Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 192(3): 345-351, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31295088

RESUMO

Stem cell transplantation is thought to be an effective method for radiation-induced cognitive dysfunction. However, there have been few studies performed to determine whether transplanted stem cells can integrate into hippocampus circuits. Brain-derived neurotrophic factor (BDNF) plays a critical role in brain development. Therefore, we investigated the differentiation and integration of brain-derived neurotrophic factor overexpressing neural stem cells (NSCs). We observed that these transplanted cells migrated to the subgranular zone of irradiated rats at 4 weeks after transplantation. However, control neural stem cells were disordered, distributing in the irradiated hippocampus, and showed greater astroglia differentiation tendency. Retrograde monosynaptic tracing showed that neurons derived from transplanted brain-derived neurotrophic factor overexpressing neural stem cells integrated into the circuit better than those from control cells. Brain-derived neurotrophic factor overexpressing neural stem cells s promoted the expression of brain-derived neurotrophic factor and nerve growth factor and reduced the number of activated microglia caused by radiation. Transplanted brain-derived neurotrophic factor overexpressing neural stem cells failed to improve radiation-induced cognitive dysfunction. These results indicate that brain-derived neurotrophic factor overexpressing neural stem cells suffered less from changed microenvironment after irradiation and possessed the ability to improve the host niche. Neurons derived from Brain-derived neurotrophic factor overexpressing neural stem cells showed the integration potency in the irradiated hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/citologia , Hipocampo/efeitos da radiação , Rede Nervosa/citologia , Células-Tronco Neurais/transplante , Neurônios/citologia , Transplante de Células-Tronco , Animais , Diferenciação Celular/efeitos da radiação , Cognição/efeitos da radiação , Expressão Gênica , Hipocampo/fisiologia , Masculino , Rede Nervosa/efeitos da radiação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos da radiação
2.
Biomaterials ; 199: 63-75, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30738336

RESUMO

Tissue specific extracellular matrices (ECM) provide structural support and enable access to molecular signals and metabolites, which are essential for directing stem cell renewal and differentiation. To mimic this phenomenon in vitro, tissue decellularisation approaches have been developed, resulting in the generation of natural ECM scaffolds that have comparable physical and biochemical properties of the natural tissues and are currently gaining traction in tissue engineering and regenerative therapies due to the ease of standardised production, and constant availability. In this manuscript we report the successful generation of decellularised ECM-derived peptides from neural retina (decel NR) and retinal pigment epithelium (decel RPE), and their impact on differentiation of human pluripotent stem cells (hPSCs) to retinal organoids. We show that culture media supplementation with decel RPE and RPE-conditioned media (CM RPE) significantly increases the generation of rod photoreceptors, whilst addition of decel NR and decel RPE significantly enhances ribbon synapse marker expression and the light responsiveness of retinal organoids. Photoreceptor maturation, formation of correct synapses between retinal cells and recording of robust light responses from hPSC-derived retinal organoids remain unresolved challenges for the field of regenerative medicine. Enhanced rod photoreceptor differentiation, synaptogenesis and light response in response to addition of decellularised matrices from RPE and neural retina as shown herein provide a novel and substantial advance in generation of retinal organoids for drug screening, tissue engineering and regenerative medicine.


Assuntos
Biomarcadores/metabolismo , Matriz Extracelular/química , Luz , Organoides/citologia , Peptídeos/farmacologia , Células-Tronco Pluripotentes/citologia , Epitélio Pigmentado da Retina/metabolismo , Sinapses/metabolismo , Adulto , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/efeitos da radiação , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos da radiação , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Organoides/efeitos dos fármacos , Organoides/efeitos da radiação , Organoides/ultraestrutura , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Células Fotorreceptoras de Vertebrados/ultraestrutura , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos da radiação , Sinapses/efeitos dos fármacos , Sinapses/efeitos da radiação
3.
Brain Behav Immun ; 74: 106-120, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30107198

RESUMO

Interplanetary exploration will be humankind's most ambitious expedition and the journey required to do so, is as intimidating as it is intrepid. One major obstacle for successful deep space travel is the possible negative effects of galactic cosmic radiation (GCR) exposure. Here, we investigate for the first time how combined GCR impacts long-term behavioral and cellular responses in male and female mice. We find that a single exposure to simulated GCR induces long-term cognitive and behavioral deficits only in the male cohorts. GCR exposed male animals have diminished social interaction, increased anxiety-like phenotype and impaired recognition memory. Remarkably, we find that the female cohorts did not display any cognitive or behavioral deficits after GCR exposure. Mechanistically, the maladaptive behavioral responses observed only in the male cohorts correspond with microglia activation and synaptic loss in the hippocampus, a brain region involved in the cognitive domains reported here. Furthermore, we measured reductions in AMPA expressing synaptic terminals in the hippocampus. No changes in any of the molecular markers measured here are observed in the females. Taken together these findings suggest that GCR exposure can regulate microglia activity and alter synaptic architecture, which in turn leads to a range of cognitive alterations in a sex dependent manner. These results identify sex-dependent differences in behavioral and cognitive domains revealing promising cellular and molecular intervention targets to reduce GCR-induced chronic cognitive deficits thereby boosting chances of success for humans in deep space missions such as the upcoming Mars voyage.


Assuntos
Comportamento Animal/efeitos da radiação , Radiação Cósmica/efeitos adversos , Fatores Sexuais , Animais , Disfunção Cognitiva/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos da radiação , Modelos Animais , Voo Espacial , Sinapses/efeitos da radiação
4.
Brain Res ; 1679: 134-143, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180226

RESUMO

The popularization of microwave raised concerns about its influence on health including cognitive function which is associated greatly with dendritic spines plasticity. SNK-SPAR is a molecular pathway for neuronal homeostatic plasticity during chronically elevated activity. In this study, Wistar rats were exposed to microwaves (30 mW/cm2 for 6 min, 3 times/week for 6 weeks). Spatial learning and memory function, distribution of dendritic spines, ultrastructure of the neurons and their dendritic spines in hippocampus as well as the related critical molecules of SNK-SPAR pathway were examined at different time points after microwave exposure. There was deficiency in spatial learning and memory in rats, loss of spines in granule cells and shrinkage of mature spines in pyramidal cells, accompanied with alteration of ultrastructure of hippocampus neurons. After exposure to 30 mW/cm2 microwave radiation, the up-regulated SNK induced decrease of SPAR and PSD-95, which was thought to cause the changes mentioned above. In conclusion, the microwave radiation led to shrinkage and even loss of dendritic spines in hippocampus by SNK-SPAR pathway, resulting in the cognitive impairments.


Assuntos
Espinhas Dendríticas/efeitos da radiação , Proteínas Ativadoras de GTPase/metabolismo , Hipocampo/citologia , Micro-Ondas/efeitos adversos , Neurônios/ultraestrutura , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos da radiação , Animais , Espinhas Dendríticas/ultraestrutura , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/ultraestrutura , Hipocampo/efeitos da radiação , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Microscopia Eletrônica de Transmissão , Neurônios/efeitos da radiação , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Coloração pela Prata , Sinapses/metabolismo , Sinapses/efeitos da radiação , Sinapses/ultraestrutura , Fatores de Tempo , Regulação para Cima/efeitos da radiação
5.
Neuro Oncol ; 20(5): 655-665, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29112734

RESUMO

Background: Memantine has shown clinical utility in preventing radiation-induced cognitive impairment, but the mechanisms underlying its protective effects remain unknown. We hypothesized that abnormal glutamate signaling causes radiation-induced abnormalities in neuronal structure and that memantine prevents synaptic toxicity. Methods: Hippocampal cultures expressing enhanced green fluorescent protein were irradiated or sham-treated and their dendritic spine morphology assessed at acute (minutes) and later (days) times using high-resolution confocal microscopy. Excitatory synapses, defined by co-localization of the pre- and postsynaptic markers vesicular glutamate transporter 1 and postsynaptic density protein 95, were also analyzed. Neurons were pretreated with vehicle, the N-methyl-d-aspartate-type glutamate receptor antagonist memantine, or the glutamate scavenger glutamate pyruvate transaminase to assess glutamate signaling. For animal studies, Thy-1-YFP mice were treated with whole-brain radiotherapy or sham with or without memantine. Results: Unlike previously reported long-term losses of dendritic spines, we found that the acute response to radiation is an initial increase in spines and excitatory synapses followed by a decrease in spine/synapse density with altered spine dynamics. Memantine pre-administration prevented this radiation-induced synaptic remodeling. Conclusion: These results demonstrate that radiation causes rapid, dynamic changes in synaptic structural plasticity, implicate abnormal glutamate signaling in cognitive dysfunction following brain irradiation, and describe a protective mechanism of memantine.


Assuntos
Anormalidades Induzidas por Radiação/prevenção & controle , Espinhas Dendríticas/efeitos dos fármacos , Raios gama/efeitos adversos , Hipocampo/efeitos dos fármacos , Memantina/farmacologia , Sinapses/efeitos dos fármacos , Anormalidades Induzidas por Radiação/etiologia , Anormalidades Induzidas por Radiação/patologia , Animais , Células Cultivadas , Espinhas Dendríticas/patologia , Espinhas Dendríticas/efeitos da radiação , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/patologia , Hipocampo/efeitos da radiação , Ratos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/patologia , Sinapses/efeitos da radiação
6.
Exp Neurol ; 279: 178-186, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26946222

RESUMO

Brain radiotherapy is frequently used successfully to treat brain tumors. However, radiotherapy is often associated with declines in short-term and long-term memory, learning ability, and verbal fluency. We previously identified a downregulation of the brain-derived neurotrophic factor (BDNF) following cranial irradiation in experimental animals. In the present study, we investigated whether targeting the BDNF high affinity receptor, tropomysin receptor kinase B (TrkB), could mitigate radiation-induced cognitive deficits. After irradiation, chronic treatment with a small molecule TrkB agonist, 7,8-dihydroxyflavone (DHF) in mice led to enhanced activation of TrkB and its downstream targets ERK and AKT, both important factors in neuronal development. DHF treatment significantly restored spatial, contextual, and working memory, and the positive effects persisted for at least 3months after completion of the treatment. Consistent with preservation of cognitive functions, chronic DHF treatment mitigated radiation-induced suppression of hippocampal neurogenesis. Spine density and major components of the excitatory synapses, including glutamate receptors and postsynaptic density protein 95 (PSD-95), were also maintained at normal levels by DHF treatment after irradiation. Taken together, our results show that chronic treatment with DHF after irradiation significantly mitigates radiation-induced cognitive defects. This is achieved most likely by preservation of hippocampal neurogenesis and synaptic plasticity.


Assuntos
Encéfalo/efeitos da radiação , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Lesões por Radiação/tratamento farmacológico , Receptor trkB/agonistas , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Regulação para Baixo/efeitos da radiação , Flavonas/farmacologia , Hipocampo/patologia , Hipocampo/efeitos da radiação , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Neurogênese/efeitos da radiação , Plasticidade Neuronal/efeitos dos fármacos , Proteína Oncogênica v-akt/efeitos dos fármacos , Lesões por Radiação/patologia , Receptores de Glutamato/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/efeitos da radiação
7.
J Proteome Res ; 14(5): 2055-64, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25807253

RESUMO

The increased use of radiation-based medical imaging methods such as computer tomography is a matter of concern due to potential radiation-induced adverse effects. Efficient protection against such detrimental effects has not been possible due to inadequate understanding of radiation-induced alterations in signaling pathways. The aim of this study was to elucidate the molecular mechanisms behind learning and memory deficits after acute low and moderate doses of ionizing radiation. Female C57BL/6J mice were irradiated on postnatal day 10 (PND10) with gamma doses of 0.1 or 0.5 Gy. This was followed by evaluation of the cellular proteome, pathway-focused transcriptome, and neurological development/disease-focused miRNAome of hippocampus and cortex 24 h postirradiation. Our analysis showed that signaling pathways related to mitochondrial and synaptic functions were changed by acute irradiation. This may lead to reduced mitochondrial function paralleled by enhanced number of dendritic spines and neurite outgrowth due to elevated long-term potentiation, triggered by increased phosphorylated CREB. This was predominately observed in the cortex at 0.1 and 0.5 Gy and in the hippocampus only at 0.5 Gy. Moreover, a radiation-induced increase in the expression of several neural miRNAs associated with synaptic plasticity was found. The early changes in signaling pathways related to memory formation may be associated with the acute neurocognitive side effects in patients after brain radiotherapy but might also contribute to late radiation-induced cognitive injury.


Assuntos
Córtex Cerebral/efeitos da radiação , Hipocampo/efeitos da radiação , Potenciação de Longa Duração/efeitos da radiação , Memória/efeitos da radiação , Mitocôndrias/efeitos da radiação , Sinapses/efeitos da radiação , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Córtex Cerebral/fisiologia , Relação Dose-Resposta à Radiação , Feminino , Raios gama , Expressão Gênica , Hipocampo/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fosforilação , Proteoma/metabolismo , Transdução de Sinais/efeitos da radiação , Sinapses/fisiologia , Transcriptoma
8.
Radiat Res ; 183(2): 208-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25621896

RESUMO

High-energy protons constitute at least 85% of the fluence of energetic ions in interplanetary space. Although protons are only sparsely ionizing compared to higher atomic mass ions, they nevertheless significantly contribute to the delivered dose received by astronauts that can potentially affect central nervous system function at high fluence, especially during prolonged deep space missions such as to Mars. Here we report on the long-term effects of 1 Gy proton irradiation on electrophysiological properties of CA1 pyramidal neurons in the mouse hippocampus. The hippocampus is a key structure for the formation of long-term episodic memory, for spatial orientation and for information processing in a number of other cognitive tasks. CA1 pyramidal neurons form the last and critical relay point in the trisynaptic circuit of the hippocampal principal neurons through which information is processed before being transferred to other brain areas. Proper functioning of CA1 pyramidal neurons is crucial for hippocampus-dependent tasks. Using the patch-clamp technique to evaluate chronic effects of 1 Gy proton irradiation on CA1 pyramidal neurons, we found that the intrinsic membrane properties of CA1 pyramidal neurons were chronically altered at 3 months postirradiation, resulting in a hyperpolarization of the resting membrane potential (VRMP) and a decrease in input resistance (Rin). These small but significant alterations in intrinsic properties decreased the excitability of CA1 pyramidal neurons, and had a dramatic impact on network function in a computational model of the CA1 microcircuit. We also found that proton-radiation exposure upregulated the persistent Na(+) current (INaP) and increased the rate of miniature excitatory postsynaptic currents (mEPSCs). Both the INaP and the heightened rate of mEPSCs contribute to neuronal depolarization and excitation, and at least in part, could compensate for the reduced excitability resulting from the radiation effects on the VRMP and the Rin. These results show long-term alterations in the intrinsic properties of CA1 pyramidal cells after realistic, low-dose proton irradiation.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Adaptação Fisiológica/fisiologia , Adaptação Fisiológica/efeitos da radiação , Animais , Região CA1 Hipocampal/efeitos da radiação , Simulação por Computador , Relação Dose-Resposta à Radiação , Masculino , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos da radiação , Prótons , Doses de Radiação , Sinapses/efeitos da radiação , Transmissão Sináptica/efeitos da radiação , Irradiação Corporal Total
9.
J Biophotonics ; 8(6): 502-11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25196192

RESUMO

Transcranial low-level laser (light) therapy (LLLT) is a new non-invasive approach to treating a range of brain disorders including traumatic brain injury (TBI). We (and others) have shown that applying near-infrared light to the head of animals that have suffered TBI produces improvement in neurological functioning, lessens the size of the brain lesion, reduces neuroinflammation, and stimulates the formation of new neurons. In the present study we used a controlled cortical impact TBI in mice and treated the mice either once (4 h post-TBI, 1-laser), or three daily applications (3-laser) with 810 nm CW laser 36 J/cm(2) at 50 mW/cm(2). Similar to previous studies, the neurological severity score improved in laser-treated mice compared to untreated TBI mice at day 14 and continued to further improve at days 21 and 28 with 3-laser being better than 1-laser. Mice were sacrificed at days 7 and 28 and brains removed for immunofluorescence analysis. Brain-derived neurotrophic factor (BDNF) was significantly upregulated by laser treatment in the dentate gyrus of the hippocampus (DG) and the subventricular zone (SVZ) but not in the perilesional cortex (lesion) at day 7 but not at day 28. Synapsin-1 (a marker for synaptogenesis, the formation of new connections between existing neurons) was significantly upregulated in lesion and SVZ but not DG, at 28 days but not 7 days. The data suggest that the benefit of LLLT to the brain is partly mediated by stimulation of BDNF production, which may in turn encourage synaptogenesis. Moreover the pleiotropic benefits of BDNF in the brain suggest LLLT may have wider applications to neurodegenerative and psychiatric disorders. Neurological Severity Score (NSS) for TBI mice.


Assuntos
Lesões Encefálicas/radioterapia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Giro Denteado/efeitos da radiação , Ventrículos Laterais/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Sinapsinas/metabolismo , Animais , Lesões Encefálicas/fisiopatologia , Giro Denteado/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Ventrículos Laterais/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Índice de Gravidade de Doença , Sinapses/metabolismo , Sinapses/efeitos da radiação , Resultado do Tratamento
10.
Brain Struct Funct ; 220(2): 1161-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24446074

RESUMO

Cranial radiotherapy is used routinely to control the growth of primary and secondary brain tumors, but often results in serious and debilitating cognitive dysfunction. In part due to the beneficial dose depth distributions that may spare normal tissue damage, the use of protons to treat CNS and other tumor types is rapidly gaining popularity. Astronauts exposed to lower doses of protons in the space radiation environment are also at risk for developing adverse CNS complications. To explore the consequences of whole body proton irradiation, mice were subjected to 0.1 and 1 Gy and analyzed for morphometric changes in hippocampal neurons 10 and 30 days following exposure. Significant dose-dependent reductions (~33 %) in dendritic complexity were found, when dendritic length, branching and area were analyzed 30 days after exposure. At equivalent doses and times, significant reductions in the number (~30 %) and density (50-75 %) of dendritic spines along hippocampal neurons of the dentate gyrus were also observed. Immature spines (filopodia, long) exhibited the greatest sensitivity (1.5- to 3-fold) to irradiation, while more mature spines (mushroom) were more resistant to changes over a 1-month post-irradiation timeframe. Irradiated granule cell neurons spanning the subfields of the dentate gyrus showed significant and dose-responsive reductions in synaptophysin expression, while the expression of postsynaptic density protein (PSD-95) was increased significantly. These findings corroborate our past work using photon irradiation, and demonstrate for the first time, dose-responsive changes in dendritic complexity, spine density and morphology and synaptic protein levels following exposure to low-dose whole body proton irradiation.


Assuntos
Hipocampo/efeitos da radiação , Plasticidade Neuronal/efeitos da radiação , Neurônios/efeitos da radiação , Prótons , Sinapses/efeitos da radiação , Animais , Biomarcadores/metabolismo , Dendritos/patologia , Dendritos/efeitos da radiação , Proteína 4 Homóloga a Disks-Large , Relação Dose-Resposta à Radiação , Guanilato Quinases/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Sinapses/metabolismo , Sinapses/patologia , Sinaptofisina/metabolismo , Fatores de Tempo
11.
Int J Biol Macromol ; 65: 8-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24418344

RESUMO

Acetylcholinesterase (AChE) is the enzyme that controls the acetylcholine (ACh) concentrations in cholinergic synaptic clefts by hydrolyzing ACh to choline and acetate. Cholinergic synapses are involved in important functions such as learning, memory and cognition. In this study, we investigated the effects of a wide range of extremely low frequency electromagnetic fields (ELF-EMFs) on synaptic ACh concentrations through AChE enzyme activity assay. Synaptosome suspensions were prepared as a neural terminus from cerebral cortex of sheep brain. Prepared synaptosomes were exposed to ELF-EMFs with frequency ranging from 50 Hz to 230 Hz for duration between 15 and 120 min and flux intensity between 0.1 mT and 1.7 mT. Consequently, AChE activity was measured by Ellman method. Raw data were analyzed by neural network based software, Inform 4.02, to predict AChE activity pattern through nine 3D curves. These curves showed that AChE activity decreases when exposed to ELF-EMFs of 1.2 mT to 1.7 mT intensity and 50 Hz to 90 Hz frequency. Thus, it is proposed that exposure to fields of in this range of frequency-intensity would be effective in clinical treatments of cholinergic disorders to increase synaptic ACh concentration. However, more in vivo experiments are needed to develop this suggested treatment.


Assuntos
Acetilcolinesterase/metabolismo , Campos Eletromagnéticos/efeitos adversos , Sinaptossomos/enzimologia , Sinaptossomos/efeitos da radiação , Acetilcolina/metabolismo , Animais , Córtex Cerebral/citologia , Redes Neurais de Computação , Ovinos , Sinapses/metabolismo , Sinapses/efeitos da radiação
12.
Proc Natl Acad Sci U S A ; 110(36): 14777-82, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959889

RESUMO

Granule cells (GCs) are the most abundant inhibitory neuronal type in the olfactory bulb and play a critical role in olfactory processing. GCs regulate the activity of principal neurons, the mitral cells, through dendrodendritic synapses, shaping the olfactory bulb output to other brain regions. GC excitability is regulated precisely by intrinsic and extrinsic inputs, and this regulation is fundamental for odor discrimination. Here, we used channelrhodopsin to stimulate GABAergic axons from the basal forebrain selectively and show that this stimulation generates reliable inhibitory responses in GCs. Furthermore, selective in vivo inhibition of GABAergic neurons in the basal forebrain by targeted expression of designer receptors exclusively activated by designer drugs produced a reversible impairment in the discrimination of structurally similar odors, indicating an important role of these inhibitory afferents in olfactory processing.


Assuntos
Discriminação Psicológica/fisiologia , Neurônios/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Percepção Olfatória/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Axônios/metabolismo , Axônios/fisiologia , Channelrhodopsins , Dependovirus/genética , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Neurônios/metabolismo , Bulbo Olfatório/citologia , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Sinapses/efeitos da radiação , Tetrodotoxina/farmacologia
13.
Artigo em Chinês | MEDLINE | ID: mdl-23755791

RESUMO

OBJECTIVE: To investigate the effects on ribbon synapse of inner hair cells after superpulsed CO2 laser-assisted cochleostomy in SD rats. METHODS: Eighteen SD rats were randomly divided into laser-assisted surgery groups (2 W group and 5 W group), sham-operated group and control group. Ten of those were performed a cochleostomy using superpulsed CO2 laser with a corresponding power. Auditory brainstem responses (ABR) were measured pre-and postoperatively. The ribbon synapses at apical and middle cochlear turns were observed under laser scanning confocal microscope and then were quantified with 3ds Max software. RESULTS: The postoperative ABR thresholds of the 2 W and 5 W groups were larger than the preoperative case (t = -5.65, P < 0.01; t = -4.97, P < 0.01). The synapse number at the middle turn decreased significantly in 5 W group (F = 17.15, P < 0.01), while no significant changes were noted at the apical turn (P > 0.05). There was no statistical difference in 2 W group (P > 0.05). CONCLUSIONS: The superpulsed CO2 laser-assisted cochleostomy with high-power is accompanied by a synaptic injury, while no obvious effects after the low-power laser surgery, which might be a safe strategy to preform cochleostomy.


Assuntos
Cóclea/cirurgia , Células Ciliadas Auditivas Internas/efeitos da radiação , Lasers de Gás/efeitos adversos , Sinapses/efeitos da radiação , Animais , Terapia a Laser , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
14.
Epilepsia ; 53(5): 850-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22417090

RESUMO

PURPOSE: Memory impairment is a common comorbidity in people with epilepsy-associated malformations of cortical development. We studied spatial memory performance and hippocampal synaptic plasticity in an animal model of cortical dysplasia. METHODS: Embryonic day 17 rats were exposed to 2.25 Gy external radiation. One-month-old rats were tested for spatial recognition memory. After behavioral testing, short-term and long-term synaptic plasticity in the hippocampal CA1 region was studied in an in vitro slice preparation. KEY FINDINGS: Behavioral assessments showed impaired hippocampal CA1-dependent spatial recognition memory in irradiated rats. Neurophysiologic assessments showed that baseline synaptic transmission was significantly enhanced, whereas paired-pulse facilitation, long-term potentiation, and long-term depression of the field excitatory postsynaptic potential (fEPSP) slope at Schaffer collateral/commissural fiber-CA1 synapses were significantly reduced in the irradiated rats. Histologic observations showed dysplastic cortex and dispersed hippocampal pyramidal neurons. SIGNIFICANCE: This study has shown that prenatally irradiated rats with cortical dysplasia exhibit a severe impairment of spatial recognition memory accompanied by disrupted short-term and long-term synaptic plasticity and may help to guide development of potential therapeutic interventions for this important problem.


Assuntos
Hipocampo/patologia , Hipocampo/fisiopatologia , Malformações do Desenvolvimento Cortical/complicações , Transtornos da Memória/etiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Biofísica , Irradiação Craniana/efeitos adversos , Modelos Animais de Doenças , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Feminino , Técnicas In Vitro , Malformações do Desenvolvimento Cortical/etiologia , Malformações do Desenvolvimento Cortical/patologia , Plasticidade Neuronal/efeitos da radiação , Técnicas de Patch-Clamp , Gravidez , Ratos Sprague-Dawley , Sinapses/efeitos da radiação
15.
Radiat Res ; 173(3): 342-52, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20199219

RESUMO

Abstract An unavoidable complication of space travel is exposure to high-charge, high-energy (HZE) particles. In animal studies, exposure of the CNS to HZE-particle radiation leads to neurological alterations similar to those seen in aging or Alzheimer's disease. In this study we examined whether HZE-particle radiation accelerated the age-related neuronal dysfunction that was previously described in transgenic mice overexpressing human amyloid precursor protein (APP). These APP23 transgenic mice exhibit age-related behavioral abnormalities and deficits in synaptic transmission. We exposed 7-week-old APP23 transgenic males to brain-only (56)Fe-particle radiation (600 MeV/nucleon; 1, 2, 4 Gy) and recorded synaptic transmission in hippocampal slices at 2, 6, 9, 14 and 18-24 months. We stimulated Schaeffer collaterals and recorded field excitatory postsynaptic potentials (fEPSP) and population spikes (PS) in CA1 neurons. Radiation accelerated the onset of age-related fEPSP decrements recorded at the PS threshold from 14 months of age to 9 months and reduced synaptic efficacy. At 9 months, radiation also reduced PS amplitudes. At 6 months, we observed a temporary deficit in paired-pulse inhibition of the PS at 2 Gy. Radiation did not significantly affect survival of APP23 transgenic mice. We conclude that irradiation of the brain with HZE particles accelerates Alzheimer's disease-related neurological deficits.


Assuntos
Fenômenos Eletrofisiológicos/efeitos da radiação , Hipocampo/fisiopatologia , Hipocampo/efeitos da radiação , Ferro/efeitos adversos , Lesões Experimentais por Radiação/fisiopatologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Neurônios/efeitos da radiação , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/patologia , Radiação Ionizante , Análise de Sobrevida , Sinapses/fisiologia , Sinapses/efeitos da radiação
16.
Neurosci Behav Physiol ; 39(2): 217-21, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19140007

RESUMO

Changes in contacts between neurons in the internal reticular layer of the retina were studied in white rats 7 and 30 days after exposure to high-intensity light. Osmium preparations on day 7 demonstrated synapse destruction, predominantly of the "light" type of. Contrasting with phosphotungstic acid was used to study juxtamembrane formations of the system of subsynaptic units, i.e., dense projections and postsynaptic thickenings of synapses. The action of light was found to induce destructive changes in synapses, with decreases in the number density of synapses due to functionally active asymmetric contacts. On day 30 after light-induced damage, there was a significant increase in the number density of symmetrical contacts and a decrease in the content of asymmetric mature synapses. Courses of ascovertin and carovertin before and after exposure to light produced different degrees of restriction of synapse destruction and activated repair mechanisms mediated by hypertrophy and neosynaptogenesis. Carovertene had the greater effect.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Luz/efeitos adversos , Quercetina/análogos & derivados , Quinoxalinas/uso terapêutico , Retina/efeitos dos fármacos , Retina/patologia , Retina/efeitos da radiação , Sinapses/efeitos dos fármacos , Sinapses/patologia , Sinapses/efeitos da radiação , Administração Oral , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Masculino , Quercetina/administração & dosagem , Quercetina/farmacologia , Quercetina/uso terapêutico , Quinoxalinas/administração & dosagem , Quinoxalinas/farmacologia , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/patologia , Ratos , Resultado do Tratamento
17.
Morfologiia ; 133(1): 46-50, 2008.
Artigo em Russo | MEDLINE | ID: mdl-19069415

RESUMO

The changes of interneuronal contacts in the internal reticular layer of albino rat retina were studied 7 and 30 days after the exposure to high intensity light (6000 Lux for 6 h). In osmicated preparations, the "light" type of synapse destruction was predominant 7 days after the light-induced damage. Using the contrasting by phosphotungstic acid, paramembrane structures of the system of subsynaptic units--dense projections and postsynaptic condensations of synapses--were studied. It was found that the exposure to high intensity light resulted in the destructive changes of synapses and the decrease of their numeral density at the expense of the actively functioning symmetric contacts. 30 days after the light-induced damage, the numeral density of symmetric contacts was significantly increased, while the content of symmetric mature synapses was decreased. Course administration of ascovertine and carovertine before and after the exposure to light was found to have a differential effect on limiting the destruction of the synapses and on the activation of the repair mechanisms which are realized due to the hypertrophy and neosynaptogenesis. The highest effect was found after carovertine administration.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Luz/efeitos adversos , Quercetina/análogos & derivados , Quinoxalinas/uso terapêutico , Retina , Sinapses , Administração Oral , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Masculino , Quercetina/administração & dosagem , Quercetina/farmacologia , Quercetina/uso terapêutico , Quinoxalinas/administração & dosagem , Quinoxalinas/farmacologia , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/patologia , Ratos , Retina/efeitos dos fármacos , Retina/patologia , Retina/efeitos da radiação , Sinapses/efeitos dos fármacos , Sinapses/patologia , Sinapses/efeitos da radiação , Resultado do Tratamento
18.
J Integr Neurosci ; 7(2): 249-70, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18763723
19.
J Neurophysiol ; 100(5): 2549-63, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18768645

RESUMO

Deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) is an effective therapy option for controlling the motor symptoms of medication-refractory Parkinson's disease and dystonia. Despite the clinical successes of GPi DBS, the precise therapeutic mechanisms are unclear and questions remain on the optimal electrode placement and stimulation parameter selection strategies. In this study, we developed a three-dimensional computational model of GPi-DBS in nonhuman primates to investigate how membrane channel dynamics, synaptic inputs, and axonal collateralization contribute to the neural responses generated during stimulation. We focused our analysis on three general neural elements that surround GPi-DBS electrodes: GPi somatodendritic segments, GPi efferent axons, and globus pallidus pars externa (GPe) fibers of passage. During high-frequency electrical stimulation (136 Hz), somatic activity in the GPi showed interpulse excitatory phases at 1-3 and 4-5.5 ms. When including stimulation-induced GABA(A) and AMPA receptor dynamics into the model, the somatic firing patterns continued to be entrained to the stimulation, but the overall firing rate was reduced (78.7 to 25.0 Hz, P < 0.001). In contrast, axonal output from GPi neurons remained largely time-locked to each pulse of the stimulation train. Similar entrainment was also observed in GPe efferents, a majority of which have been shown to project through GPi en route to the subthalamic nucleus. The models suggest that pallidal DBS may have broader network effects than previously realized and the modes of therapy may depend on the relative proportion of GPi and/or GPe efferents that are directly affected by the stimulation.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/citologia , Modelos Neurológicos , Inibição Neural/fisiologia , Neurônios/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Análise de Variância , Animais , Simulação por Computador , Dopaminérgicos/farmacologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/farmacologia , Globo Pálido/fisiologia , Globo Pálido/efeitos da radiação , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Ativação do Canal Iônico/efeitos da radiação , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Inibição Neural/efeitos da radiação , Neurônios/efeitos da radiação , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Sinapses/efeitos da radiação , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
20.
J Neurosci Methods ; 173(1): 20-6, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18579213

RESUMO

Synapses are individually operated, computational units for neural communication. To manipulate physically individual synapses in a living organism, we have developed a laser ablation technique for removing single synapses in live neurons in C. elegans that operates without apparent damage to the axon. As a complementary technique, we applied microfluidic immobilization of C. elegans to facilitate long-term fluorescence imaging and observation of neuronal development. With this technique, we directly demonstrated the existence of competition between developing synapses in the HSNL motor neuron.


Assuntos
Caenorhabditis elegans/citologia , Diagnóstico por Imagem/métodos , Neurônios/citologia , Sinapses/fisiologia , Sinapses/efeitos da radiação , Animais , Axônios/fisiologia , Comportamento Animal , Caenorhabditis elegans/fisiologia , Terapia a Laser/métodos , Técnicas Analíticas Microfluídicas/métodos , Movimento/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA