Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Neurobiol Dis ; 197: 106529, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740349

RESUMO

Parkinson's disease (PD) is characterized by the disruption of repetitive, concurrent and sequential motor actions due to compromised timing-functions principally located in cortex-basal ganglia (BG) circuits. Increasing evidence suggests that motor impairments in untreated PD patients are linked to an excessive synchronization of cortex-BG activity at beta frequencies (13-30 Hz). Levodopa and subthalamic nucleus deep brain stimulation (STN-DBS) suppress pathological beta-band reverberation and improve the motor symptoms in PD. Yet a dynamic tuning of beta oscillations in BG-cortical loops is fundamental for movement-timing and synchronization, and the impact of PD therapies on sensorimotor functions relying on neural transmission in the beta frequency-range remains controversial. Here, we set out to determine the differential effects of network neuromodulation through dopaminergic medication (ON and OFF levodopa) and STN-DBS (ON-DBS, OFF-DBS) on tapping synchronization and accompanying cortical activities. To this end, we conducted a rhythmic finger-tapping study with high-density EEG-recordings in 12 PD patients before and after surgery for STN-DBS and in 12 healthy controls. STN-DBS significantly ameliorated tapping parameters as frequency, amplitude and synchrony to the given auditory rhythms. Aberrant neurophysiologic signatures of sensorimotor feedback in the beta-range were found in PD patients: their neural modulation was weaker, temporally sluggish and less distributed over the right cortex in comparison to controls. Levodopa and STN-DBS boosted the dynamics of beta-band modulation over the right hemisphere, hinting to an improved timing of movements relying on tactile feedback. The strength of the post-event beta rebound over the supplementary motor area correlated significantly with the tapping asynchrony in patients, thus indexing the sensorimotor match between the external auditory pacing signals and the performed taps. PD patients showed an excessive interhemispheric coherence in the beta-frequency range during the finger-tapping task, while under DBS-ON the cortico-cortical connectivity in the beta-band was normalized. Ultimately, therapeutic DBS significantly ameliorated the auditory-motor coupling of PD patients, enhancing the electrophysiological processing of sensorimotor feedback-information related to beta-band activity, and thus allowing a more precise cued-tapping performance.


Assuntos
Ritmo beta , Sincronização Cortical , Estimulação Encefálica Profunda , Dedos , Levodopa , Córtex Motor , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Estimulação Encefálica Profunda/métodos , Idoso , Ritmo beta/fisiologia , Córtex Motor/fisiopatologia , Córtex Motor/fisiologia , Sincronização Cortical/fisiologia , Levodopa/uso terapêutico , Núcleo Subtalâmico/fisiopatologia , Antiparkinsonianos/uso terapêutico , Eletroencefalografia
2.
Brain Res ; 1798: 148130, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374764

RESUMO

Many pregnant women report impairments in their attentional capacities. However, comparative studies between pregnant and non-pregnant women using standardised attention paradigms are rare and inconsistent. During attention tasks alpha activity is known to suppress irrelevant sensory inputs and previous studies show that a large event-related desynchronisation (ERD) in the alpha range prior to target-onset predicts enhanced attentional processing. We quantified the relationship between performance (accuracy, response time) in a standardised visuo-spatial attention task and alpha ERD (∼6-12 Hz) as well as saliva estradiol level in fifteen pregnant women (M = 26.6, SD = 3.0 years) compared to fifteen non-pregnant, naturally cycling women (M = 23.1, SD = 4.3 years). Compared to non-pregnant women, alpha frequency was increased in pregnant women. Furthermore, pregnant women showed a greater magnitude of the alpha ERD prior to target-onset and a moderate increase in accuracy compared to non-pregnant women. In addition, accuracy correlated negatively with estradiol in pregnant women as well as with frontal alpha ERD in all women. These correlational findings indicate that pregnancy-related enhancement in alpha desynchronisation in a fronto-parietal network might modulate accuracy during a visuo-spatial attention task.


Assuntos
Ritmo alfa , Atenção , Humanos , Feminino , Ritmo alfa/fisiologia , Atenção/fisiologia , Tempo de Reação/fisiologia , Estradiol , Eletroencefalografia , Sincronização Cortical/fisiologia
3.
Psychophysiology ; 58(8): e13849, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34031900

RESUMO

Different levels of threat imminence elicit distinct computational strategies reflecting how the organism interacts with its environment in order to guarantee survival. Thereby, parasympathetically driven orienting and inhibition of on-going behavior in post-encounter situations and defense reactions in circa-strike conditions associated with sympathetically driven action preparation are typically observed across species. Here, we show that healthy humans are characterized by markedly variable individual orienting or defense response tendencies as indexed by differential heart rate (HR) changes during the passive viewing of unpleasant pictures. Critically, these HR response tendencies predict neural gain modulations in cortical attention and preparatory motor circuits as measured by neuromagnetic steady-state visual evoked fields (ssVEFs) and induced beta-band (19-30 Hz) desynchronization, respectively. Decelerative HR orienting responses were associated with increased ssVEF power in the parietal cortex and reduced beta-band desynchronization in pre-motor and motor areas. However, accelerative HR defense response tendencies covaried with reduced ssVEF power in the parietal cortex and lower beta-band desynchronization in cortical motor circuits. These results show that neural gain in attention- and motor-relevant brain areas is modulated by HR indexed threat imminence during the passive viewing of unpleasant pictures. The observed mutual ssVEF and beta-band power modulations in attention and motor brain circuits support the idea of two prevalent response tendencies characterized by orienting and motor inhibition or reduced stimulus processing and action initiation tendencies at different perceived threat imminence levels.


Assuntos
Afeto/fisiologia , Atenção/fisiologia , Sistema Nervoso Autônomo/fisiologia , Ritmo beta/fisiologia , Sincronização Cortical/fisiologia , Potenciais Evocados Visuais/fisiologia , Medo/fisiologia , Frequência Cardíaca/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526664

RESUMO

We studied correlated firing between motor thalamic and cortical cells in monkeys performing a delayed-response reaching task. Simultaneous recording of thalamocortical activity revealed that around movement onset, thalamic cells were positively correlated with cell activity in the primary motor cortex but negatively correlated with the activity of the premotor cortex. The differences in the correlation contrasted with the average neural responses, which were similar in all three areas. Neuronal correlations reveal functional cooperation and opposition between the motor thalamus and distinct motor cortical areas with specific roles in planning vs. performing movements. Thus, by enhancing and suppressing motor and premotor firing, the motor thalamus can facilitate the transition from a motor plan to execution.


Assuntos
Sincronização Cortical/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Tálamo/fisiologia , Animais , Feminino , Macaca fascicularis , Neurônios/fisiologia , Análise e Desempenho de Tarefas
5.
Neural Netw ; 137: 97-105, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578080

RESUMO

The partial phase synchronization (sometimes called cooperation) of neurons is fundamental for the understanding of the complex behavior of the brain. The lack or the excess of synchronization can generate brain disorders like Parkinson's disease and epilepsy. The phase synchronization phenomenon is strongly related to the regular or chaotic dynamics of individual neurons. The individual dynamics themselves are a function of the ion channel conductances, turning the conductances into important players in the process of neuron synchronized health depolarization/repolarization processes. It is well known that many diseases are related to alterations of the ion-channel conductance properties. To normalize their functioning, drugs are used to block or activate specific channels, changing their conductances. We investigate the synchronization process of a Hodgkin-Huxley-type neural network as a function of the values of the individual neuron conductances, showing the dynamics of the neurons must be taken into account in the synchronization process. Particular sets of conductances lead to non-chaotic individual neuron dynamics allowing synchronization states for very weak coupling and resulting in a non-monotonic transition to synchronized states, as the coupling strength among neurons is varied. On the other hand, a monotonic transition to synchronized states is observed for individual chaotic dynamics of the neurons. We conclude the analysis of the individual dynamics of isolated neurons allows the prediction of the synchronization process of the network. We provide alternative ways to achieve the desired network state (phase synchronized or desynchronized) without any changes in the synaptic current of neurons but making just small changes in the neuron ion-channel conductances. The mechanism behind the control is the close relation between ion-channel conductance and the regular or chaotic dynamics of neurons. Finally, we show that by changing at least two conductances simultaneously the control may be much more efficient since the second conductance makes the synchronization possible just by performing a small change in the first. The study presented here may have an impact on new drug development research.


Assuntos
Sincronização Cortical , Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Potenciais de Ação , Humanos
6.
Commun Biol ; 3(1): 491, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895482

RESUMO

Whilst the brain is assumed to exert homeostatic functions to keep the cellular energy status constant under physiological conditions, this has not been experimentally proven. Here, we conducted in vivo optical recordings of intracellular concentration of adenosine 5'-triphosphate (ATP), the major cellular energy metabolite, using a genetically encoded sensor in the mouse brain. We demonstrate that intracellular ATP levels in cortical excitatory neurons fluctuate in a cortex-wide manner depending on the sleep-wake states, correlating with arousal. Interestingly, ATP levels profoundly decreased during rapid eye movement sleep, suggesting a negative energy balance in neurons despite a simultaneous increase in cerebral hemodynamics for energy supply. The reduction in intracellular ATP was also observed in response to local electrical stimulation for neuronal activation, whereas the hemodynamics were simultaneously enhanced. These observations indicate that cerebral energy metabolism may not always meet neuronal energy demands, consequently resulting in physiological fluctuations of intracellular ATP levels in neurons.


Assuntos
Trifosfato de Adenosina/metabolismo , Córtex Cerebral/citologia , Espaço Intracelular/metabolismo , Neurônios/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Circulação Cerebrovascular/fisiologia , Sincronização Cortical , Citosol/metabolismo , Estimulação Elétrica , Camundongos Endogâmicos C57BL , Imagem Óptica
7.
Appl Psychophysiol Biofeedback ; 45(2): 49-55, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32232604

RESUMO

The aim of the study was to demonstrate the effects of the Neurofeedback-EEG training during physical exercise on the improvements in mental work performance and physiological parameters. The study examined seven swimmers based on the following anthropometric measurements: body height, body mass and body composition. The Kraepelin's work curve test, EEG and EMG during physical exercise were also performed. The athletes followed 20 Neurofeedback-EEG training sessions on the swimming ergometer for 4 months. Most mean indices of partial measures of the work curve were significantly modified (p < 0.05) following the Neurofeedback-EEG training. Mean level of maximal oxygen uptake in study participants was over 55 ml/kg/min, with statistically significant differences documented between the first and the second measurements. No significant differences were found in the fatigue rate between the measurements 1 and 2. The improved mental work performance following the Neurofeedback-EEG training facilitates optimization of psychomotor activities.


Assuntos
Atletas , Desempenho Atlético/fisiologia , Córtex Cerebral/fisiologia , Sincronização Cortical/fisiologia , Neurorretroalimentação , Desempenho Psicomotor/fisiologia , Natação/fisiologia , Pensamento/fisiologia , Adolescente , Adulto , Eletromiografia , Feminino , Humanos , Neurorretroalimentação/métodos , Adulto Jovem
8.
Hum Brain Mapp ; 41(2): 388-400, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587465

RESUMO

Evidence indicates better cognitive and behavioral outcomes for females born very preterm (≤32 weeks gestation) compared to males, but the neurophysiology underlying this apparent resiliency of the female brain remains poorly understood. Here we test the hypothesis that very preterm males express more pronounced connectivity alterations as a reflection of higher male vulnerability. Resting state MEG recordings, neonatal and psychometric data were collected from 100 children at age 8 years: very preterm boys (n = 27), very preterm girls (n = 34), full-term boys (n = 15) and full-term girls (n = 24). Neuromagnetic source dynamics were reconstructed from 76 cortical brain regions. Functional connectivity was estimated using inter-regional phase-synchronization. We performed a series of multivariate analyses to test for differences across groups as well as to explore relationships between deviations in functional connectivity and psychometric scores and neonatal factors for very preterm children. Very preterm boys displayed significantly higher (p < .001) absolute deviation from average connectivity of same-sex full-term group, compared to very preterm girls versus full-term girls. In the connectivity comparison between very preterm and full-term groups separately for boys and girls, significant group differences (p < .05) were observed for boys, but not girls. Sex differences in connectivity (p < .01) were observed in very preterm children but not in full-term groups. Our findings indicate that very preterm boys have greater alterations in resting neurophysiological network communication than girls. Such uneven brain communication disruption in very preterm boys and girls suggests that stronger connectivity alterations might contribute to male vulnerability in long-term behavioral and cognitive outcome.


Assuntos
Córtex Cerebral/fisiologia , Desenvolvimento Infantil/fisiologia , Sincronização Cortical/fisiologia , Neuroimagem Funcional , Lactente Extremamente Prematuro/fisiologia , Magnetoencefalografia , Caracteres Sexuais , Criança , Feminino , Humanos , Recém-Nascido , Masculino
9.
Pain ; 161(2): 288-299, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31651580

RESUMO

Patients with chronic pain often report being sensitive to pain at night before falling asleep, a time when the synchronization of cortical activity is initiated. However, how cortical activity relates to pain sensitivity is still unclear. Because sleep is characterized by enhanced cortical delta power, we hypothesized that enhanced cortical delta power may be an indicator of intensified pain. To test this hypothesis, we used pain thresholds tests, EEG/electromyogram recordings, c-Fos staining, and chemogenetic and pharmacological techniques in mice. We found that sleep deprivation or pharmacologic enhancement of EEG delta power by reserpine and scopolamine dramatically decreased mechanical pain thresholds, but not thermal withdrawal latency, in a partial sciatic nerve ligation model of neuropathic pain mice. On the contrary, suppression of EEG delta power using a wake-promoting agent modafinil significantly attenuated mechanical allodynia. Moreover, when EEG delta power was enhanced, c-Fos expression decreased in most regions of the cortex, except the anterior cingulate cortex (ACC), where c-Fos was increased in the somatostatin- and parvalbumin-positive GABAergic neurons. Chemogenetic activation of GABAergic neurons in ACC enhanced EEG delta power and lowered mechanical pain thresholds simultaneously in naive mice. However, chemogenetic inhibition of ACC GABAergic neurons could not block mechanical allodynia. These results provided compelling evidence that elevated EEG delta power is accompanied with aggravated neuropathic pain, whereas decreased delta power attenuated it, suggesting that enhanced delta power can be a specific marker of rising chronic neuropathic pain and that wake-promoting compounds could be used as analgesics in the clinic.


Assuntos
Córtex Cerebral/fisiopatologia , Ritmo Delta/fisiologia , Hiperalgesia/fisiopatologia , Neuralgia/fisiopatologia , Limiar da Dor/fisiologia , Sono/fisiologia , Inibidores da Captação Adrenérgica/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Antagonistas Colinérgicos/farmacologia , Sincronização Cortical/efeitos dos fármacos , Sincronização Cortical/fisiologia , Ritmo Delta/efeitos dos fármacos , Eletroencefalografia , Eletromiografia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Hiperalgesia/metabolismo , Camundongos , Modafinila/farmacologia , Neuralgia/metabolismo , Limiar da Dor/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reserpina/farmacologia , Nervo Isquiático/cirurgia , Escopolamina/farmacologia , Sono/efeitos dos fármacos , Privação do Sono/induzido quimicamente , Privação do Sono/fisiopatologia , Promotores da Vigília/farmacologia
10.
PLoS Comput Biol ; 15(10): e1007004, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31622338

RESUMO

With the advent of advanced MRI techniques it has become possible to study axonal white matter non-invasively and in great detail. Measuring the various parameters of the long-range connections of the brain opens up the possibility to build and refine detailed models of large-scale neuronal activity. One particular challenge is to find a mathematical description of action potential propagation that is sufficiently simple, yet still biologically plausible to model signal transmission across entire axonal fibre bundles. We develop a mathematical framework in which we replace the Hodgkin-Huxley dynamics by a spike-diffuse-spike model with passive sub-threshold dynamics and explicit, threshold-activated ion channel currents. This allows us to study in detail the influence of the various model parameters on the action potential velocity and on the entrainment of action potentials between ephaptically coupled fibres without having to recur to numerical simulations. Specifically, we recover known results regarding the influence of axon diameter, node of Ranvier length and internode length on the velocity of action potentials. Additionally, we find that the velocity depends more strongly on the thickness of the myelin sheath than was suggested by previous theoretical studies. We further explain the slowing down and synchronisation of action potentials in ephaptically coupled fibres by their dynamic interaction. In summary, this study presents a solution to incorporate detailed axonal parameters into a whole-brain modelling framework.


Assuntos
Mapeamento Encefálico/métodos , Sincronização Cortical/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Animais , Axônios/fisiologia , Encefalopatias Metabólicas , Simulação por Computador , Humanos , Modelos Neurológicos , Bainha de Mielina/fisiologia , Condução Nervosa/fisiologia , Substância Branca
11.
J Neurosci Methods ; 325: 108347, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31330159

RESUMO

BACKGROUND: The successful delineation of the epileptogenic zone in epilepsy monitoring is crucial for achieving seizure freedom after epilepsy surgery. NEW METHOD: We aim to improve epileptogenic zone localization by utilizing a computer-assisted tool for the automated grading of the seizure activity recorded in various locations for 20 patients undergoing stereo electroencephalography. Their epileptic seizures were processed to extract two potential biomarkers. The concentration of these biomarkers from within each patient's implantation were then graded to identify their epileptogenic zone and were compared to the clinical assessment. RESULTS: Our technique was capable of ranking the clinically defined epileptogenic zone with high accuracy, above 95%, with a true to false positive ratio of 1:1.52, and was effective with both temporal and extra-temporal onset epilepsies. COMPARISON WITH EXISTING METHOD: We compared our method to two other groups performing localization using similar biomarkers. Our classification metrics, sensitivity and precision together were comparable to both groups and our overall accuracy from a larger population was also higher then both. CONCLUSIONS: Our method is highly accurate, automated and non-parametric providing clinicians another tool that can be used to help identify the epileptogenic zone in patients undergoing the stereo electroencephalography procedure for epilepsy monitoring.


Assuntos
Cérebro/fisiopatologia , Sincronização Cortical/fisiologia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador , Adolescente , Adulto , Biomarcadores , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
12.
Neuroimage ; 197: 306-319, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31051295

RESUMO

Movement planning involves transforming the sensory signals into a command in motor coordinates. Surprisingly, the real-time dynamics of sensorimotor transformations at the whole brain level remain unknown, in part due to the spatiotemporal limitations of fMRI and neurophysiological recordings. Here, we used magnetoencephalography (MEG) during pro-/anti-wrist pointing to determine (1) the cortical areas involved in transforming visual signals into appropriate hand motor commands, and (2) how this transformation occurs in real time, both within and across the regions involved. We computed sensory, motor, and sensorimotor indices in 16 bilateral brain regions for direction coding based on hemispherically lateralized de/synchronization in the α (7-15 Hz) and ß (15-35 Hz) bands. We found a visuomotor progression, from pure sensory codes in 'early' occipital-parietal areas, to a temporal transition from sensory to motor coding in the majority of parietal-frontal sensorimotor areas, to a pure motor code, in both the α and ß bands. Further, the timing of these transformations revealed a top-down pro/anti cue influence that propagated 'backwards' from frontal through posterior cortical areas. These data directly demonstrate a progressive, real-time transformation both within and across the entire occipital-parietal-frontal network that follows specific rules of spatial distribution and temporal order.


Assuntos
Encéfalo/fisiologia , Movimento , Desempenho Psicomotor/fisiologia , Adulto , Mapeamento Encefálico , Sincronização Cortical , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Lobo Parietal/fisiologia , Punho , Adulto Jovem
13.
Neuroimage ; 193: 93-102, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851445

RESUMO

Teacher-student interaction allows students to combine prior knowledge with new information to develop new knowledge. It is widely understood that both communication mode and students' knowledge state contribute to the teaching effectiveness (i.e., higher students' scores), but the nature of the interplay of these factors and the underlying neural mechanism remain unknown. In the current study, we manipulated the communication modes (face-to-face [FTF] communication mode/computer-mediated communication [CMC] mode) and prior knowledge states (with vs. without) when teacher-student dyads participated in a teaching task. Using functional near-infrared spectroscopy, the brain activities of both the teacher and student in the dyads were recorded simultaneously. After teaching, perceived teacher-student interaction and teaching effectiveness were assessed. The behavioral results demonstrated that, during teaching with prior knowledge, FTF communication improved students' academic performance, as compared with CMC. Conversely, no such effect was found for teaching without prior knowledge. Accordingly, higher task-related interpersonal neural synchronization (INS) in the left prefrontal cortex (PFC) was found in the FTF teaching condition with prior knowledge. Such INS mediated the relationship between perceived interaction and students' test scores. Furthermore, the cumulative INS in the left PFC could predict the teaching effectiveness early in the teaching process (around 25-35 s into the teaching task) only in FTF teaching with prior knowledge. These findings provide insight into how the interplay between the communication mode and students' knowledge state affects teaching effectiveness. Moreover, our findings suggest that INS could be a possible neuromarker for dynamic evaluation of teacher-student interaction and teaching effectiveness.


Assuntos
Comunicação , Sincronização Cortical/fisiologia , Conhecimento , Aprendizagem/fisiologia , Córtex Pré-Frontal/fisiologia , Ensino , Adulto , Feminino , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto Jovem
14.
J Child Psychol Psychiatry ; 60(9): 975-987, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30805942

RESUMO

BACKGROUND: Children born very preterm often display selective cognitive difficulties at school age even in the absence of major brain injury. Alterations in neurophysiological activity underpinning such difficulties, as well as their relation to specific aspects of adverse neonatal experience, remain poorly understood. In the present study, we examined interregional connectivity and spectral power in very preterm children at school age, and their relationship with clinical neonatal variables and long-term outcomes (IQ, executive functions, externalizing/internalizing behavior, visual-motor integration). METHODS: We collected resting state magnetoencephalographic (MEG) and psychometric data from a cohort at the age of 8 years followed prospectively since birth, which included three groups: Extremely Low Gestational Age (ELGA, 24-28 weeks GA n = 24, age 7.7 ± 0.38, 10 girls), Very Low Gestational Age (VLGA, 29-32 weeks GA n = 37, age 7.7 ± 0.39, 24 girls), and full-term children (38-41 weeks GA n = 39, age 7.9 ± 1.02, 24 girls). Interregional phase synchrony and spectral power were tested for group differences, and associations with neonatal and outcome variables were examined using mean-centered and behavioral Partial Least Squares (PLS) analyses, respectively. RESULTS: We found greater connectivity in the theta band in the ELGA group compared to VLGA and full-term groups, primarily involving frontal connections. Spectral power analysis demonstrated overall lower power in the ELGA and VLGA compared to full-term group. PLS indicated strong associations between neurophysiological connectivity at school age, adverse neonatal experience and cognitive performance, and behavior. Resting spectral power was associated only with behavioral scores. CONCLUSIONS: Our findings indicate significant atypicalities of neuromagnetic brain activity and connectivity in very preterm children at school age, with alterations in connectivity mainly observed only in the ELGA group. We demonstrate a significant relationship between connectivity, adverse neonatal experience, and long-term outcome, indicating that the disruption of developing neurophysiological networks may mediate relationships between neonatal events and cognitive and behavioral difficulties at school age.


Assuntos
Sintomas Comportamentais/fisiopatologia , Sincronização Cortical/fisiologia , Função Executiva/fisiologia , Lobo Frontal/fisiopatologia , Lactente Extremamente Prematuro/fisiologia , Inteligência/fisiologia , Rede Nervosa/fisiopatologia , Desempenho Psicomotor/fisiologia , Ritmo Teta/fisiologia , Criança , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Magnetoencefalografia , Masculino
15.
Cereb Cortex ; 29(10): 4143-4153, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30535068

RESUMO

Long-range phase synchrony in the α-oscillation band (near 10 Hz) has been proposed to facilitate information integration across anatomically segregated regions. Which areas may top-down regulate such cross-regional integration is largely unknown. We previously found that the moment-to-moment strength of high-α band (10-12 Hz) phase synchrony co-varies with activity in a fronto-parietal (FP) network. This network is critical for adaptive cognitive control functions such as cognitive flexibility required during set-shifting. Using electroencephalography (EEG) in 23 patients with focal frontal lobe lesions (resected tumors), we tested the hypothesis that the FP network is necessary for modulation of high-α band phase synchrony. Global phase-synchrony was measured using an adaptation of the phase-locking value (PLV) in a sliding window procedure, which allowed for measurement of changes in EEG-based resting-state functional connectivity across time. As hypothesized, the temporal modulation (range and standard deviation) of high-α phase synchrony was reduced as a function of FP network lesion extent, mostly due to dorsolateral prefrontal cortex (dlPFC) lesions. Furthermore, patients with dlPFC lesions exhibited reduced cognitive flexibility as measured by the Trail-Making Test (set-shifting). Our findings provide evidence that the FP network is necessary for modulatory control of high-α band long-range phase synchrony, and linked to cognitive flexibility.


Assuntos
Ritmo alfa , Sincronização Cortical , Função Executiva/fisiologia , Lobo Frontal/fisiologia , Lobo Parietal/fisiologia , Adulto , Lobo Frontal/patologia , Humanos , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Testes Neuropsicológicos , Adulto Jovem
16.
Repert. med. cir ; 28(1): 19-28, 2019. ilus.
Artigo em Inglês, Espanhol | COLNAL, LILACS | ID: biblio-1007457

RESUMO

Introducción: La audición es un proceso complejo en el cual el sonido se convierte en energía eléctrica que se procesa e interpreta a nivel de la corteza auditiva. La musicoterapia es una ciencia de bajo costo aplicable a la anestesiología con beneficios económicos. Como coadyuvante a la terapia farmacológica permite usar menores dosis de algunos medicamentos. Objetivo: revisión no sistemática en bases de datos reconocidas. Metodología: búsqueda exhaustiva sobre revisiones sistemáticas, consensos, metaanálisis, utilizando los descriptores electrónicos en las bases de datos electrónicas: PubMed, Science Direct, OvidSP, EBSCO y SciELO. Arrojó 393 artículos, 80 relacionados con música, musicoterapia, medicina y adulto, 77 con electroencefalografía, estimulación acústica y sincronización cortical, 32 con anestesia balanceada y éteres metílicos, y 68 relacionados con música y anestesiología. Se seleccionaron solo los artículos completos para un total de 100. Se complementó con 2 textos universitarios de física. Conclusión: la música en anestesiología representa una herramienta valiosa como alternativa de tratamiento para disminuir la morbimortalidad y los costos asociados. Se necesitan estudios complementarios para determinar los alcances de ésta asociación.


Audition is a complex process in which sound transduces into electrical energy which is processed and interpreted at the auditory cortex. Music therapy is an inexpensive technique applicable to anesthesia. As an adjuvant to pharmacological interventions it allows reducing the requirements of certain medicines. Objective: a non-systematic review in recognized databases. Methodology: A thorough search of systematic reviews, consensuses and meta-analyses on electronic databases PubMed, Science Direct, OvidSP, EBSCO and SciELO using electronic descriptors. 393 articles were retrieved from the searches which included 80 related with music, music therapy, medicine and adults; 77 regarding electrencephalography, acoustic stimulation and cortical synchronization; 32 on balanced anesthesia and methyl ethers; and, 68 related with music and anesthesia. Only 100 articles were eligible for inclusion as only full text reports were considered. Two university physics textbooks were used as supplemental reading resources. Conclusions: music is a valuable adjuvant of anesthesia which can provide reduced morbidity and mortality and related costs. Further studies are needed to determine the scope of this association.


Assuntos
Anestesia Balanceada , Estimulação Acústica , Sincronização Cortical , Musicoterapia
17.
PLoS Comput Biol ; 14(7): e1006296, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30024878

RESUMO

Many collective phenomena in Nature emerge from the -partial- synchronisation of the units comprising a system. In the case of the brain, this self-organised process allows groups of neurons to fire in highly intricate partially synchronised patterns and eventually lead to high level cognitive outputs and control over the human body. However, when the synchronisation patterns are altered and hypersynchronisation occurs, undesirable effects can occur. This is particularly striking and well documented in the case of epileptic seizures and tremors in neurodegenerative diseases such as Parkinson's disease. In this paper, we propose an innovative, minimally invasive, control method that can effectively desynchronise misfiring brain regions and thus mitigate and even eliminate the symptoms of the diseases. The control strategy, grounded in the Hamiltonian control theory, is applied to ensembles of neurons modelled via the Kuramoto or the Stuart-Landau models and allows for heterogeneous coupling among the interacting unities. The theory has been complemented with dedicated numerical simulations performed using the small-world Newman-Watts network and the random Erdos-Rényi network. Finally the method has been compared with the gold-standard Proportional-Differential Feedback control technique. Our method is shown to achieve equivalent levels of desynchronisation using lesser control strength and/or fewer controllers, being thus minimally invasive.


Assuntos
Encéfalo/fisiologia , Encéfalo/fisiopatologia , Sincronização Cortical , Estimulação Encefálica Profunda/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Doenças Neurodegenerativas/terapia , Neurônios/fisiologia , Encéfalo/citologia , Humanos , Microeletrodos , Modelos Neurológicos , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/cirurgia , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Convulsões/etiologia , Tremor/etiologia
18.
Elife ; 72018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29388913

RESUMO

Gamma synchronization increases during movement and scales with kinematic parameters. Here, disease-specific characteristics of this synchronization and the dopamine-dependence of its scaling in Parkinson's disease are investigated. In 16 patients undergoing deep brain stimulation surgery, movements of different velocities revealed that subthalamic gamma power peaked in the sensorimotor part of the subthalamic nucleus, correlated positively with maximal velocity and negatively with symptom severity. These effects relied on movement-related bursts of transient synchrony in the gamma band. The gamma burst rate highly correlated with averaged power, increased gradually with larger movements and correlated with symptom severity. In the dopamine-depleted state, gamma power and burst rate significantly decreased, particularly when peak velocity was slower than ON medication. Burst amplitude and duration were unaffected by the medication state. We propose that insufficient recruitment of fast gamma bursts during movement may underlie bradykinesia as one of the cardinal symptoms in Parkinson's disease.


Assuntos
Sincronização Cortical , Dopamina/metabolismo , Ritmo Gama , Movimento , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Potenciais de Ação , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/patologia , Núcleo Subtalâmico/patologia
19.
J Neurosci Methods ; 293: 254-263, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29017898

RESUMO

BACKGROUND: Classification of human behavior from brain signals has potential application in developing closed-loop deep brain stimulation (DBS) systems. This paper presents a human behavior classification using local field potential (LFP) signals recorded from subthalamic nuclei (STN). METHOD: A hierarchical classification structure is developed to perform the behavior classification from LFP signals through a multi-level framework (coarse to fine). At each level, the time-frequency representations of all six signals from the DBS leads are combined through an MKL-based SVM classifier to classify five tasks (speech, finger movement, mouth movement, arm movement, and random segments). To lower the computational cost, we alternatively use the inter-hemispheric synchronization of the LFPs to make three pairs out of six bipolar signals. Three classifiers are separately trained at each level of the hierarchical approach, which lead to three labels. A fusion function is then developed to combine these three labels and determine the label of the corresponding trial. RESULTS: Using all six LFPs with the proposed hierarchical approach improves the classification performance. Moreover, the synchronization-based method reduces the computational burden considerably while the classification performance remains relatively unchanged. COMPARISON WITH EXISTING METHODS: Our experiments on two different datasets recorded from nine subjects undergoing DBS surgery show that the proposed approaches remarkably outperform other methods for behavior classification based on LFP signals. CONCLUSION: The LFP signals acquired from STNs contain useful information for recognizing human behavior. This can be a precursor for designing the next generation of closed-loop DBS systems.


Assuntos
Atividade Motora/fisiologia , Fala/fisiologia , Núcleo Subtalâmico/fisiologia , Máquina de Vetores de Suporte , Análise de Ondaletas , Idoso , Sincronização Cortical , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Boca/fisiologia , Análise Multinível , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Extremidade Superior/fisiologia
20.
Sci Rep ; 7(1): 5841, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724985

RESUMO

Fibromyalgia (FM) and other chronic pain syndromes are associated with cognitive dysfunction and attentional deficits, but the neural basis of such alterations is poorly understood. Dyscognition may be related to high levels of neural noise, understood as increased random electrical fluctuations that impair neural communication; however, this hypothesis has not yet been tested in any chronic pain condition. Here we compared electroencephalographic activity (EEG) in 18 FM patients -with high self-reported levels of cognitive dysfunction- and 22 controls during a cognitive control task. We considered the slope of the Power Spectrum Density (PSD) as an indicator of neural noise. As the PSD slope is flatter in noisier systems, we expected to see shallower slopes in the EEG of FM patients. Higher levels of neural noise should be accompanied by reduced power modulation and reduced synchronization between distant brain locations after stimulus presentation. As expected, FM patients showed flatter PSD slopes. After applying a Laplacian spatial filter, we found reduced theta and alpha power modulation and reduced midfrontal-posterior theta phase synchronization. Results suggest higher neural noise and impaired local and distant neural coordination in the patients and support the neural noise hypothesis to explain dyscognition in FM.


Assuntos
Encéfalo/fisiopatologia , Cognição/fisiologia , Sincronização Cortical/fisiologia , Fibromialgia/fisiopatologia , Adulto , Comportamento , Eletrodos , Humanos , Rede Nervosa/fisiopatologia , Tempo de Reação , Análise e Desempenho de Tarefas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA