Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 375, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734632

RESUMO

BACKGROUND: Synovitis, characterized by inflammation of the synovial membrane, is commonly induced by meniscus tears. However, significant differences in inflammatory responses and the key inflammatory mediators of synovium induced by different types of meniscal tears remain unclear. METHODS: Magnetic resonance imaging (MRI) was employed to identify the type of meniscus tear, and the quantification of synovial inflammation was assessed through H&E staining assay. Transcription and expression levels of IL-1ß and IL-6 were evaluated using bioinformatics, ELISA, RT-qPCR, and IHC of CD68 staining assays. The therapeutic potential of Docosapentaenoic Acid (DPA) was determined through network pharmacology, ELISA, and RT-qPCR assays. The safety of DPA was assessed using colony formation and EdU staining assays. RESULTS: The results indicate that both IL-1ß and IL-6 play pivotal roles in synovitis pathogenesis, with distinct expression levels across various subtypes. Among tested meniscus tears, oblique tear and bucket handle tear induced the most severe inflammation, followed by radial tear and longitudinal tear, while horizontal tear resulted in the least inflammation. Furthermore, in synovial inflammation induced by specific meniscus tears, the anterior medial tissues exhibited significantly higher local inflammation than the anterior lateral and suprapatellar regions, highlighting the clinical relevance and practical guidance of anterior medial tissues' inflammatory levels. Additionally, we identified the essential omega-3 fatty acid DPA as a potential therapeutic agent for synovitis, demonstrating efficacy in blocking the transcription and expression of IL-1ß and IL-6 with minimal side effects. CONCLUSION: These findings provide valuable insights into the nuanced nature of synovial inflammation induced by various meniscal tear classifications and contribute to the development of new adjunctive therapeutic agents in the management of synovitis.


Assuntos
Ácidos Graxos Insaturados , Interleucina-1beta , Imageamento por Ressonância Magnética , Membrana Sinovial , Sinovite , Lesões do Menisco Tibial , Lesões do Menisco Tibial/tratamento farmacológico , Lesões do Menisco Tibial/metabolismo , Sinovite/tratamento farmacológico , Sinovite/metabolismo , Sinovite/patologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Humanos , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/uso terapêutico , Masculino , Interleucina-1beta/metabolismo , Animais , Interleucina-6/metabolismo , Feminino , Meniscos Tibiais/efeitos dos fármacos , Meniscos Tibiais/metabolismo , Camundongos , Modelos Animais de Doenças
2.
Front Immunol ; 15: 1307748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601143

RESUMO

Background: Monocyte/macrophage (Mo/Mp) is a critical cell population involved in immune modulation of rheumatoid synovitis (RA) across different pathotypes. This study aims to investigate the contribution of Mo/Mp clusters to RA activity, and the biological function of particular subtypes in RA remission. Methods: We integrated single-cell RNA sequencing datasets from 4 published and 1 in-house studies using Liger selected by comparison. We estimated the abundance of Mo/Mp subtypes in bulk RNA-seq data from the 81 patients of the Pathobiology of Early Arthritis Cohort (PEAC) using deconvolution analysis. Correlations between Mo/Mp subtypes and RA clinical metrics were assessed. A particular cell type was identified using multicolor immunofluorescence and flow cytometry in vivo and successfully induced from a cell line in vitro. Potential immune modulation function of it was performed using immunohistochemical staining, adhesion assay, and RT-qPCR. Results: We identified 8 Mo/Mp clusters. As a particular subtype among them, COL3A1+ Mp (CD68+, COL3A1+, ACTA2-) enriched in myeloid pathotype and negatively correlated with RA severity metrics in all pathotypes. Flow cytometry and multicolor immunofluorescence evidenced the enrichment and M2-like phenotype of COL3A1+ Mp in the myeloid pathotype. Further assays suggested that COL3A1+ Mp potentially attenuates RA severity via expressing anti-inflammatory cytokines, enhancing Mp adhesion, and forming a physical barrier at the synovial lining. Conclusion: This study reported unexplored associations between different pathologies and myeloid cell subtypes. We also identified a fibroblast-and-M2-like cluster named COL3A1+ Mp, which potentially contributes to synovial immune homeostasis. Targeting the development of COL3A1+ Mp may hold promise for inducing RA remission.


Assuntos
Artrite Reumatoide , Sinoviócitos , Sinovite , Humanos , Sinovite/metabolismo , Macrófagos , Sinoviócitos/metabolismo , Fenótipo , Colágeno Tipo III
3.
ACS Nano ; 18(11): 8125-8142, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451090

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of the articular cartilage and inflammation. Mesenchymal stem cells' (MSCs) transplantation in OA treatment is emerging, but its clinical application is still limited by the low efficiency in oriented differentiation. In our study, to improve the therapeutic efficiencies of MSCs in OA treatment by carbonic anhydrase IX (CA9) siRNA (siCA9)-based inflammation regulation and Kartogenin (KGN)-based chondrogenic differentiation, the combination strategy of MSCs and the nanomedicine codelivering KGN and siCA9 (AHK-CaP/siCA9 NPs) was used. In vitro results demonstrated that these NPs could improve the inflammatory microenvironment through repolarization of M1 macrophages to the M2 phenotype by downregulating the expression levels of CA9 mRNA. Meanwhile, these NPs could also enhance the chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) by upregulating the pro-chondrogenic TGF-ß1, ACAN, and Col2α1 mRNA levels. Moreover, in an advanced OA mouse model, compared with BMSCs alone group, the lower synovitis score and OARSI score were found in the group of BMSCs plus AHK-CaP/siCA9 NPs, suggesting that this combination approach could effectively inhibit synovitis and promote cartilage regeneration in OA progression. Therefore, the synchronization of regulating the inflammatory microenvironment through macrophage reprogramming (CA9 gene silencing) and promoting MSCs oriented differentiation through a chondrogenic agent (KGN) may be a potential strategy to maximize the therapeutic efficiency of MSCs for OA treatment.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Sinovite , Camundongos , Animais , Condrogênese , Nanomedicina , Osteoartrite/tratamento farmacológico , Diferenciação Celular , Inflamação/metabolismo , Sinovite/metabolismo , RNA Mensageiro/metabolismo
4.
Am J Pathol ; 194(2): 296-306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245251

RESUMO

This study investigates the regulatory mechanisms of synovial macrophages and their polarization in the progression of temporomandibular joint osteoarthritis (TMJOA). Macrophage depletion models were established by intra-articular injection of clodronate liposomes and unloaded liposomes. TMJOA was induced by intra-articular injection of 50 µL Complete Freund's Adjuvant and the surgery of disc perforation. The contralateral joint was used as the control group. The expression of F4/80, CD86, and CD206 in the synovium was detected by immunofluorescence staining analysis. Hematoxylin and eosin staining and TMJOA synovial score were detected to show the synovial changes in rat joints after TMJOA induction and macrophage depletion. Changes in rat cartilage after TMJOA induction and macrophage depletion were shown by safranin fast green staining. The bone-related parameters of rats' joints were evaluated by micro-computed tomography analysis. The TMJOA model induced by Complete Freund's Adjuvant injection and disc perforation aggravated synovial hyperplasia and showed a significant up-regulation of expression of F4/80-, CD86-, and CD206-positive cells. F4/80, CD86, and CD206 staining levels were significantly decreased in macrophage depletion rats, whereas the synovitis score further increased and cartilage and subchondral bone destruction was slightly aggravated. Macrophages were crucially involved in the progression of TMJOA, and macrophage depletion in TMJOA synoviocytes promoted synovitis and cartilage destruction.


Assuntos
Cartilagem Articular , Osteoartrite , Sinovite , Ratos , Animais , Microtomografia por Raio-X , Ativação de Macrófagos , Adjuvante de Freund/efeitos adversos , Adjuvante de Freund/metabolismo , Lipossomos/efeitos adversos , Lipossomos/metabolismo , Cartilagem Articular/metabolismo , Articulação Temporomandibular/metabolismo , Sinovite/metabolismo , Remodelação Óssea , Osteoartrite/metabolismo
5.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 82-95, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38013468

RESUMO

Osteoarthritis (OA) is a prevalent and chronic joint disease that affects the aging population, causing pain and disability. Macrophages in synovium are important mediators of synovial inflammatory activity and pathological joint pain. Previous studies have demonstrated the significant involvement of κ-opioid receptor (KOR) in the regulation of pain and inflammation. Our study reveals a significant reduction in synovial KOR expression among patients and mice with OA. Here, we find that KOR activation effectively inhibits the expressions of the LPS-induced-inflammatory cytokines TNF-α and IL-6 by inhibiting macrophage M1 phenotype. Mechanistically, KOR activation effectively suppresses the proinflammatory factor secretion of macrophages by inhibiting the translocation of NF-κB into the nucleus. Our animal experiments reveal that activation of KOR effectively alleviates knee pain and prevents synovitis progression in OA mice. Consistently, KOR administration suppresses the expressions of M1 macrophage markers and the NF-κB pathway in the synovium of the knee. Collectively, our study suggests that targeting KOR may be a viable strategy for treating OA by inhibiting synovitis and improving joint pain in affected patients.


Assuntos
Osteoartrite , Receptores Opioides kappa , Sinovite , Idoso , Animais , Humanos , Camundongos , Artralgia/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Dor/metabolismo , Receptores Opioides kappa/metabolismo , Sinovite/metabolismo
6.
Zhen Ci Yan Jiu ; 48(11): 1111-1116, 2023 Nov 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37984908

RESUMO

OBJECTIVES: To observe the effect of moxibustion on activities of NOD-like receptor family protein 3 (NLRP3)/cysteine aspartic acid specific protease-1 (Caspase-1)/interleukin-1ß (IL-1ß) signaling pathway in rats with adjuvant arthritis (AA), so as to explore its mechanisms underlying improvement of rheumatoid arthritis (RA). Me-thods Thirty male Wistar rats were randomly divided into normal control, AA model and moxibustion groups, with 10 rats in each group. The AA model was replicated by raising in wind, cold and damp environment combined with complete Freund's adjuvant injection. In the moxibustion group, moxibustion was applied to bilateral "Shenshu" (BL23) and "Zusanli"(ST36) for 20 min each time, once daily for 21 days. Changes of joint swelling degree (JSD) and arthritis index (AI) in each group were observed. The ultrastructural changes of synovial cells in each group were observed by transmission electron microscopy. The protein expression levels of NLRP3, apoptosis-associated speck-like protein (ASC), Caspase-1, tumor necrosis factor-α (TNF-α) and IL-1ß in the synovial tissues of the knee joint were measured by Western blot. RESULTS: Compared with the normal control group, JSD, AI and the protein expressions of NLRP3, ASC, Caspase-1, TNF-α and IL-1ß in the synovial tissues were significantly increased (P<0.01) in the model group. In comparison with the model group, JSD, AI and the protein expression levels of NLRP3, ASC, Caspase-1, TNF-α and IL-1ß were significantly decreased (P<0.01) in the moxibustion group. Results of transmission electron microscope showed an irregular and vague nuclear membrane of synovial cells, and unclear mitochondrial membrane boundary with sparse, swelling crests in the model group, which was relatively milder in the damage degree in the moxibustion group. CONCLUSIONS: Moxibustion can relieve the inflammatory response in the synovial membrane of AA rats, which may be related to its function in down-regulating synovial NLRP3/Caspase-1/IL-1ß inflammatory signaling.


Assuntos
Artrite Experimental , Moxibustão , Sinovite , Ratos , Masculino , Animais , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas NLR/metabolismo , Artrite Experimental/genética , Artrite Experimental/terapia , Ratos Wistar , Membrana Sinovial/metabolismo , Transdução de Sinais , Sinovite/metabolismo
7.
Front Immunol ; 14: 1103231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529037

RESUMO

Background: Glucose metabolism, specifically, hexokinase 2 (HK2), has a critical role in rheumatoid arthritis (RA) fibroblast-like synoviocyte (FLS) phenotype. HK2 localizes not only in the cytosol but also in the mitochondria, where it protects mitochondria against stress. We hypothesize that mitochondria-bound HK2 is a key regulator of RA FLS phenotype. Methods: HK2 localization was evaluated by confocal microscopy after FLS stimulation. RA FLSs were infected with Green fluorescent protein (GFP), full-length (FL)-HK2, or HK2 lacking its mitochondrial binding motif (HK2ΔN) expressing adenovirus (Ad). RA FLS was also incubated with methyl jasmonate (MJ; 2.5 mM), tofacitinib (1 µM), or methotrexate (1 µM). RA FLS was tested for migration and invasion and gene expression. Gene associations with HK2 expression were identified by examining single-cell RNA sequencing (scRNA-seq) data from murine models of arthritis. Mice were injected with K/BxN serum and given MJ. Ad-FLHK2 or Ad-HK2ΔN was injected into the knee of wild-type mice. Results: Cobalt chloride (CoCl2) and platelet-derived growth factor (PDGF) stimulation induced HK2 mitochondrial translocation. Overexpression of the HK2 mutant and MJ incubation reversed the invasive and migrative phenotype induced by FL-HK2 after PDGF stimulation, and MJ also decreased the expression of C-X-C Motif Chemokine Ligand 1 (CXCL1) and Collagen Type I Alpha 1 Chain (COL1A1). Of interest, tofacitinib but not methotrexate had an effect on HK2 dissociation from the mitochondria. In murine models, MJ treatment significantly decreased arthritis severity, whereas HK2FL was able to induce synovial hypertrophy as opposed to HK2ΔN. Conclusion: Our results suggest that mitochondrial HK2 regulates the aggressive phenotype of RA FLS. New therapeutic approaches to dissociate HK2 from mitochondria offer a safer approach than global glycolysis inhibition.


Assuntos
Artrite Reumatoide , Sinoviócitos , Sinovite , Camundongos , Animais , Sinoviócitos/metabolismo , Hexoquinase/metabolismo , Artrite Reumatoide/metabolismo , Sinovite/metabolismo , Metotrexato/uso terapêutico , Fibroblastos/metabolismo
8.
Cells ; 12(14)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508489

RESUMO

The onset and progression of human inflammatory joint diseases are strongly associated with the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived mesenchymal stem/stromal cells (IFP-MSC) acquire a potent immunomodulatory phenotype and actively degrade substance P (SP) via neutral endopeptidase CD10 (neprilysin). Our hypothesis is that IFP-MSC robust immunomodulatory therapeutic effects are largely exerted via their CD10-bound small extracellular vesicles (IFP-MSC sEVs) by attenuating synoviocyte pro-inflammatory activation and articular cartilage degradation. Herein, IFP-MSC sEVs were isolated from CD10High- and CD10Low-expressing IFP-MSC cultures and their sEV miRNA cargo was assessed using multiplex methods. Functionally, we interrogated the effect of CD10High and CD10Low sEVs on stimulated by inflammatory/fibrotic cues synoviocyte monocultures and cocultures with IFP-MSC-derived chondropellets. Finally, CD10High sEVs were tested in vivo for their therapeutic capacity in an animal model of acute synovitis/fat pad fibrosis. Our results showed that CD10High and CD10Low sEVs possess distinct miRNA profiles. Reactome analysis of miRNAs highly present in sEVs showed their involvement in the regulation of six gene groups, particularly those involving the immune system. Stimulated synoviocytes exposed to IFP-MSC sEVs demonstrated significantly reduced proliferation and altered inflammation-related molecular profiles compared to control stimulated synoviocytes. Importantly, CD10High sEV treatment of stimulated chondropellets/synoviocyte cocultures indicated significant chondroprotective effects. Therapeutically, CD10High sEV treatment resulted in robust chondroprotective effects by retaining articular cartilage structure/composition and PRG4 (lubricin)-expressing cartilage cells in the animal model of acute synovitis/IFP fibrosis. Our study suggests that CD10High sEVs possess immunomodulatory miRNA attributes with strong chondroprotective/anabolic effects for articular cartilage in vivo. The results could serve as a foundation for sEV-based therapeutics for the resolution of detrimental aspects of immune-mediated inflammatory joint changes associated with conditions such as osteoarthritis (OA).


Assuntos
Cartilagem Articular , Vesículas Extracelulares , MicroRNAs , Osteoartrite , Sinovite , Animais , Humanos , Sinovite/metabolismo , Osteoartrite/metabolismo , Vesículas Extracelulares/metabolismo , Articulação do Joelho/metabolismo , MicroRNAs/metabolismo , Cartilagem Articular/metabolismo , Neprilisina/metabolismo , Fibrose , Homeostase , Células Estromais/metabolismo
9.
Front Immunol ; 14: 1164137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492583

RESUMO

Osteoarthritis (OA) is a common degenerative disease in mammals. However, its pathogenesis remains unclear. Studies indicate that OA is not only an aging process that but also an inflammation-related disease. Synovitis is closely related to the progression of OA, and synovial macrophages are crucial participants in synovitis. Instead of being a homogeneous population, macrophages are polarized into M1 or M2 subtypes in OA synovial tissues. Polarization is highly associated with OA severity. However, the M1/M2 ratio cannot be the only factor in OA prognosis because intermediate stages of macrophages also exist. To better understand the mechanism of this heterogeneous disease, OA subtypes of synovial macrophages classified by gene expression were examined. Synovial macrophages do not act alone; they interact with surrounding cells such as synovial fibroblasts, osteoclasts, chondrocytes, lymphocytes and even adipose cells through a paracrine approach to exacerbate OA. Treatments targeting synovial macrophages and their polarization are effective in relieving pain and protecting cartilage during OA development. In this review, we describe how synovial macrophages and their different polarization states influence the progression of OA. We summarize the current knowledge of the interactions between macrophages and other joint cells and examine the current research on new medications targeting synovial macrophages.


Assuntos
Osteoartrite , Sinovite , Animais , Humanos , Osteoartrite/metabolismo , Macrófagos/metabolismo , Membrana Sinovial/patologia , Sinovite/metabolismo , Osteoclastos/metabolismo , Mamíferos
10.
J Transl Med ; 21(1): 452, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422640

RESUMO

BACKGROUND: Osteoarthritis (OA), in which macrophage-driven synovitis is considered closely related to cartilage destruction and could occur at any stage, is an inflammatory arthritis. However, there are no effective targets to cure the progression of OA. The NOD-, LRR-,and pyrin domain-containing protein 3 (NLRP3) inflammasome in synovial macrophages participates in the pathological inflammatory process and treatment strategies targeting it are considered to be an effective approach for OA. PIM-1 kinase, as a downstream effector of many cytokine signaling pathways, plays a pro-inflammatory role in inflammatory disease. METHODS: In this study, we evaluated the expression of the PIM-1 and the infiltration of synovial macrophages in the human OA synovium. The effects and mechanism of PIM-1 were investigated in mice and human macrophages stimulated by lipopolysaccharide (LPS) and different agonists such as nigericin, ATP, Monosodium urate (MSU), and Aluminum salt (Alum). The protective effects on chondrocytes were assessed by a modified co-culture system induced by macrophage condition medium (CM). The therapeutic effect in vivo was confirmed by the medial meniscus (DMM)-induced OA in mice. RESULTS: The expression of PIM-1 was increased in the human OA synovium which was accompanied by the infiltration of synovial macrophages. In vitro experiments, suppression of PIM-1 by SMI-4a, a specific inhibitor, rapidly inhibited the NLRP3 inflammasome activation in mice and human macrophages and gasdermin-D (GSDME)-mediated pyroptosis. Furthermore, PIM-1 inhibition specifically blocked the apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization in the assembly stage. Mechanistically, PIM-1 inhibition alleviated the mitochondrial reactive oxygen species (ROS)/chloride intracellular channel proteins (CLICs)-dependent Cl- efflux signaling pathway, which eventually resulted in the blockade of the ASC oligomerization and NLRP3 inflammasome activation. Furthermore, PIM-1 suppression showed chondroprotective effects in the modified co-culture system. Finally, SMI-4a significantly suppressed the expression of PIM-1 in the synovium and reduced the synovitis scores and the Osteoarthritis Research Society International (OARSI) score in the DMM-induced OA model. CONCLUSIONS: Therefore, PIM-1 represented a new class of promising targets as a treatment of OA to target these mechanisms in macrophages and widened the road to therapeutic strategies for OA.


Assuntos
Osteoartrite , Sinovite , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/tratamento farmacológico , Macrófagos/metabolismo , Transdução de Sinais , Sinovite/metabolismo , Interleucina-1beta/metabolismo , Canais de Cloreto/metabolismo , Canais de Cloreto/farmacologia , Canais de Cloreto/uso terapêutico , Proteínas Mitocondriais/metabolismo
11.
J Equine Vet Sci ; 127: 104564, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209789

RESUMO

Persistent synovitis damages the articular cartilage in horses. To evaluate the effectiveness of treatment for synovitis using a model induced by intra-articular administration of monoiodoacetic acid (MIA), it is necessary to identify inflammatory biomarkers characteristic of the MIA model. Synovitis was induced by administering MIA into the unilateral antebrachiocarpal joints of five horses, and saline was injected into the contralateral joints as a control on day 0. Clinical and ultrasonographic examinations and synovial fluid collection were performed on days 0, 1, 2, 7, 14, 21, 28, and 35. Leukocyte, lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-1 receptor antagonist (IL-1Ra), interleukin-6 (IL-6), and transforming growth factor-ß1 (TGF-ß1) concentrations in the synovial fluid were measured. Synovium was obtained after euthanasia on day 42 and histologically examined before quantification of the gene expression of inflammatory biomarkers by real-time PCR. Acute inflammatory symptoms persisted for approximately 2 weeks before returning to control levels. However, some indicators of chronic inflammation remained elevated until day 35. On day 42, synovitis continued histologically, with osteoclasts. The expressions of matrix metalloproteinase 13 (MMP13), a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), receptor activator of nuclear factor kappa-Β ligand (RANKL), and collagen type I α2 chain (Col1a2) were significantly higher in the MIA model than in the control. In the MIA model, representative inflammatory biomarkers in the chronic inflammatory stage were persistently expressed in both synovial fluid and tissue, suggesting that they may be useful for the assessment of the anti-inflammatory effect of drugs.


Assuntos
Doenças dos Cavalos , Sinovite , Cavalos , Animais , Ácido Iodoacético/efeitos adversos , Sinovite/induzido quimicamente , Sinovite/tratamento farmacológico , Sinovite/metabolismo , Sinovite/veterinária , Colágeno Tipo I/efeitos adversos , Biomarcadores , Doenças dos Cavalos/induzido quimicamente , Doenças dos Cavalos/tratamento farmacológico , Doenças dos Cavalos/metabolismo
12.
J Ethnopharmacol ; 311: 116350, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37019159

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Naru-3 is a prescribed formulation based on the theory of Mongolian medicine for the treatment of rheumatoid arthritis (RA). Naru-3 consists of three medicinal agents: Aconitum kusnezoffii Reichb (caowu), Terminalia chebula Retz (hezi), and Piper longum L (biba). These medicinal agents are widely distributed in the Mongolian area of China and have been used to treat rheumatism for centuries. BACKGROUND: Mongolian medicine Naru-3 is commonly prescribed to treat RA, but its mechanism of action is unknown. METHODS: A rat collagen-induced arthritis (CIA) model was established to investigate the mechanism of Naru-3. Rats were treated with Naru-3, Etanercept (ETN), and sodium carboxymethylcellulose (CMC) for four weeks. After treatment was terminated, paw thickness, ankle diameter, and arthritis index (AI) were scored. Synovial hyperplasia was evaluated using hematoxylin and eosin (H&E) staining and two-dimensional ultrasonography. Synovitis and neovascularization were assayed using power Doppler imaging (PDI) and contrast-enhanced ultrasonography (CEUS). Levels of vascular endothelial growth factor (VEGF), interleukin (IL)-1, and CD31 in the serum or synovium were detected using ELISA and immunohistochemistry analyses. RESULTS: Naru-3 and ETN alleviated the symptoms of CIA as evidenced by diminished paw thickness, ankle diameter, and AI scores. Mechanistically, Naru-3 inhibited synovial hyperplasia, synovitis, and neovascularization by diminishing systemic and local inflammation, as indicated by the relative expression of CD31, VEGF and IL-1 in the serumor synovium. After four weeks of treatment, no significant neovascularization was observed in the Naru-3 group, but neovascularization and synovitis occurred in the ETN group, as demonstrated by H&E staining, PDI, and CEUS examination. CONCLUSION: Naru-3 inhibited inflammation, synovial hyperplasia, and neovascularization and alleviates RA in our CIA rat model. No symptom recurrence was observed four weeks after drug treatment.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinovite , Ratos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hiperplasia/patologia , Membrana Sinovial/metabolismo , Inflamação/patologia , Artrite Reumatoide/patologia , Sinovite/metabolismo , Sinovite/patologia , Neovascularização Patológica/tratamento farmacológico
13.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982442

RESUMO

Osteoarthritis (OA), the most common chronic inflammatory joint disease, is characterized by progressive cartilage degeneration, subchondral bone sclerosis, synovitis, and osteophyte formation. Metformin, a hypoglycemic agent used in the treatment of type 2 diabetes, has been evidenced to have anti-inflammatory properties to treat OA. It hampers the M1 polarization of synovial sublining macrophages, which promotes synovitis and exacerbates OA, thus lessening cartilage loss. In this study, metformin prevented the pro-inflammatory cytokines secreted by M1 macrophages, suppressed the inflammatory response of chondrocytes cultured with conditional medium (CM) from M1 macrophages, and mitigated the migration of M1 macrophages induced by interleukin-1ß (IL-1ß)-treated chondrocytes in vitro. In the meantime, metformin reduced the invasion of M1 macrophages in synovial regions brought about by the destabilization of medial meniscus (DMM) surgery in mice, and alleviated cartilage degeneration. Mechanistically, metformin regulated PI3K/AKT and downstream pathways in M1 macrophages. Overall, we demonstrated the therapeutic potential of metformin targeting synovial M1 macrophages in OA.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Osteoartrite , Sinovite , Camundongos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Metformina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Macrófagos/metabolismo , Condrócitos/metabolismo , Sinovite/tratamento farmacológico , Sinovite/metabolismo
14.
J Mol Med (Berl) ; 101(5): 569-580, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988653

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease mediated by an interdependent network of proinflammatory molecules such as chemokines. Prokineticin 2 (PK2) is a chemokine-like peptide that modulates nociceptive threshold and immuno-inflammatory processes via two G-protein-linked receptors, prokineticin receptor 1 and 2 (PKR1 and PKR2). In the present study, we investigated the effects of the prokineticin receptor antagonist PC1 on arthritic pain and the inflammatory response in type II collagen-induced arthritis (CIA) in mice. We demonstrated that PC1, administered subcutaneously from day 25 to day 35 after CIA, improved clinical signs of arthritis such as paw edema, pain, and impaired locomotor activity. In CIA mice, PC1 was also able to lower plasma malondialdehyde (MDA) levels, suggesting a role in reducing oxidative damage, as well as joint expression levels of PK2, PKRs, TNFα, IL-1ß, CD4, CD8, and NF-kB. These results suggest that blocking PKRs may be a successful strategy to control arthritic pain and pathology development. KEY MESSAGES: PK2/PKRs expression levels strongly increase in the synovium of RA mice. PC1 treatment shows anti-arthritic activity and reduces arthritis-induced pain. PC1 treatment significantly lowers synovial PK2/PKRs levels. PC1 treatment lowers plasma MDA levels and synovial levels of TNFα and IL -1ß PC1 treatment is a viable therapeutic option for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinovite , Camundongos , Animais , Artrite Experimental/patologia , Fator de Necrose Tumoral alfa/metabolismo , Dor , Membrana Sinovial , Sinovite/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo
15.
Ann Hematol ; 102(5): 1229-1237, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36951967

RESUMO

Iron deposition is closely related to developing haemophilic arthropathy (HA). Studying the relationship between ferroptosis signal expression and iron overload in HA synovium facilitates understanding the pathogenesis of joint synovial hyperplasia in bloodborne arthritis and the development of new protective methods. The knee synovium was collected from HA and osteoarthritis (OA) patients, and pathological changes were analysed by HE and Prussian blue staining. Ferroptosis phenotypes were examined by immunohistochemistry and western blotting. Moreover, ferric ammonium citrate (FAC)-induced was used to construct an in vitro iron overload model to investigate the relationship between iron overload and ferroptosis in synovial fibroblasts (FLS). Furthermore, the factors influencing ferroptosis in FLS were explored. Iron deposition, cell proliferation, and vascular proliferation in the synovium of HA were more obvious. Ferroptosis in HA synovium appears to inhibit. FLS ferroptosis increased with iron accumulation, malondialdehyde (MDA) in cells, and glutathione (GSH) depletion. TNF-α plays a protective role in this process. Blocking the action of TNF-α and inducing ferroptosis significantly reduced synovial proliferation. TNF-α inhibitors combined with a ferroptosis inducer may be a new therapeutic method for HA synovitis.


Assuntos
Ferroptose , Doenças Hematológicas , Sobrecarga de Ferro , Osteoartrite , Sinovite , Humanos , Fator de Necrose Tumoral alfa , Sinovite/etiologia , Sinovite/metabolismo , Sinovite/patologia , Osteoartrite/complicações , Osteoartrite/metabolismo , Osteoartrite/patologia , Sobrecarga de Ferro/complicações , Doenças Hematológicas/complicações , Ferro/metabolismo
16.
Arthritis Rheumatol ; 75(6): 950-960, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36530127

RESUMO

OBJECTIVE: This study aimed to determine whether alignment correction by high tibial osteotomy (HTO) can change the biologic intraarticular microenvironment of osteoarthritic (OA) knees. METHODS: Synovial tissue (ST) and fluid (SF) were collected from the affected knees of 31 OA patients during initial HTO and plate removal surgeries. Changes in gene expression in ST were investigated by microarray and real-time polymerase chain reaction (PCR). ST specimens were also evaluated histologically using synovitis scores and immunofluorescence staining to determine macrophage polarity. Cytokines and chemokines in SF were analyzed by enzyme-linked immunosorbent assays. The mechanism of macrophage polarization was investigated in human peripheral blood mononuclear cell-derived macrophages and fibroblast-like synoviocytes (FLS) stimulated with cartilage fragments. We also evaluated Spearman correlations between Knee Injury and Osteoarthritis Outcome scores (KOOS) and macrophage-related gene expression. RESULTS: The microarray results indicated down-regulated inflammatory genes and pathways. Real-time PCR determined that genes expressing proinflammatory IL1B and IL6 were down-regulated and M2 macrophage-related IL1RA, IL10, CCL18, and CD206 were up-regulated. Histologic findings revealed attenuated synovitis scores and a shift from M1 to M2 macrophages. Interleukin-1ß (IL-1ß) concentrations in SF decreased after HTO. Cartilage fragments were responsible for M1 macrophage polarization and proinflammatory gene and protein expression in macrophages, whereas cartilage fragments up-regulated only IL-6 protein in FLS. Postoperative KOOS positively correlated with the expression of the M2-related genes CCL18 and CD206. CONCLUSION: Correction of lower limb alignment with HTO attenuated synovial inflammation and changed macrophage polarization from M1 to M2, suggesting an improved intraarticular environment in knee OA.


Assuntos
Osteoartrite do Joelho , Sinovite , Humanos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Sinovite/cirurgia , Sinovite/metabolismo , Inflamação/metabolismo , Extremidade Inferior , Osteotomia/métodos
17.
Stem Cell Res Ther ; 13(1): 457, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064441

RESUMO

BACKGROUND: Synovial membrane-derived mesenchymal progenitor cells (SM-MPCs) are a promising candidate for the cell-based treatment of osteoarthritis (OA) considering their in vitro and in vivo capacity for cartilage repair. However, the OA environment may adversely impact their regenerative capacity. There are no studies for canine (c)SM-MPCs that compare normal to OA SM-MPCs, even though dogs are considered a relevant animal model for OA. Therefore, this study compared cSM-MPCs from normal and OA synovial membrane tissue to elucidate the effect of the OA environment on MPC numbers, indicated by CD marker profile and colony-forming unit (CFU) capacity, and the impact of the OA niche on tri-lineage differentiation. METHODS: Normal and OA synovial membrane were collected from the knee joints of healthy dogs and dogs with rupture of the cruciate ligaments. The synovium was assessed by histopathological OARSI scoring and by RT-qPCR for inflammation/synovitis-related markers. The presence of cSM-MPCs in the native tissue was further characterized with flow cytometry, RT-qPCR, and immunohistochemistry, using the MPC markers; CD90, CD73, CD44, CD271, and CD34. Furthermore, cells isolated upon enzymatic digestion were characterized by CFU capacity, and a population doublings assay. cSM-MPCs were selected based on plastic adherence, expanded to passage 2, and evaluated for the expression of MPC-related surface markers and tri-lineage differentiation capacity. RESULTS: Synovial tissue collected from the OA joints had a significantly higher OARSI score compared to normal joints, and significantly upregulated inflammation/synovitis markers S100A8/9, IL6, IL8, and CCL2. Both normal and OA synovial membrane contained cells displaying MPC properties, including a fibroblast-like morphology, CFU capacity, and maintained MPC marker expression over time during expansion. However, OA cSM-MPCs were unable to differentiate towards the chondrogenic lineage and had low adipogenic capacity in contrast to normal cSM-MPCs, whereas they possessed a higher osteogenic capacity. Furthermore, the OA synovial membrane contained significantly lower percentages of CD90+, CD44+, CD34+, and CD271+ cells. CONCLUSIONS: The OA environment had adverse effects on the regenerative potential of cSM-MPCs, corroborated by decreased CFU, population doubling, and chondrogenic capacity compared to normal cSM-MPCs. OA cSM-MPCs may be a less optimal candidate for the cell-based treatment of OA than normal cSM-MPCs.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Sinovite , Adapaleno/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Células Cultivadas , Cães , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/patologia , Membrana Sinovial , Sinovite/metabolismo , Sinovite/patologia , Antígenos Thy-1/metabolismo
18.
J Bone Miner Res ; 37(12): 2498-2511, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178273

RESUMO

Posttraumatic osteoarthritis (PTOA) results in joint pain, loss of joint function, and impaired quality of daily life in patients with limited treatment options. We previously demonstrated that epidermal growth factor receptor (EGFR) signaling is essential for maintaining chondroprogenitors during articular cartilage development and homeostasis. Here, we used a nonsurgical, loading-induced PTOA mouse model to investigate the protective action of EGFR signaling. A single bout of cyclic tibial loading at a peak force of 6 N injured cartilage at the posterior aspect of lateral femoral condyle. Similar loading at a peak force of 9 N ruptured the anterior cruciate ligament, causing additional cartilage damage at the medial compartment and ectopic cartilage formation in meniscus and synovium. Constitutively overexpression of an EGFR ligand, heparin binding EGF-like growth factor (HBEGF), in chondrocytes significantly reduced cartilage injury length, synovitis, and pain after 6 N loading and mitigated medial side cartilage damage and ectopic cartilage formation after 9 N loading. Mechanistically, overactivation of EGFR signaling protected chondrocytes from loading-induced apoptosis and loss of proliferative ability and lubricant synthesis. Overexpressing HBEGF in adult cartilage starting right before 6 N loading had similar beneficial effects. In contrast, inactivating EGFR in adult cartilage led to accelerated PTOA progression with elevated cartilage Mankin score and synovitis score and increased ectopic cartilage formation. As a therapeutic approach, we constructed a nanoparticle conjugated with the EGFR ligand TGFα. Intra-articular injections of this nanoconstruct once every 3 weeks for 12 weeks partially mitigated PTOA symptoms in cartilage and synovium after 6 N loading. Our findings demonstrate the anabolic actions of EGFR signaling in maintaining articular cartilage during PTOA development and shed light on developing a novel nanomedicine for PTOA. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Receptores ErbB , Osteoartrite , Animais , Camundongos , Cartilagem Articular/metabolismo , Receptores ErbB/metabolismo , Ligantes , Osteoartrite/metabolismo , Sinovite/metabolismo
19.
BMC Mol Cell Biol ; 23(1): 30, 2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35870887

RESUMO

BACKGROUND: Lubricin, a proteoglycan encoded by the PRG4 gene, is synthesised by superficial zone (SFZ) chondrocytes and synovial cells. It reduces friction between joints and allows smooth sliding of tendons. Although lubricin has been shown to be effective against osteoarthritis and synovitis in animals, its clinical application remains untested. In this study, we aimed to induce lubricin-expressing cells from pluripotent stem cells (iPSCs) and applied them locally via cell transplantation. METHODS: To generate iPSCs, OCT3/4, SOX2, KLF4, and L-MYC were transduced into fibroblasts derived from Prg4-mRFP1 transgenic mice. We established a protocol for the differentiation of iPSC-derived Prg4-mRFP1-positive cells and characterised their mRNA expression profile. Finally, we injected Prg4-mRFP1-positive cells into the paratenon, surrounding the Achilles tendons and knee joints of severe combined immunodeficient mice and assessed lubricin expression. RESULT: Wnt3a, activin A, TGF-ß1, and bFGF were applied to induce the differentiation of iPSC-derived Prg4-mRFP1-positive cells. Markers related to SFZ chondrocytes and fibroblast-like synovial cells (FLSs) were expressed during differentiation. RNA-sequencing indicated that iPSC-derived Prg4-mRFP1-positive cells manifested expression profiles typical of SFZ chondrocytes and FLSs. Transplanted iPSC-derived Prg4-mRFP1-positive cells survived around the Achilles tendons and in knee joints. CONCLUSIONS: The present study describes a protocol for the differentiation of iPSC-derived Prg4-positive cells with characteristics of SFZ chondrocytes and FLSs. Transplantation of lubricin-expressing cells offers promise as a therapy against arthritis and synovitis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteoartrite , Sinovite , Animais , Condrócitos/metabolismo , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Osteoartrite/genética , Proteoglicanas/metabolismo , Sinovite/metabolismo
20.
Front Immunol ; 13: 867260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663975

RESUMO

Innate and adaptive immunity represent a harmonic counterbalanced system involved in the induction, progression, and possibly resolution of the inflammatory reaction that characterize autoimmune rheumatic diseases (ARDs), including rheumatoid arthritis (RA). Although the immunopathophysiological mechanisms of the ARDs are not fully clarified, they are often associated with an inappropriate macrophage/T-cell interaction, where classical (M1) or alternative (M2) macrophage activation may influence the occurrence of T-helper (Th)1 or Th2 responses. In RA patients, M1/Th1 activation occurs in an inflammatory environment dominated by Toll-like receptor (TLR) and interferon (IFN) signaling, and it promotes a massive production of pro-inflammatory cytokines [i.e., tumor necrosis factor-α (TNFα), interleukin (IL)-1, IL-12, IL-18, and IFNγ], chemotactic factors, and matrix metalloproteinases resulting in osteoclastogenesis, erosion, and progressive joint destruction. On the other hand, the activation of M2/Th2 response determines the release of growth factors and cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF)-ß] involved in the anti-inflammatory process leading to the clinical remission of RA. Several subtypes of macrophages have been described. Five polarization states from M1 to M2 have been confirmed in in vitro studies analyzing morphological characteristics, gene expression of phenotype markers (CD80, CD86, TLR2, TLR4, or CD206, CD204, CD163, MerTK), and functional aspect, including the production of reactive oxygen species (ROS). An M1 and M2 macrophage imbalance may induce pathological consequences and contribute to several diseases, such as asthma or osteoclastogenesis in RA patients. In addition, the macrophage dynamic polarization from M1 to M2 includes the presence of intermediate polarity stages distinguished by the expression of specific surface markers and the production/release of distinct molecules (i.e., nitric oxide, cytokines), which characterize their morphological and functional state. This suggests a "continuum" of macrophage activation states playing an important role during inflammation and its resolution. This review discusses the importance of the delicate M1/M2 imbalance in the different phases of the inflammatory process together with the identification of specific pathways, cytokines, and chemokines involved, and its clinical outcomes in RA. The analysis of these aspects could shed a light on the abnormal inflammatory activation, leading to novel therapeutical approaches which may contribute to restore the M1/M2 balance.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Síndrome do Desconforto Respiratório , Sinovite , Doenças Autoimunes/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Humanos , Inflamação , Ativação de Macrófagos , Macrófagos , Sinovite/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA