Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 9(11): 1137, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429451

RESUMO

Glucocorticoid, a major risk factor of Alzheimer's disease (AD), is widely known to promote microtubule dysfunction recognized as the early pathological feature that culminates in memory deficits. However, the exact glucocorticoid receptor (GR)-mediated mechanism of how glucocorticoid triggers microtubule destabilization and following intracellular transport deficits remains elusive. Therefore, we investigated the effect of glucocorticoid on microtubule instability and cognitive impairment using male ICR mice and human neuroblastoma SH-SY5Y cells. The mice group that was exposed to corticosteroid, the major glucocorticoid form of rodents, showed reduced trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) 1/2 and mitochondria, which are necessary for memory establishment, into the synapse due to microtubule destabilization. In SH-SY5Y cells, cortisol, the major glucocorticoid form of humans, also decreased microtubule stability represented by reduced acetylated α-tubulin to tyrosinated α-tubulin ratio (A/T ratio), depending on the mitochondria GR-mediated pathway. Cortisol translocated the Hsp70-bound GR into mitochondria which thereafter promoted GR-Bcl-2 interaction. Increased ER-mitochondria connectivity via GR-Bcl-2 coupling led to mitochondrial Ca2+ influx, which triggered mTOR activation. Subsequent autophagy inhibition by mTOR phosphorylation increased SCG10 protein levels via reducing ubiquitination of SCG10, eventually inducing microtubule destabilization. Thus, failure of trafficking AMPAR1/2 and mitochondria into the cell terminus occurred by kinesin-1 detachment from microtubules, which is responsible for transporting organelles towards periphery. However, the mice exposed to pretreatment of microtubule stabilizer paclitaxel showed the restored translocation of AMPAR1/2 or mitochondria into synapses and improved memory function compared to corticosterone-treated mice. In conclusion, glucocorticoid enhances ER-mitochondria coupling which evokes elevated SCG10 and microtubule destabilization dependent on mitochondrial GR. This eventually leads to memory impairment through failure of AMPAR1/2 or mitochondria transport into cell periphery.


Assuntos
Corticosterona/administração & dosagem , Retículo Endoplasmático/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de AMPA/genética , Animais , Transporte Biológico , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Injeções Intraperitoneais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Neurônios/metabolismo , Neurônios/ultraestrutura , Paclitaxel/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de AMPA/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sirolimo/administração & dosagem , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
2.
Acta Neuropathol Commun ; 6(1): 103, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30270813

RESUMO

Chemotherapy-induced cognitive impairment (CICI) is a commonly reported neurotoxic side effect of chemotherapy, occurring in up to 75% cancer patients. CICI manifests as decrements in working memory, executive functioning, attention, and processing speed, and greatly interferes with patients' daily performance and quality of life. Currently no treatment for CICI has been approved by the US Food and Drug Administration. We show here that treatment with a brain-penetrating histone deacetylase 6 (HDAC6) inhibitor for two weeks was sufficient to fully reverse cisplatin-induced cognitive impairments in male mice, as demonstrated in the Y-maze test of spontaneous alternation, the novel object/place recognition test, and the puzzle box test. Normalization of cognitive impairment was associated with reversal of cisplatin-induced synaptosomal mitochondrial deficits and restoration of synaptic integrity. Mechanistically, cisplatin induced deacetylation of the microtubule protein α-tubulin and hyperphosphorylation of the microtubule-associated protein tau. These cisplatin-induced changes were reversed by HDAC6 inhibition. Our data suggest that inhibition of HDAC6 restores microtubule stability and reverses tau phosphorylation, leading to normalization of synaptosomal mitochondrial function and synaptic integrity and thereby to reversal of CICI. Remarkably, our results indicate that short-term daily treatment with the HDAC6 inhibitor was sufficient to achieve prolonged reversal of established behavioral, structural and functional deficits induced by cisplatin. Because the beneficial effects of HDAC6 inhibitors as add-ons to cancer treatment have been demonstrated in clinical trials, selective targeting of HDAC6 with brain-penetrating inhibitors appears a promising therapeutic approach for reversing chemotherapy-induced neurotoxicity while enhancing tumor control.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Disfunção Cognitiva , Inibidores Enzimáticos/uso terapêutico , Desacetilase 6 de Histona/metabolismo , Tauopatias/enzimologia , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/enzimologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/sangue , Proteínas de Fluorescência Verde/metabolismo , Desacetilase 6 de Histona/ultraestrutura , Ácidos Hidroxâmicos/sangue , Ácidos Hidroxâmicos/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Pirimidinas/sangue , Pirimidinas/uso terapêutico , Proteínas Recombinantes de Fusão/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/patologia , Sinaptossomos/ultraestrutura , Tauopatias/induzido quimicamente , Tauopatias/tratamento farmacológico , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo
3.
Mol Neurobiol ; 55(12): 9220-9233, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29656361

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characterized by muscle wasting, weakness, and spasticity due to a progressive degeneration of cortical, brainstem, and spinal motor neurons. The etiopathological causes are still largely obscure, although astrocytes definitely play a role in neuronal damage. Several mechanisms have been proposed to concur to neurodegeneration in ALS, including mitochondrial dysfunction. We have previously shown profound modifications of glutamate release and presynaptic plasticity in the spinal cord of the SOD1G93A mouse model of ALS. In this work, we characterized, for the first time, the aerobic metabolism in two specific compartments actively involved in neurotransmission (i.e. the presynaptic district, using purified synaptosomes, and the perisynaptic astrocyte processes, using purified gliosomes) in SOD1G93A mice at different stages of the disease. ATP/AMP ratio was lower in synaptosomes isolated from the spinal cord, but not from other brain areas, of SOD1G93A vs. control mice. The energy impairment was linked to altered oxidative phosphorylation (OxPhos) and increment of lipid peroxidation. These metabolic dysfunctions were present during disease progression, starting at the very pre-symptomatic stages, and did not depend on a different number of mitochondria or a different expression of OxPhos proteins. Conversely, gliosomes showed a reduction of the ATP/AMP ratio only at the late stages of the disease and an increment of oxidative stress also in the absence of a significant decrement in OxPhos activity. Data suggest that the presynaptic neuronal moiety plays a pivotal role for synaptic energy metabolism dysfunctions in ALS. Changes in the perisynaptic compartment seem subordinated to neuronal damage.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Mitocôndrias/metabolismo , Superóxido Dismutase-1/metabolismo , Sinapses/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Peroxidação de Lipídeos , Camundongos , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Neuroglia/metabolismo , Consumo de Oxigênio , Medula Espinal/metabolismo , Sinapses/ultraestrutura , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
4.
Mol Neurobiol ; 55(5): 4253-4266, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28620701

RESUMO

Chronic cerebral hypoperfusion (CCH) evokes mild cognitive impairment (MCI) and contributes to the progression of vascular dementia and Alzheimer's disease (AD). How CCH induces these neurodegenerative processes that may spread along the synaptic network and whether they are detectable at the synaptic proteome level of the cerebral cortex remains to be established. In the present study, we report the synaptic protein changes in the cerebral cortex after stepwise bilateral common carotid artery occlusion (BCCAO) induced CCH in the rat. The occlusions were confirmed with magnetic resonance angiography 5 weeks after the surgery. Synaptosome fractions were prepared using sucrose gradient centrifugation from cerebral cortex dissected 7 weeks after the occlusion. The synaptic protein differences between the sham operated and CCH groups were analyzed with label-free nanoUHPLC-MS/MS. We identified 46 proteins showing altered abundance due to CCH. In particular, synaptic protein and lipid metabolism, as well as GABA shunt-related proteins showed increased while neurotransmission and synaptic assembly-related proteins showed decreased protein level changes in CCH rats. Protein network analysis of CCH-induced protein alterations suggested the importance of increased synaptic apolipoprotein E (APOE) level as a consequence of CCH. Therefore, the change in APOE level was confirmed with Western blotting. The identified synaptic protein changes would precede the onset of dementia-like symptoms in the CCH model, suggesting their importance in the development of vascular dementia.


Assuntos
Córtex Cerebral/metabolismo , Circulação Cerebrovascular , Proteoma/metabolismo , Sinapses/metabolismo , Animais , Apolipoproteínas E/metabolismo , Córtex Cerebral/diagnóstico por imagem , Angiografia por Ressonância Magnética , Masculino , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar , Reprodutibilidade dos Testes , Sinapses/ultraestrutura , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 19(5): 576-582, 2017 May.
Artigo em Chinês | MEDLINE | ID: mdl-28506353

RESUMO

OBJECTIVE: To study the effect of baicalin on synaptosomal adenosine triphosphatase (ATPase) and lactate dehydrogenase (LDH) and its regulatory effect on the adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway in rats with attention deficit hyperactivity disorder (ADHD). METHODS: A total of 40 SHR rats were randomly divided into five groups: ADHD model, methylphenidate hydrochloride treatment (0.07 mg/mL), and low-dose (3.33 mg/mL), medium-dose (6.67 mg/mL), and high-dose (10 mg/mL) baicalin treatment (n=8 each). Eight WKY rats were selected as normal control group. Percoll density gradient centrifugation was used to prepare brain synaptosomes and an electron microscope was used to observe their structure. Colorimetry was used to measure the activities of ATPase and LDH in synaptosomes. ELISA was used to measure the content of AC, cAMP, and PKA. RESULTS: Compared with the normal control group, the ADHD model group had a significant reduction in the ATPase activity, a significant increase in the LDH activity, and significant reductions in the content of AC, cAMP, and PKA (P<0.05). Compared with the ADHD model group, the methylphenidate hydrochloride group and the medium- and high-dose baicalin groups had a significant increase in the ATPase activity (P<0.05), a significant reduction in the LDH activity (P<0.05), and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the methylphenidate hydrochloride group, the high-dose baicalin group had significantly greater changes in these indices (P<0.05). Compared with the low-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05); the medium- and high-dose baicalin groups had a significant reduction in the LDH activity (P<0.05) and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the medium-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05). CONCLUSIONS: Both methylphenidate hydrochloride and baicalin can improve synaptosomal ATPase and LDH activities in rats with ADHD. The effect of baicalin is dose-dependent, and high-dose baicalin has a significantly greater effect than methylphenidate hydrochloride. Baicalin exerts its therapeutic effect possibly by upregulating the AC/cAMP/PKA signaling pathway.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenilil Ciclases/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/fisiologia , Flavonoides/farmacologia , L-Lactato Desidrogenase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Flavonoides/uso terapêutico , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sinaptossomos/química , Sinaptossomos/ultraestrutura
6.
J Neuroinflammation ; 14(1): 25, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143498

RESUMO

BACKGROUND: The mammalian target of rapamycin (mTOR) is a kinase involved in a variety of physiological and pathological functions. However, the exact role of mTOR in excitotoxicity is poorly understood. Here, we investigated the effects of mTOR inhibition with rapamycin against neurodegeneration, and motor impairment, as well as inflammatory profile caused by an excitotoxic stimulus. METHODS: A single and unilateral striatal injection of quinolinic acid (QA) was used to induce excitotoxicity in mice. Rapamycin (250 nL of 0.2, 2, or 20 µM; intrastriatal route) was administered 15 min before QA injection. Forty-eight hours after QA administration, rotarod test was performed to evaluate motor coordination and balance. Fluoro-Jade C, Iba-1, and GFAP staining were used to evaluate neuronal cell death, microglia morphology, and astrocytes density, respectively, at this time point. Levels of cytokines and neurotrophic factors were measured by ELISA and Cytometric Bead Array 8 h after QA injection. Striatal synaptosomes were used to evaluate the release of glutamate. RESULTS: We first demonstrated that rapamycin prevented the motor impairment induced by QA. Moreover, mTOR inhibition also reduced the neurodegeneration and the production of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α induced by excitotoxic stimulus. The lowest dose of rapamycin also increased the production of IL-10 and prevented the reduction of astrocyte density induced by QA. By using an in vitro approach, we demonstrated that rapamycin differently alters the release of glutamate from striatal synaptosomes induced by QA, reducing or enhancing the release of this neurotransmitter at low or high concentrations, respectively. CONCLUSION: Taken together, these data demonstrated a protective effect of rapamycin against an excitotoxic stimulus. Therefore, this study provides new evidence of the detrimental role of mTOR in neurodegeneration, which might represent an important target for the treatment of neurodegenerative diseases.


Assuntos
Corpo Estriado/efeitos dos fármacos , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Ácido Quinolínico/toxicidade , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Corpo Estriado/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/etiologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/complicações , Equilíbrio Postural/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
7.
Neurotoxicology ; 57: 241-250, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27746125

RESUMO

The present study aimed to investigate the effects of berberine (BRB) on spatial and learning memory, anxiety, acetylcholinesterase activity and cell death in an experimental model of intracerebroventricular streptozotocin (ICV-STZ) induced sporadic Alzheimer's-like dementia. Sixty male Wistar rats were randomly divided into six groups: control (CTR), BRB 50mg/kg (BRB 50), BRB 100mg/kg (BRB 100), streptozotocin (STZ), streptozotocin plus BRB 50mg/kg (STZ+BRB 50), and streptozotocin plus BRB 100mg/kg (STZ+BRB 100). Rats were injected with ICV-STZ (3mg/kg) or saline, and daily oral BRB treatment began on day 4 for a period of 21days. Behavioral tests were carried out on day 17, and rats were euthanized on day 24. Cell death analysis and determination of acetylcholinesterase activity was performed on the cerebral cortex and hippocampus of the brain. Administration of BRB prevented the memory loss, anxiogenic behavior, increased acetylcholinesterase activity and cell death induced by ICV-STZ. This may be explained, in part, by a protective effect of BRB on ameliorating the progression of neurodegenerative diseases, including Alzheimer's disease, and the results of this study provide a better understanding of the effect of BRB on the brain. Thus, BRB may act as a potential neuroprotective agent.


Assuntos
Doença de Alzheimer/complicações , Ansiedade/tratamento farmacológico , Berberina/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Animais , Antibióticos Antineoplásicos/administração & dosagem , Ansiedade/etiologia , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Ratos , Ratos Wistar , Estreptozocina/administração & dosagem , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/ultraestrutura
8.
J Neuroimmunol ; 297: 98-102, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27397082

RESUMO

We aimed to identify new cell-membrane antigens implicated in opsoclonus-myoclonus with neuroblastoma. The sera of 3 out of 14 patients showed IgG electron-microscopy immunogold reactivity on SH-SY5Y neuroblastoma cells. Immunoprecipitation experiments using rat brain synaptosomes and SH-SY5Y cells led to the identification of: (1) thirty-one nuclear/cytoplasmic proteins (including antigens HuB, HuC); (2) seven neuronal membrane proteins, including the Shaw-potassium channel Kv3.3 (KCNC3), whose genetic disruption in mice causes ataxia and generalized muscle twitching. Although cell-based assays did not demonstrate direct antigenicity, our findings point to Shaw-related subfamily of the potassium voltage-gated channels complexed proteins as hypothetical antigenic targets.


Assuntos
Neoplasias Encefálicas , Sistema Nervoso Central/metabolismo , Neuroblastoma , Síndrome de Opsoclonia-Mioclonia , Animais , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Sistema Nervoso Central/ultraestrutura , Criança , Bases de Dados Factuais/estatística & dados numéricos , Encefalite/complicações , Encefalite/imunologia , Feminino , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , Neuroblastoma/complicações , Neuroblastoma/imunologia , Neuroblastoma/patologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Síndrome de Opsoclonia-Mioclonia/complicações , Síndrome de Opsoclonia-Mioclonia/imunologia , Síndrome de Opsoclonia-Mioclonia/patologia , Ratos , Ratos Wistar , Canais de Potássio Shaw/imunologia , Canais de Potássio Shaw/metabolismo , Canais de Potássio Shaw/ultraestrutura , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Timoma/complicações
9.
PLoS One ; 10(4): e0125185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25928229

RESUMO

Synaptic neurotransmission is known to be an energy demanding process. At the presynapse, ATP is required for loading neurotransmitters into synaptic vesicles, for priming synaptic vesicles before release, and as a substrate for various kinases and ATPases. Although it is assumed that presynaptic sites usually harbor local mitochondria, which may serve as energy powerhouse to generate ATP as well as a presynaptic calcium depot, a clear role of presynaptic mitochondria in biochemical functioning of the presynapse is not well-defined. Besides a few synaptic subtypes like the mossy fibers and the Calyx of Held, most central presynaptic sites are either en passant or tiny axonal terminals that have little space to accommodate a large mitochondrion. Here, we have used imaging studies to demonstrate that mitochondrial antigens poorly co-localize with the synaptic vesicle clusters and active zone marker in the cerebral cortex, hippocampus and the cerebellum. Confocal imaging analysis on neuronal cultures revealed that most neuronal mitochondria are either somatic or distributed in the proximal part of major dendrites. A large number of synapses in culture are devoid of any mitochondria. Electron micrographs from neuronal cultures further confirm our finding that the majority of presynapses may not harbor resident mitochondria. We corroborated our ultrastructural findings using serial block face scanning electron microscopy (SBFSEM) and found that more than 60% of the presynaptic terminals lacked discernible mitochondria in the wild-type mice hippocampus. Biochemical fractionation of crude synaptosomes into mitochondria and pure synaptosomes also revealed a sparse presence of mitochondrial antigen at the presynaptic boutons. Despite a low abundance of mitochondria, the synaptosomal membranes were found to be highly enriched in ATP suggesting that the presynapse may possess alternative mechanism/s for concentrating ATP for its function. The potential mechanisms including local glycolysis and the possible roles of ATP-binding synaptic proteins such as synapsins, are discussed.


Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Mitocôndrias/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
10.
Neurochem Res ; 40(4): 629-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25577979

RESUMO

Glutamate is an excitatory neurotransmitter that is released by the majority of central nervous system synapses and is involved in developmental processes, cognitive functions, learning and memory. Excessive elevated concentrations of Glu in synaptic cleft results in neural cell apoptosis which is called excitotoxicity causing neurodegenerative diseases. Hence, we investigated the possibility of extremely low frequency electromagnetic fields (ELF-EMF) as a risk factor which is able to change Glu concentration in synaptic clef. Synaptosomes as a model of nervous terminal were exposed to ELF-EMF for 15-55 min in flux intensity range from 0.1 to 2 mT and frequency range from 50 to 230 Hz. Finally, all raw data by INForm v4.02 software as an artificial neural network program was analyzed to predict the effect of whole mentioned range spectra. The results showed the tolerance of all effects between the ranges from -35 to +40 % compared to normal state when glutamatergic systems exposed to ELF-EMF. It indicates that glutamatergic system attempts to compensate environmental changes though release or reuptake in order to keep the system safe. Regarding to the wide range of ELF-EMF acquired in this study, the obtained outcomes have potential for developing treatments based on ELF-EMF for some neurological diseases; however, in vivo experiments on the cross linking responses between glutamatergic and cholinergic systems in the presence of ELF-EMF would be needed.


Assuntos
Campos Eletromagnéticos , Ácido Glutâmico/metabolismo , Redes Neurais de Computação , Sinaptossomos/metabolismo , Animais , Microscopia Eletrônica de Transmissão , Ratos Wistar , Sinaptossomos/ultraestrutura
11.
Int J Neuropsychopharmacol ; 17(11): 1863-79, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24810422

RESUMO

Elderly females, particularly those carrying the apolipoprotein E (ApoE)-ε4 allele, have a higher risk of developing Alzheimer's disease (AD). However, the underlying mechanism for this increased susceptibility remains unclear. In this study, we investigated the effects of the ApoE genotype and gender on the proteome of synaptosomes. We isolated synaptosomes and used label-free quantitative proteomics, to report, for the first time, that the synaptosomal proteomic profiles in the cortex of female human-ApoE4 mice exhibited significantly reduced expression of proteins related to energy metabolism, which was accompanied by increased levels of oxidative stress. In addition, we also first demonstrated that the proteomic response in synaptic termini was more susceptible than that in the soma to the adverse effects induced by genders and genotypes. This suggests that synaptic mitochondria might be 'older' than mitochondria in the soma of neurons; therefore, they might contain increased cumulative damage from oxidative stress. Furthermore, female human-ApoE4 mice had much lower oestrogen levels in the cortex and treatment with oestrogen protected ApoE3 stable transfected C6 neurons from oxidative stress. Overall, this study reveals complex ApoE- and gender-dependent effects on synaptic function and also provides a basis for future studies of candidates based on specific pathways involved in the pathogenesis of AD. The lack of oestrogen-mediated protection regulated by the ApoE genotype led to synaptic mitochondrial dysfunction and increased oxidative stress, which might make older females more susceptible to AD.


Assuntos
Apolipoproteínas E/genética , Córtex Cerebral/ultraestrutura , Estresse Oxidativo/genética , Proteoma/metabolismo , Caracteres Sexuais , Sinaptossomos/metabolismo , Animais , Moléculas de Adesão Celular Neurônio-Glia/metabolismo , Estrogênios/farmacologia , Feminino , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Masculino , Malondialdeído/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Proteômica/métodos , Sinaptossomos/ultraestrutura
12.
J Mol Neurosci ; 49(1): 223-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22772899

RESUMO

Synaptic plasticity in many regions of the central nervous system leads to the continuous adjustment of synaptic strength, which is essential for learning and memory. In this study, we show by visualizing synaptic vesicle release in mouse hippocampal synaptosomes that presynaptic mitochondria and, specifically, their capacities for ATP production are essential determinants of synaptic vesicle exocytosis and its magnitude. Total internal reflection microscopy of FM1-43 loaded hippocampal synaptosomes showed that inhibition of mitochondrial oxidative phosphorylation reduces evoked synaptic release. This reduction was accompanied by a substantial drop in synaptosomal ATP levels. However, cytosolic calcium influx was not affected. Structural characterization of stimulated hippocampal synaptosomes revealed that higher total presynaptic mitochondrial volumes were consistently associated with higher levels of exocytosis. Thus, synaptic vesicle release is linked to the presynaptic ability to regenerate ATP, which itself is a utility of mitochondrial density and activity.


Assuntos
Exocitose , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptossomos/ultraestrutura , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Citosol/metabolismo , Hipocampo/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Sinaptossomos/metabolismo
13.
J Neurochem ; 124(4): 478-89, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23173741

RESUMO

Heterozygosity for missense mutations in Seipin, namely N88S and S90L, leads to a broad spectrum of motor neuropathy, while a number of loss-of-function mutations in Seipin are associated with the Berardinelli-Seip congenital generalized lipodystrophy type 2 (CGL2, BSCL2), a condition that is characterized by severe lipoatrophy, insulin resistance, and intellectual impairment. The mechanisms by which Seipin mutations lead to motor neuropathy, lipodystrophy, and insulin resistance, and the role Seipin plays in central nervous system (CNS) remain unknown. The goal of this study is to understand the functions of Seipin in the CNS using a loss-of-function approach, i.e. by knockdown (KD) of Seipin gene expression. Excitatory post-synaptic currents (EPSCs) were impaired in Seipin-KD neurons, while the inhibitory post-synaptic currents (IPSCs) remained unaffected. Expression of a shRNA-resistant human Seipin rescued the impairment of EPSC produced by Seipin KD. Furthermore, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced whole-cell currents were significantly reduced in Seipin KD neurons, which could be rescued by expression of a shRNA-resistant human Seipin. Fluorescent imaging and biochemical studies revealed reduced level of surface AMPA receptors, while no obvious ultrastructural changes in the pre-synapse were found. These data suggest that Seipin regulates excitatory synaptic function through a post-synaptic mechanism.


Assuntos
Córtex Cerebral/citologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Mutação de Sentido Incorreto/genética , Neurônios/fisiologia , Transmissão Sináptica/genética , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Biotinilação , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Subunidades gama da Proteína de Ligação ao GTP , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Imunoprecipitação , Lipodistrofia Generalizada Congênita , Camundongos , Microscopia Eletrônica de Transmissão , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Sinaptofisina/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
14.
Endocrinology ; 153(6): 2562-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22508515

RESUMO

Estrogens affect a diversity of peripheral and central physiological endpoints. Traditionally, estrogens were thought to be peripherally derived transcription regulators (i.e. slow acting). More recently, we have learned that estrogens are also synthesized in neuronal cell bodies and synaptic terminals and have potent membrane effects, which modulate brain function. However, the mechanisms that control local steroid concentrations in a temporal and spatial resolution compatible with their acute actions are poorly understood. Here, using differential centrifugation followed by enzymatic assay, we provide evidence that estrogen synthesis within synaptosomes can be modulated more dramatically by phosphorylating conditions, relative to microsomes. This is the first demonstration of a rapid mechanism that may alter steroid concentrations within the synapse and may represent a potential mechanism for the acute control of neurophysiology and behavior.


Assuntos
Encéfalo/metabolismo , Estrogênios/biossíntese , Sinapses/metabolismo , Sinaptossomos/metabolismo , Animais , Aromatase/metabolismo , Proteínas Aviárias/metabolismo , Encéfalo/enzimologia , Feminino , Tentilhões , Masculino , Microscopia Eletrônica , Sinapses/enzimologia , Sinaptossomos/enzimologia , Sinaptossomos/ultraestrutura , Telencéfalo/enzimologia , Telencéfalo/metabolismo
15.
J Neurochem ; 119(6): 1253-61, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21985402

RESUMO

Mitochondria are key contributors to many forms of cell death including those resulting from neonatal hypoxic-ischemic brain injury. Mice have become increasingly popular in studies of brain injury, but there are few reports evaluating mitochondrial isolation procedures for the neonatal mouse brain. Using evaluation of respiratory activity, marker enzymes, western blotting and electron microscopy, we have compared a previously published procedure for isolating mitochondria from neonatal mouse brain (method A) with procedures adapted from those for adult rats (method B) and neonatal rats (method C). All three procedures use Percoll density gradient centrifugation as a key step in the isolation but differ in many aspects of the fractionation procedure and the solutions used during fractionation. Methods A and B both produced highly enriched fractions of well-coupled mitochondria with high rates of respiratory activity. The fraction from method C exhibited less preservation of respiratory properties and was more contaminated with other subcellular components. Method A offers the advantage of being more rapid and producing larger mitochondrial yields making it useful for routine applications. However, method B produced mitochondria that were less contaminated with synaptosomes and associated cytosolic components that suits studies that have a requirement for higher mitochondrial purification.


Assuntos
Encéfalo/ultraestrutura , Mitocôndrias/ultraestrutura , Difosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , L-Lactato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
16.
Biol Psychiatry ; 70(2): 159-68, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21616478

RESUMO

BACKGROUND: The cyclin-dependent kinase 5 activator p35 can be cleaved into p25. Formation of p25 has been suggested to contribute to neurodegeneration in Alzheimer's disease (AD). However, overexpression of low levels of p25 in mice enhances memory formation. Therefore, it has been suggested that p25 formation might be an event early in AD to compensate for impairments in synaptic plasticity. Ongoing p25 formation has been hypothesized to contribute to neurodegeneration at the later stages of AD. METHODS: Here, we tested the early compensation hypothesis by analyzing the levels of p25 and its precursor p35 in AD postmortem samples from different brain regions at different stages of tau pathology, using quantitative Western blots. Furthermore, we studied p35 and p25 during spatial memory formation. By employing quantitative mass spectrometry, we identified proteins downstream of p25, which were then studied in AD samples. RESULTS: We found that p25 is generated during spatial memory formation. Furthermore, we demonstrate that overexpression of p25 in the physiological range increases the expression of two proteins implicated in spine formation, septin 7 and optic atrophy 1. We show that the expression of p35 and p25 is reduced as an early event in AD. Moreover, expression of the p25-regulated protein optic atrophy 1 was reduced in a time course similar to p25 expression. CONCLUSIONS: Our findings suggest that p25 generation is a mechanism underlying hippocampal memory formation that is impaired in the early stages of AD. Our findings argue against the previously raised early compensation hypothesis and they propose that p25-mediated neurotoxicity does not occur in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Regulação para Baixo/genética , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Ciclina D1/metabolismo , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/metabolismo , Humanos , Espectrometria de Massas/métodos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mutação/genética , Proteínas do Tecido Nervoso/genética , Fosfopiruvato Hidratase/metabolismo , Septinas/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Proteínas tau/metabolismo
17.
J Cell Mol Med ; 15(3): 572-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20132410

RESUMO

Secretory vesicle swelling is required for vesicular discharge during cell secretion. The G(αo) -mediated water channel aquaporin-6 (AQP-6) involvement in synaptic vesicle (SV) swelling in neurons has previously been reported. Studies demonstrate that in the presence of guanosine triphosphate (GTP), mastoparan, an amphiphilic tetradecapeptide from wasp venom, activates G(o) protein GTPase, and stimulates SV swelling. Stimulation of G proteins is believed to occur via insertion of mastoparan into the phospholipid membrane to form a highly structured α-helix that resembles the intracellular loops of G protein-coupled adrenergic receptors. Consequently, the presence of adrenoceptors and the presence of an endogenous ß-adrenergic agonist at the SV membrane is suggested. Immunoblot analysis of SV using ß-adrenergic receptor antibody, and vesicle swelling experiments using ß-adrenergic agonists and antagonists, demonstrate the presence of functional ß-adrenergic receptors at the SV membrane. Since a recent study shows vH(+) -ATPase to be upstream of AQP-6 in the pathway leading from G(αo) -mediated swelling of SV, participation of an endogenous ß-adrenergic agonist, in the binding and stimulation of its receptor to initiate the swelling cascade is demonstrated.


Assuntos
Neurotransmissores/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptossomos/metabolismo , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Alprenolol/metabolismo , Alprenolol/farmacologia , Animais , Aquaporina 6/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Immunoblotting , Imunoprecipitação , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura , Sinaptossomos/ultraestrutura , Venenos de Vespas/metabolismo , Venenos de Vespas/farmacologia
18.
Neuroscience ; 166(1): 73-83, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20004709

RESUMO

A polyclonal antibody (C4), raised against the head domain of chicken myosin Va, reacted strongly towards a 65 kDa polypeptide (p65) on Western blots of extracts from squid optic lobes but did not recognize the heavy chain of squid myosin V. This peptide was not recognized by other myosin Va antibodies, nor by an antibody specific for squid myosin V. In an attempt to identify it, p65 was purified from optic lobes of Loligo plei by cationic exchange and reverse phase chromatography. Several peptide sequences were obtained by mass spectroscopy from p65 cut from sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels. BLAST analysis and partial matching with expressed sequence tags (ESTs) from a Loligo pealei data bank indicated that p65 contains consensus signatures for the heterogeneous nuclear ribonucleoprotein (hnRNP) A/B family of RNA-binding proteins. Centrifugation of post mitochondrial extracts from optic lobes on sucrose gradients after treatment with RNase gave biochemical evidence that p65 associates with cytoplasmic RNP complexes in an RNA-dependent manner. Immunohistochemistry and immunofluorescence studies using the C4 antibody showed partial co-labeling with an antibody against squid synaptotagmin in bands within the outer plexiform layer of the optic lobes and at the presynaptic zone of the stellate ganglion. Also, punctate labeling by the C4 antibody was observed within isolated optic lobe synaptosomes. The data indicate that p65 is a novel RNA-binding protein located to the presynaptic terminal within squid neurons and may have a role in synaptic localization of RNA and its translation or processing.


Assuntos
Sistema Nervoso Central/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Loligo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sistema Nervoso Central/ultraestrutura , Gânglios dos Invertebrados/metabolismo , Gânglios dos Invertebrados/ultraestrutura , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/isolamento & purificação , Loligo/ultraestrutura , Peso Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/isolamento & purificação , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/isolamento & purificação , Ribonucleoproteínas Citoplasmáticas Pequenas/genética , Ribonucleoproteínas Citoplasmáticas Pequenas/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
19.
J Neurochem ; 110(2): 570-80, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19457080

RESUMO

Hippocampus mossy fibre terminals activate CA3 pyramidal neurons via two distinct mechanisms, both quantal and glutamatergic: (i) rapid excitatory transmission in response to afferent action potentials and (ii) delayed and prolonged release following nicotinic receptor activation. These processes were analysed here using rat hippocampus mossy fibres synaptosomes. The relationships between synaptosome depolarisation and glutamate release were established in response to high-KCl and gramicidin challenges. Half-maximal release corresponded to a 52 mV depolarisation step. KCl-induced release was accompanied by transient dissipation of the proton gradient across synaptic vesicle membrane. Nicotine elicited a substantial glutamate release from mossy fibre synaptosomes (EC(50) 3.14 microM; V(max) 12.01 +/- 2.1 nmol glutamate/mg protein; Hill's coefficient 0.99). However, nicotine-induced glutamate release was not accompanied by any change in the membrane potential or in the vesicular proton gradient. The effects of acetylcholine (200 microM) were similar to those of nicotine (25 microM). Nicotinic alpha7 receptors were evidenced by immuno-cytochemistry on the mossy fibre synaptosome plasma membrane. Therefore, the same terminals can release glutamate in response to two distinct stimuli: (i) rapid neurotransmission involving depolarisation-induced activation of voltage-gated Ca(2+) channels and (ii) a slower nicotinic activation which does not involve depolarisation or dissipation of the vesicular proton gradient.


Assuntos
Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Ácido Glutâmico/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Nicotina/farmacologia , Sinaptossomos/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/ultraestrutura , Ratos , Ratos Wistar , Receptores Nicotínicos/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/ultraestrutura , Receptor Nicotínico de Acetilcolina alfa7
20.
PLoS One ; 4(4): e5251, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19370153

RESUMO

Recent molecular genetics studies have suggested various trans-synaptic processes for pathophysiologic mechanisms of neuropsychiatric illnesses. Examination of pre- and post-synaptic scaffolds in the brains of patients would greatly aid further investigation, yet such an approach in human postmortem tissue has yet to be tested. We have examined three methods using density gradient based purification of synaptosomes followed by detergent extraction (Method 1) and the pH based differential extraction of synaptic membranes (Methods 2 and 3). All three methods separated fractions from human postmortem brains that were highly enriched in typical PSD proteins, almost to the exclusion of pre-synaptic proteins. We examined these fractions using electron microscopy (EM) and verified the integrity of the synaptic membrane and PSD fractions derived from human postmortem brain tissues. We analyzed protein composition of the PSD fractions using two dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) and observed known PSD proteins by mass spectrometry. Immunoprecipitation and immunoblot studies revealed that expected protein-protein interactions and certain posttranscriptional modulations were maintained in PSD fractions. Our results demonstrate that PSD fractions can be isolated from human postmortem brain tissues with a reasonable degree of integrity. This approach may foster novel postmortem brain research paradigms in which the stoichiometry and protein composition of specific microdomains are examined.


Assuntos
Química Encefálica , Complexos Multiproteicos/isolamento & purificação , Proteínas do Tecido Nervoso/isolamento & purificação , Frações Subcelulares/química , Membranas Sinápticas/química , Cadáver , Humanos , Complexos Multiproteicos/análise , Complexos Multiproteicos/ultraestrutura , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/ultraestrutura , Doenças do Sistema Nervoso/fisiopatologia , Peptídeos/análise , Frações Subcelulares/ultraestrutura , Membranas Sinápticas/ultraestrutura , Sinaptossomos/química , Sinaptossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA