serve as a reversible mechanism during early stages of adaptive evolution.


Assuntos
Cromossomos/genética , Cobre/toxicidade , Instabilidade Genômica , Saccharomyces cerevisiae , Duplicações Segmentares Genômicas , Evolução Biológica , Aberrações Cromossômicas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dosagem de Genes , Genética Populacional , Genoma Fúngico , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Israel , Metalotioneína/genética , Metalotioneína/metabolismo , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Biochem J ; 445(3): 413-22, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22587366

RESUMO

In Saccharomyces cerevisiae, the Pho84 phosphate transporter acts as the main provider of phosphate to the cell using a proton symport mechanism, but also mediates rapid activation of the PKA (protein kinase A) pathway. These two features led to recognition of Pho84 as a transceptor. Although the physiological role of Pho84 has been studied in depth, the mechanisms underlying the transport and sensor functions are unclear. To obtain more insight into the structure-function relationships of Pho84, we have rationally designed and analysed site-directed mutants. Using a three-dimensional model of Pho84 created on the basis of the GlpT permease, complemented with multiple sequence alignments, we selected Arg(168) and Lys(492), and Asp(178), Asp(358) and Glu(473) as residues potentially involved in phosphate or proton binding respectively, during transport. We found that Asp(358) (helix 7) and Lys(492) (helix 11) are critical for the transport function, and might be part of the putative substrate-binding pocket of Pho84. Moreover, we show that alleles mutated in the putative proton-binding site Asp(358) are still capable of strongly activating PKA pathway targets, despite their severely reduced transport activity. This indicates that signalling does not require transport and suggests that mutagenesis of amino acid residues involved in binding of the co-transported ion may constitute a promising general approach to separate the transport and signalling functions in transceptors.


Assuntos
Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Fúngico/genética , Genes Fúngicos , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfatos/metabolismo , Simportadores de Próton-Fosfato/química , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais
10.
Biochem J ; 435(2): 421-30, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21265734

RESUMO

In pancreatic ß-cells, glucose-induced mitochondrial ATP production plays an important role in insulin secretion. The mitochondrial phosphate carrier PiC is a member of the SLC25 (solute carrier family 25) family and transports Pi from the cytosol into the mitochondrial matrix. Since intramitochondrial Pi is an essential substrate for mitochondrial ATP production by complex V (ATP synthase) and affects the activity of the respiratory chain, Pi transport via PiC may be a rate-limiting step for ATP production. We evaluated the role of PiC in metabolism-secretion coupling in pancreatic ß-cells using INS-1 cells manipulated to reduce PiC expression by siRNA (small interfering RNA). Consequent reduction of the PiC protein level decreased glucose (10 mM)-stimulated insulin secretion, the ATP:ADP ratio in the presence of 10 mM glucose and elevation of intracellular calcium concentration in response to 10 mM glucose without affecting the mitochondrial membrane potential (Δψm) in INS-1 cells. In experiments using the mitochondrial fraction of INS-1 cells in the presence of 1 mM succinate, PiC down-regulation decreased ATP production at various Pi concentrations ranging from 0.001 to 10 mM, but did not affect Δψm at 3 mM Pi. In conclusion, the Pi supply to mitochondria via PiC plays a critical role in ATP production and metabolism-secretion coupling in INS-1 cells.


Assuntos
Insulinoma/metabolismo , Metabolismo/genética , Neoplasias Pancreáticas/metabolismo , Proteínas de Transporte de Fosfato/fisiologia , Simportadores de Próton-Fosfato/fisiologia , Via Secretória/genética , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Insulinoma/genética , Insulinoma/patologia , Metabolismo/efeitos dos fármacos , Metabolismo/fisiologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas de Transporte de Fosfato/antagonistas & inibidores , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/farmacologia , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Wistar , Via Secretória/efeitos dos fármacos , Via Secretória/fisiologia
11.
Proc Natl Acad Sci U S A ; 107(7): 2890-5, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133652

RESUMO

A novel concept in eukaryotic signal transduction is the use of nutrient transporters and closely related proteins as nutrient sensors. The action mechanism of these "transceptors" is unclear. The Pho84 phosphate transceptor in yeast transports phosphate and mediates rapid phosphate activation of the protein kinase A (PKA) pathway during growth induction. We have now identified several phosphate-containing compounds that act as nontransported signaling agonists of Pho84. This indicates that signaling does not require complete transport of the substrate. For the nontransported agonist glycerol-3-phosphate (Gly3P), we show that it is transported by two other carriers, Git1 and Pho91, without triggering signaling. Gly3P is a competitive inhibitor of transport through Pho84, indicating direct interaction with its phosphate-binding site. We also identified phosphonoacetic acid as a competitive inhibitor of transport without agonist function for signaling. This indicates that binding of a compound into the phosphate-binding site of Pho84 is not enough to trigger signaling. Apparently, signaling requires a specific conformational change that may be part of, but does not require, the complete transport cycle. Using Substituted Cysteine Accessibility Method (SCAM) we identified Phe(160) in TMD IV and Val(392) in TMD VIII as residues exposed with their side chain into the phosphate-binding site of Pho84. Inhibition of both transport and signaling by covalent modification of Pho84(F160C) or Pho84(V392C) showed that the same binding site is used for transport of phosphate and for signaling with both phosphate and Gly3P. Our results provide to the best of our knowledge the first insight into the molecular mechanism of a phosphate transceptor.


Assuntos
Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Sítios de Ligação/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicerofosfatos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Ácido Fosfonoacéticos/metabolismo , Simportadores de Próton-Fosfato/agonistas , Simportadores de Próton-Fosfato/genética , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/genética
12.
J Ind Microbiol Biotechnol ; 34(1): 17-25, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17109161

RESUMO

The effect of phosphate (P ( i )) concentration on the growth behavior of Saccharomyces cerevisiae strain CEN.PK113-5D in phosphate-limited batch and chemostat cultures was studied. The range of dilution rates used in the present study was 0.08-0.45 h(-1). The batch growth of yeast cells followed Monod relationship, but growth of the cells in phosphate-limited chemostat showed change in growth kinetics with increasing dilution rates. The difference in growth kinetics of the yeast cells in phosphate-limited chemostat for dilution rates below and above approximately 0.2 h(-1) has been discussed in terms of the batch growth kinetic data and the change in the metabolic activity of the yeast cells. Immunological detection of a C-terminally myc epitope-tagged Pho84 fusion protein indicated derepressive expression of the Pho84 high-affinity P ( i ) transporter in the entire range of dilution rates employed in this study. Phosphate transport activity mediated by Pho84 transporter was highest at very low dilution rates, i.e. 0.08-0.1 h(-1), corresponding to conditions in which the amount of synthesized Pho84 was at its maximum.


Assuntos
Meios de Cultura/farmacologia , Fosfatos/farmacologia , Simportadores de Próton-Fosfato/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Técnicas de Cultura de Células , Meios de Cultura/química , Cinética , Fosfatos/análise , Proteínas Proto-Oncogênicas c-myc/análise , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Simportadores de Próton-Fosfato/análise , Simportadores de Próton-Fosfato/genética , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética
13.
Biochemistry ; 43(45): 14444-53, 2004 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-15533049

RESUMO

In Saccharomyces cerevisiae, the Pho84 high-affinity transport system is the major phosphate transporter activated when the cells experience a limitation in external phosphate. In this study, we have compared the phosphate-responsive mechanism of cells expressing PHO84 with a Deltapho84 strain by use of a phosphate analogue, methylphosphonate, which was judged to be suitable for assessment of phosphate homeostasis in the cells. Intracellular levels of the analogue, which in several respects mimicks phosphate, were monitored by (31)P NMR spectroscopy. Results show that methylphosphonate is a nonhydrolyzable and nonutilizable analogue that cannot be used to replenish phosphate or polyphosphate in yeast cells grown under conditions of phosphate limitation. However, the presence of methylphosphonate under such conditions represses the Pho5 acidic phosphatase activity of PHO84 cells, a finding that implies a direct role of the analogue in the regulation of phosphate-responsive genes and/or proteins. Likewise, accumulation of the Pho84 protein at the plasma membrane of the same cells is inhibited by methylphosphonate, although the derepressive expression of the PHO84 gene is unperturbed. Thus, a post-transcriptional regulation is suggested. Supportive of this suggestion is the fact that addition of methylphosphonate to cells with abundant and active Pho84 at the plasma membrane causes enhanced internalization of the Pho84 protein. Altogether, these observations suggest that the Pho84 transporter is regulated not only at the transcriptional level but also by a direct molecule-sensing mechanism at the protein level.


Assuntos
Compostos Organofosforados/química , Fosfatos/metabolismo , Simportadores de Próton-Fosfato/biossíntese , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatase Ácida/antagonistas & inibidores , Fosfatase Ácida/metabolismo , Transporte Biológico/genética , Regulação Fúngica da Expressão Gênica , Genes myc , Concentração de Íons de Hidrogênio , Compostos Organofosforados/metabolismo , Simportadores de Próton-Fosfato/antagonistas & inibidores , Simportadores de Próton-Fosfato/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Supressão Genética
14.
Mol Microbiol ; 47(4): 1163-81, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12581367

RESUMO

Yeast cells starved for inorganic phosphate on a glucose-containing medium arrest growth and enter the resting phase G0. We show that re-addition of phosphate rapidly affects well known protein kinase A targets: trehalase activation, trehalose mobilization, loss of heat resistance, repression of STRE-controlled genes and induction of ribosomal protein genes. Phosphate-induced activation of trehalase is independent of protein synthesis and of an increase in ATP. It is dependent on the presence of glucose, which can be detected independently by the G-protein coupled receptor Gpr1 and by the glucose-phosphorylation dependent system. Addition of phosphate does not trigger a cAMP signal. Despite this, lowering of protein kinase A activity by mutations in the TPK genes strongly reduces trehalase activation. Inactivation of phosphate transport by deletion of PHO84 abolishes phosphate signalling at standard concentrations, arguing against the existence of a transport-independent receptor. The non-metabolizable phosphate analogue arsenate also triggered signalling. Constitutive expression of the Pho84, Pho87, Pho89, Pho90 and Pho91 phosphate carriers indicated pronounced differences in their transport and signalling capacities in phosphate-starved cells. Pho90 and Pho91 sustained highest phosphate transport but did not sustain trehalase activation. Pho84 sustained both transport and rapid signalling, whereas Pho87 was poor in transport but positive for signalling. Pho89 displayed very low phosphate transport and was negative for signalling. Although the results confirmed that rapid signalling is independent of growth recovery, long-term mobilization of trehalose was much better correlated with growth recovery than with trehalase activation. These results demonstrate that phosphate acts as a nutrient signal for activation of the protein kinase A pathway in yeast in a glucose-dependent way and they indicate that the Pho84 and Pho87 carriers act as specific phosphate sensors for rapid phosphate signalling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucose/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Arseniatos/metabolismo , AMP Cíclico/metabolismo , Ativação Enzimática , Genes Fúngicos , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas Cotransportadoras de Sódio-Fosfato , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Simportadores/genética , Simportadores/metabolismo , Trealase/genética , Trealase/metabolismo
15.
Science ; 299(5603): 114-6, 2003 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-12434012

RESUMO

Chromatin remodeling is required for efficient transcription of eukaryotic genes. In a genetic selection for budding yeast mutants that were defective in induction of the phosphate-responsive PHO5 gene, we identified mutations in ARG82/IPK2, which encodes a nuclear inositol polyphosphate kinase. In arg82 mutant strains, remodeling of PHO5 promoter chromatin is impaired, and the adenosine triphosphate-dependent chromatin-remodeling complexes SWI/SNF and INO80 are not efficiently recruited to phosphate-responsive promoters. These results suggest a role for the small molecule inositol polyphosphate in the regulation of chromatin remodeling and transcription.


Assuntos
Cromatina/metabolismo , Fosfatos de Inositol/metabolismo , Proteínas Nucleares , Proteínas de Transporte de Fosfato/genética , Proteínas de Saccharomyces cerevisiae , Saccharomycetales/metabolismo , Transcrição Gênica , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Mutação , Proteínas de Transporte de Fosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Mutação Puntual , Regiões Promotoras Genéticas , Ligação Proteica , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Saccharomycetales/genética , Fatores de Transcrição/metabolismo
16.
Proc Natl Acad Sci U S A ; 98(23): 13201-6, 2001 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-11687606

RESUMO

Expanded polyglutamine tracts are responsible for at least eight fatal neurodegenerative diseases. In mouse models, proteins with expanded polyglutamine cause transcriptional dysregulation before onset of symptoms, suggesting that this dysregulation may be an early event in polyglutamine pathogenesis. Transcriptional dysregulation and cellular toxicity may be due to interaction between expanded polyglutamine and the histone acetyltransferase CREB-binding protein. To determine whether polyglutamine-mediated transcriptional dysregulation occurs in yeast, we expressed polyglutamine tracts in Saccharomyces cerevisiae. Gene expression profiles were determined for strains expressing either a cytoplasmic or nuclear protein with 23 or 75 glutamines, and these profiles were compared to existing profiles of mutant yeast strains. Transcriptional induction of genes encoding chaperones and heat-shock factors was caused by expression of expanded polyglutamine in either the nucleus or cytoplasm. Transcriptional repression was most prominent in yeast expressing nuclear expanded polyglutamine and was similar to profiles of yeast strains deleted for components of the histone acetyltransferase complex Spt/Ada/Gcn5 acetyltransferase (SAGA). The promoter from one affected gene (PHO84) was repressed by expanded polyglutamine in a reporter gene assay, and this effect was mitigated by the histone deacetylase inhibitor, Trichostatin A. Consistent with an effect on SAGA, nuclear expanded polyglutamine enhanced the toxicity of a deletion in the SAGA component SPT3. Thus, an early component of polyglutamine toxicity, transcriptional dysregulation, is conserved in yeast and is pharmacologically antagonized by a histone deacetylase inhibitor. These results suggest a therapeutic approach for treatment of polyglutamine diseases and provide the potential for yeast-based screens for agents that reverse polyglutamine toxicity.


Assuntos
Peptídeos/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Perfilação da Expressão Gênica , Peptídeos/metabolismo , Regiões Promotoras Genéticas , Simportadores de Próton-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
17.
Biochem Biophys Res Commun ; 287(4): 837-42, 2001 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-11573939

RESUMO

The derepressible Pho84 high-affinity phosphate permease of Saccharomyces cerevisiae, encoded by the PHO84 gene belongs to a family of phosphate:proton symporters (PHS). The protein contains 12 native cysteine residues of which five are predicted to be located in putative transmembrane regions III, VI, VIII, IX, and X, and the remaining seven in the hydrophilic domains of the protein. Here we report on the construction of a Pho84 transporter devoid of cysteine residues (C-less) in which all 12 native residues were replaced with serines using PCR mutagenesis and the functional consequences of this. Our results clearly demonstrate that the C-less Pho84 variant is able to support growth of yeast cells to the same extent as the wild-type Pho84 and is stably expressed under derepressible conditions and is fully active in proton-coupled phosphate transport across the yeast plasma membrane.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cisteína/química , Cisteína/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes myc/genética , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Mutagênese Sítio-Dirigida , Fosfatos/metabolismo , Estrutura Secundária de Proteína , Simportadores de Próton-Fosfato/química , Simportadores de Próton-Fosfato/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA