Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810567

RESUMO

Cancer is an important cause of morbidity and mortality worldwide. Advances in research on the biology of cancer revealed alterations in several key pathways underlying tumorigenesis and provided molecular targets for developing new and improved existing therapies. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a central mediator of cell adhesion, migration and proliferation. Although several studies have demonstrated important roles of syndecan-4 in cell behavior and its interactions with growth factors, extracellular matrix (ECM) molecules and cytoskeletal signaling proteins, less is known about its role and expression in multiple cancer. The data summarized in this review demonstrate that high expression of syndecan-4 is an unfavorable biomarker for estrogen receptor-negative breast cancer, glioma, liver cancer, melanoma, osteosarcoma, papillary thyroid carcinoma and testicular, kidney and bladder cancer. In contrast, in neuroblastoma and colorectal cancer, syndecan-4 is downregulated. Interestingly, syndecan-4 expression is modulated by anticancer drugs. It is upregulated upon treatment with zoledronate and this effect reduces invasion of breast cancer cells. In our recent work, we demonstrated that the syndecan-4 level was reduced after trastuzumab treatment. Similarly, syndecan-4 levels are also reduced after panitumumab treatment. Together, the data found suggest that syndecan-4 level is crucial for understanding the changes involving in malignant transformation, and also demonstrate that syndecan-4 emerges as an important target for cancer therapy and diagnosis.


Assuntos
Neoplasias/patologia , Sindecana-4/metabolismo , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Apoptose , Adesão Celular , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Interferência de RNA , Transdução de Sinais , Sindecana-4/química , Sindecana-4/genética
2.
Micron ; 137: 102888, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32554186

RESUMO

The knowledge on how cells interact with microenvironment is particularly important in understanding the interaction of cancer cells with surrounding stroma, which affects cell migration, adhesion, and metastasis. The main cell surface receptors responsible for the interaction with extracellular matrix (ECM) are integrins, however, they are not the only ones. Integrins are accompanied to other molecules such as syndecans. The role of the latter has not yet been fully established. In our study, we would like to answer the question of whether integrins and syndecans, possessing similar functions, share also similar unbinding properties. By using single molecule force spectroscopy (SMFS), we conducted measurements of the unbinding properties of αVß1 and syndecan-4 in the interaction with vitronectin (VN), which, as each ECM protein, possesses two binding sites specific to integrins and syndecans. The unbinding force and the kinetic off rate constant derived from SMFS describe the stability of single molecular complex. Obtained data show one barrier transition for each complex. The proposed model shows that the unbinding of αVß1 from VN proceeds before the unbinding of SDC-4. However, despite different unbinding kinetics, the access to both receptors is needed for cell growth and proliferation.


Assuntos
Integrina alfa5beta1/química , Integrina alfa5beta1/metabolismo , Imagem Individual de Molécula/métodos , Sindecana-4/química , Sindecana-4/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Matriz Extracelular , Humanos , Integrina alfa5beta1/genética , Sindecana-4/genética , Neoplasias da Bexiga Urinária , Vitronectina/metabolismo
3.
J Biol Chem ; 294(22): 8717-8731, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30967474

RESUMO

Costameres are signaling hubs at the sarcolemma and important contact points between the extracellular matrix and cell interior, sensing and transducing biomechanical signals into a cellular response. The transmembrane proteoglycan syndecan-4 localizes to these attachment points and has been shown to be important in the initial stages of cardiac remodeling, but its mechanistic function in the heart remains insufficiently understood. Here, we sought to map the cardiac interactome of syndecan-4 to better understand its function and downstream signaling mechanisms. By combining two different affinity purification methods with MS analysis, we found that the cardiac syndecan-4 interactome consists of 21 novel and 29 previously described interaction partners. Nine of the novel partners were further validated to bind syndecan-4 in HEK293 cells (i.e. CAVIN1/PTRF, CCT5, CDK9, EIF2S1, EIF4B, MPP7, PARVB, PFKM, and RASIP). We also found that 19 of the 50 interactome partners bind differently to syndecan-4 in the left ventricle lysate from aortic-banded heart failure (ABHF) rats compared with SHAM-operated animals. One of these partners was the well-known mechanotransducer muscle LIM protein (MLP), which showed direct and increased binding to syndecan-4 in ABHF. Nuclear translocation is important in MLP-mediated signaling, and we found less MLP in the nuclear-enriched fractions from syndecan-4-/- mouse left ventricles but increased nuclear MLP when syndecan-4 was overexpressed in a cardiomyocyte cell line. In the presence of a cell-permeable syndecan-4-MLP disruptor peptide, the nuclear MLP level was reduced. These findings suggest that syndecan-4 mediates nuclear translocation of MLP in the heart.


Assuntos
Núcleo Celular/metabolismo , Ventrículos do Coração/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Sindecana-4/metabolismo , Animais , Linhagem Celular , Células HEK293 , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Proteínas com Domínio LIM/química , Camundongos , Camundongos Knockout , Proteínas Musculares/química , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Domínios PDZ , Mapas de Interação de Proteínas , Transporte Proteico , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Sindecana-4/química , Sindecana-4/genética
4.
PLoS One ; 12(11): e0187094, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121646

RESUMO

The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways.


Assuntos
Mutação/genética , Sindecana-4/genética , Sindecana-4/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/química , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Humanos , Células MCF-7 , Modelos Biológicos , Domínios PDZ , Ligação Proteica , Proteína Quinase C-alfa/metabolismo , Sindecana-4/química , Quinases Ativadas por p21/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
5.
Stem Cells ; 35(2): 522-531, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27662820

RESUMO

Endothelial progenitor cells (EPCs) are a subtype of bone marrow-derived progenitor cells. Stromal cell-derived factor 1 (SDF-1)-mediated EPC mobilization from bone marrow to areas of ischemia plays an important role in angiogenesis. Previous studies have reported that advanced glycation endproducts (AGEs), which are important mediators of diabetes-related vascular pathology, may impair EPC migration and homing, but the mechanism is unclear. Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan receptor on the cell surface, involved in SDF-1-dependent cell migration. The extracellular domain of synd4 (ext-synd4) is shed in the context of acute inflammation, but the shedding of ext-synd4 in response to AGEs is undefined. Here we investigated changes in ext-synd4 on EPCs in response to AGEs, focusing on the influence of impaired synd4 signaling on EPC migration and homing. We found decreased full length and increased residue of synd4 in cells incubated with AGEs, with concomitant increase in the soluble fragment of ext-synd4 in the cell medium. EPCs from patients with type 2 diabetes expressed less ext-synd4 as assessed by Western blotting. Flow cytometry analysis showed less ext-synd4 on circulating CD34+ peripheral blood mononuclear cells, of which EPCs form a subgroup. We then explored the role of synd4 in EPC migration and homing. Impaired migration of synd4-deficient EPCs was observed by a 2D-chemotaxis slide. Furthermore, poor homing of synd4-/- EPCs was observed in a mouse model of lower limb ischemia. This study demonstrates that the shedding of synd4 from EPCs plays a key role in AGE-mediated dysfunction of EPC migration and homing. Stem Cells 2017;35:522-531.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Produtos Finais de Glicação Avançada/farmacologia , Sindecana-4/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Sindecana-4/química , Sindecana-4/deficiência
6.
Sci Rep ; 6: 36818, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830760

RESUMO

The PDZ domain-containing scaffold protein, syntenin-1, binds to the transmembrane proteoglycan, syndecan-4, but the molecular mechanism/function of this interaction are unknown. Crystal structure analysis of syntenin-1/syndecan-4 cytoplasmic domains revealed that syntenin-1 forms a symmetrical pair of dimers anchored by a syndecan-4 dimer. The syndecan-4 cytoplasmic domain is a compact intertwined dimer with a symmetrical clamp shape and two antiparallel strands forming a cavity within the dimeric twist. The PDZ2 domain of syntenin-1 forms a direct antiparallel interaction with the syndecan-4 cytoplasmic domain, inhibiting the functions of syndecan-4 such as focal adhesion formation. Moreover, C-terminal region of syntenin-1 reveals an essential role for enhancing the molecular homodimerization. Mutation of key syntenin-1 residues involved in the syndecan-4 interaction or homodimer formation abolishes the inhibitory function of syntenin-1, as does deletion of the homodimerization-related syntenin-1 C-terminal domain. Syntenin-1, but not dimer-formation-incompetent mutants, rescued the syndecan-4-mediated inhibition of migration and pulmonary metastasis by B16F10 cells. Therefore, we conclude that syntenin-1 negatively regulates syndecan-4 function via oligomerization and/or syndecan-4 interaction, impacting cytoskeletal organization and cell migration.


Assuntos
Sindecana-4/química , Sinteninas/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Movimento Celular , Cristalografia por Raios X , Humanos , Metástase Linfática , Melanoma Experimental/metabolismo , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Ratos , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Sindecana-4/fisiologia , Sinteninas/fisiologia
7.
J Biol Chem ; 290(43): 26103-13, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26350464

RESUMO

The α6ß4 integrin is known to associate with receptor tyrosine kinases when engaged in epithelial wound healing and in carcinoma invasion and survival. Prior work has shown that HER2 associates with α6ß4 integrin and syndecan-1 (Sdc1), in which Sdc1 engages the cytoplasmic domain of the ß4 integrin subunit allowing HER2-dependent motility and carcinoma cell survival. In contrast, EGFR associates with Sdc4 and the α6ß4 integrin, and EGFR-dependent motility depends on cytoplasmic engagement of ß4 integrin with Sdc4. However, how HER2 and EGFR assimilate into a complex with the syndecans and integrin, and why kinase capture is syndecan-specific has remained unknown. In the present study, we demonstrate that HER2 is captured via a site, comprised of amino acids 210-240, in the extracellular domain of human Sdc1, and EGFR is captured via an extracellular site comprised of amino acids 87-131 in human Sdc4. Binding assays using purified recombinant proteins demonstrate that the interaction between the EGFR family members and the syndecans is direct. The α3ß1 integrin, which is responsible for the motility of the cells, is captured at these sites as well. Peptides based on the interaction motifs in Sdc1 and Sdc4, called synstatins (SSTN210-240 and SSTN87-131) competitively displace the receptor tyrosine kinase and α3ß1 integrin from the syndecan with an IC50 of 100-300 nm. The syndecans remain anchored to the α6ß4 integrin via its cytoplasmic domain, but the activation of cell motility is disrupted. These novel SSTN peptides are potential therapeutics for carcinomas that depend on these HER2- and EGFR-coupled mechanisms for their invasion and survival.


Assuntos
Movimento Celular , Receptores ErbB/metabolismo , Integrina alfa3beta1/metabolismo , Integrina alfa6beta4/metabolismo , Receptor ErbB-2/metabolismo , Sindecana-1/metabolismo , Sindecana-4/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Sindecana-1/química , Sindecana-4/química
8.
J Biol Chem ; 290(27): 16943-53, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25979339

RESUMO

Syndecans, a family of transmembrane heparansulfate proteoglycans, are known to interact through their transmembrane domains to form non-covalently linked homodimers, a process essential for their individual functions. Because all syndecan transmembrane domains are highly conserved and thus might mediate interactions between different members of the syndecan family, we investigated syndecan interactions in detail. All recombinant syndecan-2 and -4 protein variants containing the transmembrane domain formed not only sodium dodecyl sulfate (SDS)-resistant homodimers but also SDS-resistant heterodimers. Biochemical and structural data revealed that recombinant syndecan-2 and -4 formed intermolecular interactions in vitro, and the GXXXG motif in transmembrane domain mediated this interaction. When exogenously expressed in rat embryonic fibroblasts, syndecan-2 interacted with syndecan-4 and vice versa. Furthermore, bimolecular fluorescence complementation-based assay demonstrated specific hetero-molecular interactions between syndecan-2 and -4, supporting hetero-oligomer formation of syndecans in vivo. Interestingly, hetero-oligomerization significantly reduced syndecan-4-mediated cellular processes such as protein kinase Cα activation and protein kinase Cα-mediated cell adhesion as well as syndecan-2-mediated tumorigenic activities in colon cancer cells such as migration and anchorage-independent growth. Taken together, these data provide evidence that hetero-oligomerization produces distinct syndecan functions and offer insights into the underlying signaling mechanisms of syndecans.


Assuntos
Sindecana-2/química , Sindecana-2/metabolismo , Sindecana-4/química , Sindecana-4/metabolismo , Motivos de Aminoácidos , Animais , Dimerização , Fibroblastos/química , Fibroblastos/metabolismo , Ligação Proteica , Ratos , Sindecana-2/genética , Sindecana-4/genética
9.
Nat Commun ; 5: 4886, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25216363

RESUMO

Cancer cell adhesion to the vascular endothelium is a critical step of tumour metastasis. Endothelial surface molecule Thy-1 (CD90) is implicated in the metastatic process through its interactions with integrins and syndecans. However, how Thy-1 supports cell-cell adhesion in a dynamic mechanical environment is not known. Here we show that Thy-1 supports ß1 integrin- and syndecan-4 (Syn4)-mediated contractility-dependent mechanosignalling of melanoma cells. At the single-molecule level, Thy-1 is capable of independently binding α5ß1 integrin and syndecan-4 (Syn4) receptors. However, in the presence of both α5ß1 and Syn4, the two receptors bind cooperatively to Thy-1, to form a trimolecular complex. This trimolecular complex displays a unique phenomenon we coin 'dynamic catch', characterized by abrupt bond stiffening followed by the formation of catch bonds, where force prolongs the bond lifetime. Thus, we reveal a new class of trimolecular interactions where force strengthens the synergistic binding of two co-receptors and modulates downstream mechanosignalling.


Assuntos
Integrina alfa5beta1/química , Integrina beta1/química , Sindecana-4/química , Antígenos Thy-1/química , Fenômenos Biomecânicos , Adesão Celular , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Células K562 , Mecanotransdução Celular , Ligação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Resistência à Tração , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo
10.
J Biol Chem ; 289(44): 30318-30332, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25202019

RESUMO

Epithelial cells are highly dependent during wound healing and tumorigenesis on the α6ß4 integrin and its association with receptor tyrosine kinases. Previous work showed that phosphorylation of the ß4 subunit upon matrix engagement depends on the matrix receptor syndecan (Sdc)-1 engaging the cytoplasmic domain of the ß4 integrin and coupling of the integrin to human epidermal growth factor receptor-2 (HER2). In this study, HER2-dependent migration activated by matrix engagement is compared with migration stimulated by EGF. We find that whereas HER2-dependent migration depends on Sdc1, EGF-dependent migration depends on a complex consisting of human epidermal growth factor receptor-1 (HER1, commonly known as EGFR), α6ß4, and Sdc4. The two syndecans recognize distinct sites at the extreme C terminus of the ß4 integrin cytoplasmic domain. The binding motif in Sdc1 is QEEXYX, composed in part by its syndecan-specific variable (V) region and in part by the second conserved (C2) region that it shares with other syndecans. A cell-penetrating peptide containing this sequence competes for HER2-dependent epithelial migration and carcinoma survival, although it is without effect on the EGFR-stimulated mechanism. ß4 mutants bearing mutations specific for Sdc1 and Sdc4 recognition act as dominant negative mutants to block cell spreading or cell migration that depends on HER2 or EGFR, respectively. The interaction of the α6ß4 integrin with the syndecans appears critical for it to be utilized as a signaling platform; migration depends on α3ß1 integrin binding to laminin 332 (LN332; also known as laminin 5), whereas antibodies that block α6ß4 binding are without effect. These findings indicate that specific syndecan family members are likely to have key roles in α6ß4 integrin activation by receptor tyrosine kinases.


Assuntos
Movimento Celular , Sobrevivência Celular , Integrina alfa6beta4/metabolismo , Sindecana-1/metabolismo , Sindecana-4/metabolismo , Sequência de Aminoácidos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/fisiologia , Humanos , Integrina alfa6beta4/química , Integrina alfa6beta4/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptor ErbB-2/fisiologia , Transdução de Sinais , Sindecana-1/química , Sindecana-4/química , Calinina
11.
Structure ; 21(3): 342-54, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23395182

RESUMO

PDZ (PSD-95/Dlg/ZO-1) domains are protein-protein interaction modules often regulated by ligand phosphorylation. Here, we investigated the specificity, structure, and dynamics of Tiam1 PDZ domain/ligand interactions. We show that the PDZ domain specifically binds syndecan1 (SDC1), phosphorylated SDC1 (pSDC1), and SDC3 but not other syndecan isoforms. The crystal structure of the PDZ/SDC1 complex indicates that syndecan affinity is derived from amino acids beyond the four C-terminal residues. Remarkably, the crystal structure of the PDZ/pSDC1 complex reveals a binding pocket that accommodates the phosphoryl group. Methyl relaxation experiments of PDZ/SCD1 and PDZ/pSDC1 complexes reveal that PDZ-phosphoryl interactions dampen dynamic motions in a distal region of the PDZ domain by decoupling them from the ligand-binding site. Our data are consistent with a selection model by which specificity and phosphorylation regulate PDZ/syndecan interactions and signaling events. Importantly, our relaxation data demonstrate that PDZ/phospho-ligand interactions regulate protein dynamics and their coupling to distal sites.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Modelos Moleculares , Sindecana-1/química , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Humanos , Ligantes , Dados de Sequência Molecular , Domínios PDZ , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Sindecana-2/química , Sindecana-3/química , Sindecana-4/química , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
12.
Biochim Biophys Acta ; 1818(5): 1211-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22285741

RESUMO

Investigating the role of proteoglycans associated to cell membranes is fundamental to comprehend biochemical process that occurs at the level of membrane surfaces. In this paper, we exploit syndecan-4, a heparan sulfate proteoglycan obtained from cell cultures, in lipid Langmuir monolayers at the air-water interface. The monolayer served as a model for half a membrane, and the molecular interactions involved could be evaluated with tensiometry and vibrational spectroscopy techniques. Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) employed in a constant surface pressure regime showed that the main chemical groups for syndecan-4 were present at the air-water interface. Subsequent monolayer decompression and compression showed surface pressure-area isotherms with a large expansion for the lipid monolayers interacting with the cell culture reported to over-express syndecan-4, which was also an indication that the proteoglycan was inserted in the lipid monolayer. The introduction of biological molecules with affinity for syndecam-4, such as growth factors, which present a key role in biochemical process of cell signaling, changed the surface properties of the hybrid film, leading to a model, by which the growth factor binds to the sulfate groups present in the heparan sulfate chains. The polypeptide moiety of syndecan-4 responds to this interaction changing its conformation, which leads to lipid film relaxation and further monolayer condensation.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/química , Membranas Artificiais , Modelos Químicos , Transição de Fase , Sindecana-4/química , Animais , Bovinos , Células Cultivadas , Ratos , Sindecana-4/metabolismo
13.
Blood ; 117(12): 3382-90, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21252093

RESUMO

Because syndecan-4 (SD-4) on effector and memory T cells inhibits T-cell activation by binding dendritic cell-associated heparan sulfate proteoglycan-integrin ligand (DC-HIL) on antigen presenting cells and because malignant cells of the cutaneous T-cell lymphoma (CTCL) subset, Sézary syndrome (SS), exhibit memory T-cell phenotype, we posited SS cells to express SD-4. Indeed, malignant T cells from patients with SS and from CTCL cell lines constitutively expressed SD-4 at high levels, in contrast to T cells from healthy volunteers and patients with other inflammatory skin diseases and to non-CTCL cell lines that did not. SS cells also bound to DC-HIL at a level higher than normal T cells activated in vitro, resulting in their inhibited proliferation to anti-CD3 antibody. SD-4 on SS cells also trapped transforming growth factor-ß1 to their cell surface, enhancing their ability to inhibit activation of syngeneic and allogeneic normal T cells. All of these inhibitory properties were dependent on overexpression of distinct heparan sulfate (HS) moieties by SD-4 on SS cells. Finally, we showed toxin-conjugated DC-HIL to abrogate the ability of SS cells to proliferate in vitro. These findings indicate that SD-4 bearing distinct HS moieties plays a pathogenic role in SS and may be targeted for treatment.


Assuntos
Heparitina Sulfato/fisiologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Síndrome de Sézary/imunologia , Sindecana-4/genética , Linfócitos T/imunologia , Fator de Crescimento Transformador beta/metabolismo , Idoso , Idoso de 80 Anos ou mais , Membrana Celular/metabolismo , Feminino , Heparitina Sulfato/química , Heparitina Sulfato/imunologia , Heparitina Sulfato/metabolismo , Humanos , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Masculino , Glicoproteínas de Membrana/fisiologia , Pessoa de Meia-Idade , Ligação Proteica/imunologia , Ligação Proteica/fisiologia , Transporte Proteico , Receptores Imunológicos/imunologia , Síndrome de Sézary/genética , Síndrome de Sézary/metabolismo , Síndrome de Sézary/patologia , Sindecana-4/química , Sindecana-4/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia
14.
Cell Mol Life Sci ; 67(11): 1881-94, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20229236

RESUMO

During mitosis, cells detach, and the cell-matrix interactions become restricted. At the completion of cytokinesis, the two daughter cells are still connected transiently by an intercellular bridge (ICB), which is subjected to abscission, as the terminal step of cytokinesis. Cell adhesion to the matrix is mediated by syndecan-4 (SDC4) transmembrane heparan sulfate proteoglycan. Our present work demonstrated that SDC4 promotes cytokinesis in a phosphorylation-dependent manner in MCF-7 breast adenocarcinoma cells. The serine179-phosphorylation and the ectodomain shedding of SDC4 changed periodically in a cell cycle-dependent way reaching the maximum at G2/M phases. On the contrary, the phospho-resistant Ser179Ala mutant abrogated the shedding. The phosphorylated full-length and shed remnants enriched along the mitotic spindles, and subsequently in the ICBs, however, proper membrane insertion was necessary for midbody localization. Expression of phosphomimicking Ser179Glu SDC4 resulted in incomplete abscission, whereas expression of the phospho-resistant SDC4 led to giant, multinucleated cells.


Assuntos
Citocinese/fisiologia , Sindecana-4/fisiologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Substituição de Aminoácidos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Linhagem Celular Tumoral , Feminino , Células Gigantes/metabolismo , Células Gigantes/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/química , Fuso Acromático/metabolismo , Sindecana-4/química , Sindecana-4/genética
15.
J Biol Chem ; 281(43): 32156-63, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16936286

RESUMO

Syndecans are cell surface proteoglycans involved in cell adhesion and motility. Syndecan-4 is an important component of focal adhesions and is involved in cytoskeletal reorganization. Previous work has shown that the syndecan-4 ectodomain can support cell attachment. Here, three vertebrate syndecan-4 ectodomains were compared, including that of the zebrafish, and we have demonstrated that the cell binding activity of the syndecan-4 ectodomain is conserved. Cell adhesion to the syndecan-4 ectodomain appears to be a characteristic of mesenchymal cells. Comparison of syndecan-4 ectodomain sequences led to the identification of three conserved regions of sequence, of which the NXIP motif is important for cell binding activity. We have shown that cell adhesion to the syndecan-4 ectodomain involves beta1 integrins in several cell types.


Assuntos
Adesão Celular , Sindecana-4/química , Sindecana-4/genética , Sindecana-4/fisiologia , Células 3T3 , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Neoplasias da Mama/patologia , Células COS , Técnicas de Cultura de Células , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Clonagem Molecular , Sequência Conservada , Cricetinae , Cães , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Glutationa Transferase/metabolismo , Humanos , Células Jurkat , Células K562 , Camundongos , Dados de Sequência Molecular , Plasmídeos , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Pele/citologia , Sindecana-4/isolamento & purificação , Sindecana-4/metabolismo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA