Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Adv Rheumatol ; 62(1): 25, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820936

RESUMO

BACKGROUND: Phospholipase C-like 1 (PLCL1), a protein that lacks catalytic activity, has similar structures to the PLC family. The aim of this research was to find the function and underlying mechanisms of PLCL1 in fibroblast-like synoviocyte (FLS) of rheumatoid arthritis (RA). METHODS: In this study, we first analyzed the expression of PLCL1 in the synovial tissue of RA patients and K/BxN mice by immunohistochemical staining. Then silencing or overexpressing PLCL1 in FLS before stimulating by TNF-α. The levels of IL-6, IL-1ß and CXCL8 in FLS and supernatants were detected by Western Blot (WB), Real-Time Quantitative PCR and Enzyme Linked Immunosorbent Assay. We used INF39 to specifically inhibit the activation of NLRP3 inflammasomes, and detected the expression of NLRP3, Cleaved Caspase-1, IL-6 and IL-1ß in FLS by WB. RESULT: When PLCL1 was silenced, the level of IL-6, IL-1ß and CXCL8 were down-regulated. When PLCL1 was overexpressed, the level of IL-6, IL-1ß and CXCL8 were unregulated. The previous results demonstrated that the mechanism of PLCL1 regulating inflammation in FLS was related to NLRP3 inflammasomes. INF39 could counteract the release of inflammatory cytokines caused by overexpression of PLCL1. CONCLUSION: Result showed that the function of PLCL1 in RA FLS might be related to the NLRP3 inflammasomes. We finally confirmed our hypothesis with the NLRP3 inhibitor INF39. Our results suggested that PLCL1 might promote the inflammatory response of RA FLS by regulating the NLRP3 inflammasomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Artrite Reumatoide , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfoinositídeo Fosfolipase C , Sinoviócitos , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Fibroblastos/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação , Interleucina-6/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fosfoinositídeo Fosfolipase C/imunologia , Sinoviócitos/imunologia , Sinoviócitos/patologia
2.
Bioengineered ; 13(1): 268-279, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719315

RESUMO

Dehydroevodiamine (DHE) is an effective natural active substance extracted from Euodiae Fructus, which is a widely used herbal drug in traditional Chinese medicine. The focus of this study was to test the possibility of using DHE in the treatment of rheumatoid arthritis (RA) diseases. A rat model of adjuvant-induced arthritis (AIA) was generated using Complete Freund's Adjuvant (CFA). Body weight changes, arthritis scores, ankle pathology, tumor necrosis factor-alpha (TNF-α), interleukin-1ß(IL-1ß), interleukin-6 (IL-6), and interleukin-17 (IL-17) secretion, as well as matrix metalloproteinase (MMP) expression in joint tissue, were measured as indicators of viability of DHE medicated AIA rats. Human fibroblast-like synoviocytes (MH7A cells) were connected to check these impacts. The results confirmed that DHE administration had an excellent therapeutic impact on the AIA rat model, substantially relieving joint swelling, inhibiting synovial pannus hyperplasia, and decreasing joint scores. In addition, the serum enzyme-linked immunosorbent assay (ELISA) showed that DHE treatment reduced the expression of pro-inflammatory factors in AIA rats. The immunohistochemical results showed that DHE treatment could reduce the synthesis of MMPs such as matrix metalloproteinase-1(MMP-1) and matrix metalloproteinase-3 (MMP-3) in the ankle tissue of AIA rats. In vitro, DHE inhibited cell proliferation, mRNA transcription, protein synthesis of proinflammatory factors such as IL-1ßand IL-6, and matrix metalloproteinases such as MMP-1 and MMP-3. Furthermore, DHE inhibited the phosphorylation levels of p38, JNK, and ERK proteins in TNF-α-treated MH7A cells.This work assessed the effect of DHE in AIA rats and revealed its mechanism in vitro.


Assuntos
Alcaloides/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Artrite Experimental/tratamento farmacológico , Adjuvante de Freund/efeitos adversos , Sinoviócitos/citologia , Alcaloides/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Artrite Experimental/induzido quimicamente , Artrite Experimental/genética , Artrite Experimental/imunologia , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinases da Matriz/metabolismo , Ratos , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/imunologia
3.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884486

RESUMO

Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, the functions of PLA1A in the development of systemic autoimmune rheumatic diseases remain elusive. To investigate the possible implication of PLA1A during rheumatic diseases, we monitored PLA1A in synovial fluids from patients with rheumatoid arthritis and plasma of early-diagnosed arthritis (EA) patients and clinically stable systemic lupus erythematosus (SLE) patients. We used human primary fibroblast-like synoviocytes (FLSs) to evaluate the PLA1A-induced biological responses. Our results highlighted that the plasma concentrations of PLA1A in EA and SLE patients were elevated compared to healthy donors. High concentrations of PLA1A were also detected in synovial fluids from rheumatoid arthritis patients compared to those from osteoarthritis (OA) and gout patients. The origin of PLA1A in FLSs and the arthritic joints remained unknown, as healthy human primary FLSs does not express the PLA1A transcript. Besides, the addition of recombinant PLA1A stimulated cultured human primary FLSs to secrete IL-8. Preincubation with heparin, autotaxin (ATX) inhibitor HA130 or lysophosphatidic acid (LPA) receptor antagonist Ki16425 reduced PLA1A-induced-secretion of IL-8. Our data suggested that FLS-associated PLA1A cleaves membrane-exposed PS into lysoPS, which is subsequently converted to LPA by ATX. Since primary FLSs do not express any lysoPS receptors, the data suggested PLA1A-mediated pro-inflammatory responses through the ATX-LPA receptor signaling axis.


Assuntos
Artrite/patologia , Fibroblastos/patologia , Gota/patologia , Lúpus Eritematoso Sistêmico/patologia , Fosfolipases A1/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Sinoviócitos/patologia , Artrite/genética , Artrite/imunologia , Artrite/metabolismo , Estudos de Casos e Controles , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Gota/genética , Gota/imunologia , Gota/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Fosfolipases A1/genética , Diester Fosfórico Hidrolases/genética , Receptores de Ácidos Lisofosfatídicos/genética , Líquido Sinovial/imunologia , Líquido Sinovial/metabolismo , Sinoviócitos/imunologia , Sinoviócitos/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769349

RESUMO

Recent evidence has suggested that synovial inflammation and macrophage polarization were involved in the pathogenesis of osteoarthritis (OA). Additionally, high-molecular-weight hyaluronic acid (HMW-HA) was often used clinically to treat OA. GRP78, an endoplasmic reticulum (ER) stress chaperone, was suggested to contribute to the hyperplasia of synovial cells in OA. However, it was still unclear whether HMW-HA affected macrophage polarization through GRP78. Therefore, we aimed to identify the effect of HMW-HA in primary synovial cells and macrophage polarization and to investigate the role of GRP78 signaling. We used IL-1ß to treat primary synoviocytes to mimic OA, and then treated them with HMW-HA. We also collected conditioned medium (CM) to culture THP-1 macrophages and examine the changes in the phenotype. IL-1ß increased the expression of GRP78, NF-κB (p65 phosphorylation), IL-6, and PGE2 in primary synoviocytes, accompanied by an increased macrophage M1/M2 polarization. GRP78 knockdown significantly reversed the expression of IL-1ß-induced GRP78-related downstream molecules and macrophage polarization. HMW-HA with GRP78 knockdown had additive effects in an IL-1ß culture. Finally, the synovial fluid from OA patients revealed significantly decreased IL-6 and PGE2 levels after the HMW-HA treatment. Our study elucidated a new form of signal transduction for HMW-HA-mediated protection against synovial inflammation and macrophage polarization and highlighted the involvement of the GRP78-NF-κB signaling pathway.


Assuntos
Chaperona BiP do Retículo Endoplasmático/metabolismo , Ácido Hialurônico/farmacologia , Inflamação/prevenção & controle , Interleucina-1beta/efeitos adversos , Macrófagos/imunologia , NF-kappa B/metabolismo , Osteoartrite/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Citocinas/metabolismo , Chaperona BiP do Retículo Endoplasmático/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Ativação de Macrófagos , Pessoa de Meia-Idade , Peso Molecular , NF-kappa B/genética , Osteoartrite/induzido quimicamente , Osteoartrite/imunologia , Osteoartrite/patologia , Transdução de Sinais , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Sinoviócitos/patologia
5.
Int Immunopharmacol ; 101(Pt A): 108273, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700130

RESUMO

OBJECTIVE: Nitidine chloride (NC), a natural small molecular compound from traditional Chinese herbal medicine zanthoxylum nitidum, has been shown to exhibit anti-tumor effect. However, its role in autoimmune diseases such as rheumatoid arthritis (RA) is unknown. Here, we investigate the effect of NC in controlling fibroblast-like synoviocytes (FLS)-mediated synovial inflammation and joint destruction in RA and further explore its underlying mechanism(s). METHODS: FLSs were separated from synovial tissues obtained from patients with RA. Protein expression was analyzed by Western blot or immunohistochemistry. Gene expression was measured using quantitative RT-PCR. ELISA was used to measure the levels of cytokines and MMPs. Cell proliferation was detected using EdU incorporation. Migration and invasion were evaluated by Boyden chamber assay. RNA sequencing analysis was used to identify the target of NC. Collagen-induced arthritis (CIA) model was used to evaluate the in vivo effect of NC. RESULTS: NC treatment reduced the proliferation, migration, invasion, and lamellipodia formation but not apoptosis of RA FLSs. We also demonstrated the inhibitory effect of NC on TNF-α-induced expression and secretion of IL-6, IL-8, CCL-2, MMP-1 and MMP-13. Furthermore, we identified KCNH1, a gene that encodes ether-à-go-go-1 channel, as a novel targeting gene of NC in RA FLSs. KCNH1 expression was increased in FLSs and synovial tissues from patients with RA compared to healthy controls. KCNH1 knockdown or NC treatment decreased the TNF-α-induced phosphorylation of AKT. Interestingly, NC treatment ameliorated the severity of arthritis and reduced synovial KCNH1 expression in mice with CIA. CONCLUSIONS: Our data demonstrate that NC treatment inhibits aggressive and inflammatory actions of RA FLSs by targeting KCNH1 and sequential inhibition of AKT phosphorylation. Our findings suggest that NC might control FLS-mediated rheumatoid synovial inflammation and joint destruction, and be a novel therapeutic agent for RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Benzofenantridinas/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Membrana Sinovial/efeitos dos fármacos , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Benzofenantridinas/uso terapêutico , Células Cultivadas , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Cultura Primária de Células , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/imunologia
6.
Front Immunol ; 12: 725641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512657

RESUMO

Fibroblast-like synoviocytes (FLS) play an important role in maintaining joint homeostasis and orchestrating local inflammatory processes. When activated during injury or inflammation, FLS undergo transiently increased bioenergetic and biosynthetic demand. We aimed to identify metabolic changes which occur early in inflammatory disease pathogenesis which might support sustained cellular activation in persistent inflammation. We took primary human FLS from synovial biopsies of patients with very early rheumatoid arthritis (veRA) or resolving synovitis, and compared them with uninflamed control samples from the synovium of people without arthritis. Metabotypes were compared using NMR spectroscopy-based metabolomics and correlated with serum C-reactive protein levels. We measured glycolysis and oxidative phosphorylation by Seahorse analysis and assessed mitochondrial morphology by immunofluorescence. We demonstrate differences in FLS metabolism measurable after ex vivo culture, suggesting that disease-associated metabolic changes are long-lasting. We term this phenomenon 'metabolic memory'. We identify changes in cell metabolism after acute TNFα stimulation across disease groups. When compared to FLS from patients with early rheumatoid arthritis, FLS from patients with resolving synovitis have significantly elevated mitochondrial respiratory capacity in the resting state, and less fragmented mitochondrial morphology after TNFα treatment. Our findings indicate the potential to restore cell metabotypes by modulating mitochondrial function at sites of inflammation, with implications for treatment of RA and related inflammatory conditions in which fibroblasts play a role.


Assuntos
Artrite Reumatoide/imunologia , Fibroblastos/imunologia , Inflamação/imunologia , Sinoviócitos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Fosforilação Oxidativa , Análise de Regressão , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fator de Necrose Tumoral alfa/genética
7.
Sci Rep ; 11(1): 19385, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588517

RESUMO

TNF is a central cytokine in the pathogenesis of rheumatoid arthritis (RA). Elevated level of TNF causes local inflammation that affects immune cells and fibroblast-like synoviocytes (FLS). Nowadays, only 20-30% of patients experience remission after the standard of care therapy-antibodies against TNF. Interestingly, responders show reduced levels of GLUT1 and GAPDH, highlighting a potential link to cellular metabolism. The aim of the study was to investigate whether TNF directly affects the metabolic phenotype of FLS. Real-time respirometry displayed TNF-induced upregulation of glycolysis along with a modest increase of oxidative phosphorylation in FLS from healthy donors. In addition, TNF stimulation enhanced HIF1A and GLUT1 expression. The upregulation of HIF1A and GLUT1 reflects their enriched level in FLS from RA patients (RA-FLS). The inhibition of TAK1, HIF1a and hexokinase deciphered the importance of TNF/TAK1/HIF1A/glycolysis signaling axis. To prove that inhibition of glycolysis reduced the pathogenic phenotype, we showed that 2-deoxyglucose, a hexokinase inhibitor, partially decreased secretion of RA biomarkers. In summary, we identified a direct role of TNF on glycolytic reprogramming of FLS and confirmed the potency of immunometabolism for RA. Further studies are needed to evaluate the therapeutic impact especially regarding non-responder data.


Assuntos
Artrite Reumatoide/imunologia , Transportador de Glucose Tipo 1/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Sinoviócitos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Células Cultivadas , Humanos , Sinoviócitos/citologia
8.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359833

RESUMO

Inflammatory monocyte-derived dendritic cells (Mo-DCs) have been described in several chronic inflammatory disorders, such as rheumatoid arthritis (RA), and are suspected to play a detrimental role by fueling inflammation and skewing adaptive immune responses. However, the characterization of their phenotype is still limited, as well as the comprehension of the factors that govern their differentiation. Here, we show that inflammatory Mo-DCs generated in vitro expressed a large and atypical panel of C-type lectin receptors, including isoforms of CD209 and CD206, CD303 and CD207, as well as intracellular proteins at their surfaces such as the lysosomal protein CD208. Combination of these markers allowed us to identify cells in the synovial fluid of RA patients with a close phenotype of inflammatory Mo-DCs generated in vitro. Finally, we found in coculture experiments that RA synoviocytes critically affected the phenotypic differentiation of monocytes into Mo-DCs, suggesting that the crosstalk between infiltrating monocytes and local mesenchymal cells is decisive for Mo-DCs generation.


Assuntos
Artrite Reumatoide/imunologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Monócitos/imunologia , Sinoviócitos/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Antígenos B7/genética , Antígenos B7/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Diferenciação Celular , Técnicas de Cocultura , Células Dendríticas/patologia , Humanos , Imunofenotipagem , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/imunologia , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Monócitos/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Fenótipo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores de Interleucina/genética , Receptores de Interleucina/imunologia , Transdução de Sinais , Líquido Sinovial/citologia , Líquido Sinovial/imunologia , Sinoviócitos/patologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
9.
Arthritis Rheumatol ; 73(12): 2206-2218, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34423919

RESUMO

OBJECTIVE: To investigate the role of PF-06650833, a highly potent and selective small-molecule inhibitor of interleukin-1-associated kinase 4 (IRAK4), in autoimmune pathophysiology in vitro, in vivo, and in the clinical setting. METHODS: Rheumatoid arthritis (RA) inflammatory pathophysiology was modeled in vitro through 1) stimulation of primary human macrophages with anti-citrullinated protein antibody immune complexes (ICs), 2) RA fibroblast-like synoviocyte (FLS) cultures stimulated with Toll-like receptor (TLR) ligands, as well as 3) additional human primary cell cocultures exposed to inflammatory stimuli. Systemic lupus erythematosus (SLE) pathophysiology was simulated in human neutrophils, dendritic cells, B cells, and peripheral blood mononuclear cells stimulated with TLR ligands and SLE patient ICs. PF-06650833 was evaluated in vivo in the rat collagen-induced arthritis (CIA) model and the mouse pristane-induced and MRL/lpr models of lupus. Finally, RNA sequencing data generated with whole blood samples from a phase I multiple-ascending-dose clinical trial of PF-06650833 were used to test in vivo human pharmacology. RESULTS: In vitro, PF-06650833 inhibited human primary cell inflammatory responses to physiologically relevant stimuli generated with RA and SLE patient plasma. In vivo, PF-06650833 reduced circulating autoantibody levels in the pristane-induced and MRL/lpr murine models of lupus and protected against CIA in rats. In a phase I clinical trial (NCT02485769), PF-06650833 demonstrated in vivo pharmacologic action pertinent to SLE by reducing whole blood interferon gene signature expression in healthy volunteers. CONCLUSION: These data demonstrate that inhibition of IRAK4 kinase activity can reduce levels of inflammation markers in humans and provide confidence in the rationale for clinical development of IRAK4 inhibitors for rheumatologic indications.


Assuntos
Artrite Experimental/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Isoquinolinas/uso terapêutico , Lactamas/uso terapêutico , Macrófagos/efeitos dos fármacos , Doenças Reumáticas/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Animais , Artrite Experimental/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Isoquinolinas/farmacologia , Lactamas/farmacologia , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Camundongos , Ratos , Doenças Reumáticas/imunologia , Sinoviócitos/imunologia
10.
Int J Mol Sci ; 22(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299030

RESUMO

Neutrophil-derived microvesicles (NDMVs) have the potential to exert anti-inflammatory effects. Our study aimed to explore the effects of NDMVs on proinflammatory cytokines expressed by tumor necrosis factor α (TNFα)-stimulated fibroblast-like synoviocytes (FLS). FLS were isolated from the synovium of knee osteoarthritis (OA) patients undergoing surgery. NDMVs, isolated from TNFα-stimulated healthy neutrophils, were characterized by electron microscopy and nanoparticle tracking analysis. MTT and scratch wound healing assays were used to measure FLS viability and migration after treatment with NDMVs, while internalization of fluorescently labeled NDMVs was appraised by flow cytometry and confocal microscopy. Levels of proinflammatory cytokines in supernatants were quantified by the Bio-Plex system. Incubation of FLS with NDMVs at a vesicle/cell ratio of 100 resulted in a time-dependent uptake, with 35% of synoviocytes containing microvesicles over a 6-24 h time period, with no significant change in cell viability. TNFα stimulated the cytokine expression in FLS, and NDMVs down-regulated TNFα-induced expression of IL-5, IL-6, IL-8, MCP-1, IFNγ and MIP-1ß. However, this down-regulation was selective, as NDMVs had no significant effects on TNFα-stimulated expression of IL-2 or IL-4. NDMVs were internalized by FLS to inhibit TNFα-stimulated broad-spectrum proinflammatory cytokine secretion. NDMVs, therefore, may exhibit an anti-inflammatory role in the regulation of the FLS function.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Neutrófilos/metabolismo , Osteoartrite do Joelho/metabolismo , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/patologia , Humanos , Neutrófilos/patologia , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/imunologia , Osteoartrite do Joelho/patologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/imunologia , Sinoviócitos/patologia
11.
Int J Rheum Dis ; 24(8): 1024-1031, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34155816

RESUMO

AIM: The increased level of interleukin-6 (IL-6) plays a significant role in the pathogenesis of rheumatoid arthritis (RA). Specific blockade of IL-6 or its receptor has been used successfully in treating RA. MicroRNAs can regulate gene expression and act as regulators of target genes. Manipulation of specific microRNAs provides a novel therapeutic strategy for treating/preventing diseases. This study explored the role of miR-98-5p in the regulation of IL-6 expression in rheumatoid fibroblast-like synoviocytes (RA-FLSs). METHODS: Real-time PCR was used to detect miR-98-5p expression in RA-FLSs and normal human fibroblast-like synovial cells (HFLSs). Site-directed gene mutagenesis and reporter gene assay were performed to identify the interaction between miR-98-5p and IL-6. Manipulation of miR-98-5p expression in RA-FLS used transfection with miR-98-5p mimic or inhibitor. Stimulation of FLSs with IL-1ß induced IL-6 production. Enzyme-linked immunosorbent assay was used to detect the level of IL-6 secreted into the RA-FLS culture supernatant. RESULTS: Compared with HFLSs, the expression of miR-98-5p in RA-FLSs was significantly downregulated, and was negatively correlated with DAS28 scores and rheumatoid factor. In patients with anti-keratin antibody-positive RA, the expression level of miR-98-5p was lower. miR-98-5p negatively regulated the expression of IL-6 in RA-FLSs. After IL-1ß stimulation, the expression of miR-98-5p decreased and the level of IL-6 protein was upregulated during IL-6 secretion. CONCLUSION: These data suggest that manipulation of miR-98-5p, which negatively modulates IL-6 expression, may be a potential clinical approach in RA.


Assuntos
Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Interleucina-6/metabolismo , MicroRNAs/metabolismo , Sinoviócitos/metabolismo , Idoso , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Estudos de Casos e Controles , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Células HeLa , Humanos , Interleucina-1beta/farmacologia , Interleucina-6/genética , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Sinoviócitos/imunologia , Regulação para Cima
12.
Inflammation ; 44(6): 2232-2245, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34101073

RESUMO

We previously reported that penta-acetyl geniposide ((Ac)5GP, an active derivative of geniposide) showed anti-arthritic effect on adjuvant-induced arthritis (AIA) rats by promoting the apoptosis of AIA fibroblast-like synoviocyte (FLS). This study aimed to demonstrate the effects of (Ac)5GP on migration, invasion, and inflammation of TNF-α-stimulated rheumatoid arthritis (RA) FLS (MH7A cell) and to explore the involved mechanisms. MTT assay was used to determine the applied non-cytotoxic doses of (Ac)5GP (12.5, 25, 50 µM) in vitro. Results of wound-healing, transwell, and phalloidin staining assays indicated that (Ac)5GP reduced the migration, invasion, and F-actin cytoskeletal reorganization of TNF-α-stimulated MH7A. Results of ELISA and western blot assays confirmed that (Ac)5GP reduced TNF-α-induced production of pro-inflammatory cytokines (like IL-1ß, IL-6, IL-8) and matrix metalloproteinases (MMPs, such as MMP-2 and MMP-9). Moreover, (Ac)5GP inhibited TNF-α-induced activation of Wnt/ß-catenin pathway, evidenced by reducing the protein levels of Wnt1, p-GSK-3ß (Ser9), and ß-catenin and preventing ß-catenin nuclear translocation. Importantly, the combination of XAV939 (an inhibitor of Wnt/ß-catenin) promoted the actions of (Ac)5GP on TNF-α-induced migration, invasion, and inflammation, further revealing the involvement of Wnt/ß-catenin pathway underlying the therapeutic effects of (Ac)5GP on TNF-α-stimulated MH7A. In vivo, (Ac)5GP relieved the progression and severity of rat collagen-induced arthritis, related to reducing the levels of IL-1ß, IL-6, IL-8, MMP-2, and MMP-9 as well as inhibiting Wnt/ß-catenin pathway in synovial tissues. Collectively, (Ac)5GP could suppress TNF-α-induced migration, invasion, and inflammation in RA FLS involving Wnt/ß-catenin pathway and (Ac)5GP might be as a candidate agent for RA treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Antirreumáticos/farmacologia , Artrite Experimental/prevenção & controle , Artrite Reumatoide/prevenção & controle , Movimento Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Sinoviócitos/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Linhagem Celular , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Ratos Sprague-Dawley , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fator de Necrose Tumoral alfa/toxicidade
13.
Immunol Res ; 69(3): 225-238, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33983569

RESUMO

P53 is a transcription factor that regulates many signaling pathways like apoptosis, cell cycle, DNA repair, and cellular stress responses. P53 is involved in inflammatory responses through the regulation of inflammatory signaling pathways, induction of cytokines, and matrix metalloproteinase expression. Also, p53 regulates immune responses through modulating Toll-like receptors expression and innate and adaptive immune cell differentiation and maturation. P53 is a modulator of the apoptosis and proliferation processes through regulating multiple anti and pro-apoptotic genes. Rheumatoid arthritis (RA) is categorized as an invasive inflammatory autoimmune disease with irreversible deformity of joints and bone resorption. Different immune and non-immune cells contribute to RA pathogenesis. Fibroblast-like synoviocytes (FLSs) have been recently introduced as a key player in the pathogenesis of RA. These cells in RA synovium produce inflammatory cytokines and matrix metalloproteinases which results in synovitis and joint destruction. Besides, hyper proliferation and apoptosis resistance of FLSs lead to synovial hyperplasia and bone and cartilage destruction. Given the critical role of p53 in inflammation, apoptosis, and cell proliferation, lack of p53 function (due to mutation or low expression) exerts a prominent role for this gene in the pathogenesis of RA. This review focuses on the role of p53 in different mechanisms and cells (specially FLSs) that involved in RA pathogenesis.


Assuntos
Artrite Reumatoide/genética , Epigênese Genética/imunologia , Sinoviócitos/patologia , Sinovite/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Apoptose/imunologia , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Cartilagem Articular/imunologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Proliferação de Células/genética , Citocinas/metabolismo , Metilação de DNA , Humanos , Hiperplasia/genética , Hiperplasia/imunologia , Hiperplasia/patologia , Mutação com Perda de Função , Metaloproteinases da Matriz/metabolismo , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Membrana Sinovial/citologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Sinovite/imunologia , Sinovite/patologia , Proteína Supressora de Tumor p53/metabolismo
14.
Immunobiology ; 226(2): 152059, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561598

RESUMO

Rheumatoid arthritis (RA) is a common chronic autoimmune disease, which seriously harms human health. The hyperplastic growth of fibroblast-like synoviocytes (FLSs) plays a key role in the pathogenesis of RA. However, the pathogenesis of RA remains unclear. In this experiment, we confirmed that Tumor necrosis factor alpha (TNF-α) could activate the autophagy of RA-FLSs. 3-Methyladenine (3-MA) and Chloroquine (CQ), two types of autophagy blocker, combined with TNF-α were used to treat FLSs. The results showed that this treatment caused a reduction in the level of autophagy-related protein, significant increases in the expression of apoptosis-related protein and the apoptosis rate, and significant inhibition of the proliferation-promoting ability of TNF-α. Ammonium pyrrolidinedithiocarbamate (PDTC), a specific nuclear factor kappa-B (NF-κB) activity blocker, significantly inhibited autophagy induced by TNF-α. Collectively, these findings showed, for the first time, that TNF-α can up-regulate autophagy activity and activate the NF-κB signal pathway. Inhibition of autophagy can improve the imbalance of proliferation/apoptosis of FLSs aggravated by TNF-α to some extent, thus delaying the progression of RA. The NF-κB signal pathway may be involved in the regulation of FLSs autophagy by TNF-α.


Assuntos
Artrite Reumatoide/imunologia , Autofagia , NF-kappa B/imunologia , Sinoviócitos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Células Cultivadas , Fibroblastos , Humanos , Transdução de Sinais
15.
Sci Rep ; 10(1): 20297, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219307

RESUMO

Fibroblast-like synoviocytes (FLS) play a critical role in the pathogenesis of rheumatoid arthritis (RA). Chronic inflammation induces transcriptomic and epigenetic modifications that imparts a persistent catabolic phenotype to the FLS, despite their dissociation from the inflammatory environment. We analyzed high throughput gene expression and chromatin accessibility data from human and mouse FLS from our and other studies available on public repositories, with the goal of identifying the persistently reprogrammed signaling pathways driven by chronic inflammation. We found that the gene expression changes induced by short-term tumor necrosis factor-alpha (TNF) treatment were largely sustained in the FLS exposed to chronic inflammation. These changes that included both activation and repression of gene expression, were accompanied by the remodeling of chromatin accessibility. The sustained activated genes (SAGs) included established pro-inflammatory signaling components known to act at multiple levels of NF-kappaB, STAT and AP-1 signaling cascades. Interestingly, the sustained repressed genes (SRGs) included critical mediators and targets of the BMP signaling pathway. We thus identified sustained repression of BMP signaling as a unique constituent of the long-term inflammatory memory induced by chronic inflammation. We postulate that simultaneous targeting of these activated and repressed signaling pathways may be necessary to combat RA persistence.


Assuntos
Artrite Reumatoide/imunologia , Transdução de Sinais/imunologia , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Artrite Reumatoide/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Conjuntos de Dados como Assunto , Epigênese Genética/imunologia , Fibroblastos , Humanos , Camundongos , Cultura Primária de Células , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Membrana Sinovial/imunologia , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/genética
16.
J Tradit Chin Med ; 40(5): 774-781, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33000578

RESUMO

OBJECTIVE: To investigate the interaction between nuclear factor kappa-B (NF-κB) and inflammatory cytokines in synovial cell inflammatory responses induced by sodium urate, and to evaluate the efficacy of Xixiancao (Herba Siegesbeckiae Orientalis) on these interactions. METHODS: The interactions between NF-κB and inflammatory cytokines/mediators in synovial cells in acute gouty arthritis were investigated. We observed the expressions of NF-κB, interleukin (IL)-1ß, IL-8, and tumor necrosis factor alpha (TNF-α) in synovial cells at different timepoints in an in vitro model of synovial cell inflammatory responses induced by sodium urate and in an in vivo model of gouty arthritis. Changes in the expressions of NF-κB, IL-1ß, IL-8, and TNF- in synovial cells of all experimental groups were compared and observed after treatment with different doses of Xixiancao (Herba Siegesbeckiae Orientalis) and colchicine. The interactions between NF-κB and IL-1ß, IL-8, and TNF-α were analyzed. Pathological changes in synovial tissues were observed in rats with acute gouty arthritis. RESULTS: Compared with the blank group, the expression levels of NF-κB, IL-1ß, IL-8, and TNF-α were increased significantly at different timepoints in the in vitro model of synovial cell inflammatory responses induced by sodium urate, and in the in vivo model of gouty arthritis. Compared with the model group, the expressions of NF-κB, IL-1ß, IL-8, and TNF-α in synovial cells induced by sodium urate were decreased in the different Xixiancao (Herba Siegesbeckiae Orientalis) dose groups and the colchicine group. The effect was more obvious in the high dose Xixiancao (Herba Siegesbeckiae Orientalis) group. The expression of NF-κB in synovial cells was positively correlated with the expressions of IL-1ß, IL-8, and TNF-. Histopathological examination of synovial tissues in the high dose Xixiancao (Herba Siegesbeckiae Orientalis) group and Colchicine group showed that the characteristics of acute gouty arthritis were reduced, and there was a trend towards a positive correlation between NF-κB and inflammatory cytokine expressions. CONCLUSION: The activation of NF-κB is associated with the activation of IL-1ß, IL-8, and TNF-α during the pathogenesis of acute gouty arthritis, leading to the continuation and enhancement of the inflammatory response. Expressions of IL-1ß, IL-8, and TNF-α in synoviocytes during acute gouty arthritis effectively inhibit local inflammation.


Assuntos
Artrite Gotosa/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , NF-kappa B/imunologia , Sinoviócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/imunologia , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/genética , Artrite Gotosa/imunologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Masculino , NF-kappa B/genética , Ratos , Ratos Wistar , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/imunologia , Sinoviócitos/imunologia , Fator de Necrose Tumoral alfa/genética , Ácido Úrico/efeitos adversos
17.
Theranostics ; 10(23): 10573-10588, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929367

RESUMO

Rationale: Pigmented villonodular synovitis (PVNS) is a destructive benign tumor-like hyperplastic disease that occurs in synovial tissue. Fibroblast-like synoviocytes (FLS) are the predominant cell type comprising the structure of the PVNS synovial lining layer. Due to a high recurrence rate, high invasion, migration, and cartilage destruction ability, PVNS causes substantial damage to patients and the efficacy of surgical resection is not satisfactory. Therefore, exploring the pathogenesis and identifying novel therapeutic targets for PVNS are urgently required. Currently, the pathogenesis of PVNS remains unclear, and there is uncertainty and controversy regarding whether PVNS is an inflammatory or a neoplastic disease. Cadherin-11 is a classical molecule that mediates hemophilic cell-to-cell adhesion in FLS and plays an important role in the normal synovium lining layer formation. This study aimed to explore the role of inflammation and cadherin-11 in PVNS pathogenesis and determine the effects of cadherin-11 as a molecular target for PVNS treatment. Methods: FLS were primarily cultured from PVNS patients during arthroscopic synovectomy. The level of cytokines in the PVNS synovial fluid was evaluated using a human antibody array. Cadherin-11 expression of PVNS FLS was detected by qPCR, Western blots, tissue immunohistochemistry, and cell immunofluorescence. Cadherin-11 was down-regulated by siRNA or up-regulated with a plasmid, with or without inflammatory factor stimulation, and PI3K/Akt was inhibited with LY294002. The capacity of migration and invasion of PVNS FLS was tested using Transwell and wound-healing assays. Activation of the nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was detected by Western blots. Chondrocyte damage by PVNS FLS was assessed with a co-culture assay. Results: Inflammatory factors (IL-1ß and TNF-α) in the synovial fluid of PVNS patients were significantly up-regulated. Cadherin-11 was highly expressed in the FLS of PVNS patients, and positively correlated with recurrence, extra-articular migration, and cartilage destruction of PVNS. Knocking down of cadherin-11 inhibited the migration and invasion of PVNS FLS. Moreover, inflammatory factors up-regulated the expression of cadherin-11, which activated the NF-κB and MAPK signaling pathways and led to cartilage destruction. Inhibition of cadherin-11 blocked IL-1ß- and TNF-α-induced activation of the above pathways, migration and invasion of PVNS FLS, and damage of chondrocyte. In addition, the elevation of cadherin-11 expression, together with the migration and invasion, of PVNS FLS was down-regulated by the inhibition of the PI3K/Akt signaling pathway. Conclusions: Cadherin-11 plays an important role in the pathogenesis of PVNS and forms a positive feedback loop with inflammatory factors, which further activates the NF-κB and MAPK pathways to trigger an inflammatory cascade. Cadherin-11-mediated inflammation results in PVNS with high recurrence, invasiveness, and strong cartilage destruction ability, and eventually promotes the transformation of PVNS from the initial inflammatory disease to neoplastic disease. Thus, inhibition of cadherin-11 together with its related inflammatory reaction, represents a new therapeutic strategy for PVNS.


Assuntos
Caderinas/metabolismo , Mediadores da Inflamação/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Sinovite Pigmentada Vilonodular/imunologia , Adenilato Quinase/metabolismo , Adulto , Artroscopia , Caderinas/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Células Cultivadas , Cromonas/farmacologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Pessoa de Meia-Idade , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Cultura Primária de Células , Sinovectomia/métodos , Membrana Sinovial/citologia , Membrana Sinovial/imunologia , Sinoviócitos/imunologia , Sinovite Pigmentada Vilonodular/patologia , Sinovite Pigmentada Vilonodular/cirurgia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
18.
Clin Immunol ; 220: 108579, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866644

RESUMO

Endoplasmic reticulum (ER) stress associated proteins contribute to the pathogenesis of rheumatoid arthritis (RA) through affecting synoviocyte proliferation and proinflammatory cytokine production. The role of DERL3, an ER-associated degradation component, in joint inflammation of RA was explored. Synovial tissues from RA and osteoarthritis (OA) patients were collected, and in RA synovial tissue, DERL3 showed up-regulation and significantly positive correlation with the expression of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and matrix metalloproteinase (MMP)-1. Immunofluorescence result suggested DERL3 was located in fibroblast-like synoviocytes (FLS). Among different inflammatory stimuli, DERL3 could be up-regulated by TNF-α stimulation in FLS. Under TNF-α stimulation, knocking down DERL3, the expression of IL-6, IL-8, MMP-1, MMP-13 was reduced and the activation of nuclear factor kappa B (NF-κB) signaling pathway was inhibited. In pristane-induced arthritis (PIA) rat model, Derl3 was up-regulated in synovial tissue and disease was attenuated after intraarticular injection of siDerl3. Overall, we conclude that TNF-α inducing DERL3 expression promotes the inflammation of FLS through activation of NF-κB signaling pathway, suggesting DERL3 plays important roles in the pathogenesis of RA and is a promising therapeutic target.


Assuntos
Artrite Reumatoide/imunologia , Proteínas de Membrana/imunologia , Sinoviócitos/imunologia , Idoso , Animais , Artrite Experimental/imunologia , Células Cultivadas , Citocinas/imunologia , Feminino , Humanos , Masculino , Metaloproteinase 1 da Matriz/imunologia , Metaloproteinase 13 da Matriz/imunologia , Camundongos , Pessoa de Meia-Idade , NF-kappa B/imunologia , Osteoartrite/imunologia , Ratos , Transdução de Sinais
19.
Inflamm Res ; 69(11): 1087-1101, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32797249

RESUMO

PURPOSE: Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease with synovitis as pathological changes. The immune microenvironment of RA promotes metabolic reprogramming of immune cells and stromal cells, which leads to dysfunction and imbalance of immune homeostasis. Cell metabolism undergoes the switch from a static regulatory state to a highly metabolic active state, which changes the redox-sensitive signaling pathway and also leads to the accumulation of metabolic intermediates, which in turn can act as signaling molecules and further aggravate the inflammatory response. The reprogramming of immunometabolism affects the function of immune cells and is crucial to the pathogenesis of RA. In addition, mitochondrial dysfunction plays a key role in glycolytic reprogramming in RA. These metabolic changes may be potential therapeutic targets for RA. Therefore, we reviewed the metabolic reprogramming of RA immune cells and fibroblast-like synovium cells (FLS) and its relationship with mitochondrial dysfunction. METHODS: A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning immunometabolic reprogramming, mitochondrial dysfunction, and rheumatoid arthritis. RESULTS: This article reviews the metabolic reprogramming of immune cells and fibroblast-like synoviocytes in RA and their relationship to mitochondrial disfunction, as well as the key pro-inflammatory pathways associated with metabolic reprogramming and chemotherapy as a potential future therapeutic strategy for RA.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Animais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Transdução de Sinais , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
20.
Med Sci Monit ; 26: e924787, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32741960

RESUMO

BACKGROUND Rheumatoid arthritis (RA) is an inflammatory disorder that is present in approximately 1% of the world's population. This study was aimed to investigate the effect of retinoic acid-platinum (II) complex [RT-Pt(II)] on rheumatoid arthritis (RA) and to explore the mechanism involved. MATERIAL AND METHODS MH7A cell viability was determined by MTT assay and apoptosis was assessed using FACSCalibur flow cytometry. RT-PCR and Western blot assays were used for assessment of mRNA and proteins levels. RESULTS Treatment of rheumatoid arthritis with RT-Pt(II) significantly reduced the levels of IL­1ß, IL-6, IL-8, MMP-1, and MMP-13 in synovial fluid of mice in a dose-dependent manner. The expression of iNOS and COX-2 mRNA and protein in rheumatoid arthritis rats was also significantly inhibited by treatment with RT-Pt(II). The TNF-alpha-induced proliferation of MH7A cells was alleviated by RT-Pt(II) treatment in a concentration-dependent manner. Moreover, RT-Pt(II) treatment induced apoptosis and caused arrest of cell cycle in MH7A cells. The activation of MEK/NF-kappaB pathway was downregulated by RT-Pt(II) treatment in MH7A cells. CONCLUSIONS In summary, the present study demonstrated that RT-Pt(II) inhibits TNF-alpha-induced inflammatory response, suppresses cell viability, and induces apoptosis in rheumatoid arthritis synovial cells. Moreover, RT-Pt(II) exhibited its effect through targeting the MEK/NF-kappaB pathway. Therefore, RT-Pt(II) can be used for the development of treatments for rheumatoid arthritis.


Assuntos
Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Complexos de Coordenação/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , NF-kappa B/genética , Compostos de Platina/farmacologia , Animais , Antirreumáticos/síntese química , Apoptose/efeitos dos fármacos , Apoptose/genética , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Linhagem Celular , Complexos de Coordenação/síntese química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/imunologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Compostos de Platina/síntese química , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Líquido Sinovial/citologia , Líquido Sinovial/imunologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/imunologia , Sinoviócitos/patologia , Tretinoína/química , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA