Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
J Virol ; 98(2): e0188823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289104

RESUMO

Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.


Assuntos
Citomegalovirus , Interações entre Hospedeiro e Microrganismos , Alvo Mecanístico do Complexo 1 de Rapamicina , Monócitos , Biossíntese de Proteínas , RNA Mensageiro , Humanos , Apoptose , Sobrevivência Celular/genética , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/transmissão , Infecções por Citomegalovirus/virologia , Retroalimentação Fisiológica , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Monócitos/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Polirribossomos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Sirtuína 1/biossíntese , Sirtuína 1/genética , Sirtuína 1/metabolismo , Internalização do Vírus
2.
Ren Fail ; 44(1): 171-183, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35166167

RESUMO

OBJECTIVE: To explore the effect of resveratrol in premature senescence and reveal its anti-premature senescence mechanisms through network pharmacology. METHODS: In this study, the H2O2-induced bone marrow mesenchymal stem cells (BMMSCs) premature senescence model is applied. Cell counting kit-8 assay, ß-galactosidase staining and flow cytometry are conducted to detect the proliferation, senescence and apoptosis of BMMSCs. Bioinformatics analyses are used to screen and validate molecular targets of resveratrol acting on premature senescence. Dual-luciferase reporter assay is conducted to verify the interaction between v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA) and sirtuin 1 (SIRT1). RT-qPCR and western blot are adopted to detect mRNA and protein levels of RELA, SIRT1, senescence-related genes and apoptosis-related genes. RESULTS: First, we proved that resveratrol alleviated the H2O2-induced senescence of BMMSCs. Then, bioinformatics analysis revealed that RELA was the downstream target of resveratrol and SIRT1 was the downstream target of RELA, respectively, involved in premature aging. RELA/SIRT1 may be the potential target of resveratrol for premature senescence. Notably, rescue experiments indicated that resveratrol inhibited premature senescence partially through targeting regulation RELA/SIRT1. CONCLUSION: In our study, we confirm the functional role of the resveratrol-RELA- SIRT1 axis in the progression of premature senescence, which provides a latent target for premature senescence treatment.


Assuntos
Senescência Celular/efeitos dos fármacos , Resveratrol/farmacologia , Sirtuína 1/biossíntese , Fator de Transcrição RelA/biossíntese , Apoptose/efeitos dos fármacos , Células Cultivadas , Senescência Celular/genética , Humanos , Peróxido de Hidrogênio , Células-Tronco Mesenquimais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
BMC Cardiovasc Disord ; 22(1): 17, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35081907

RESUMO

BACKGROUND: The aim of this study was to investigate the effects of Resveratrol (RSV) in rats with dilated cardiomyopathy (DCM). METHODS: Porcine cardiac myosin was used to set up rat model with DCM. RSV (10 mg/kg in RSV-L group and 50 mg/kg in RSV-H group) or vehicle was administered to rats with DCM once daily from the 28th day till the 90th day after the first immunization. Cardiac function of rats was evaluated by echocardiographic analysis. The deposition of fibrous tissues in the hearts was evaluated by Masson and picrosirius red staining. The mRNA levels of collagen type I (Col I), collagen type III (Col III) and silence information regulator 1 (Sirt1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The interaction of Sirt1 with Smad3 was revealed by coimmunoprecipitation. RESULTS: The heart weight, heart weight/body weight ratio, left ventricular end diastolic diameter (LVEDD) and left ventricular end systolic diameter (LVESD) were significantly increased in rats with DCM, and attenuated by RSV. RSV also positively decreased fibrosis, and the expression of Col I and Col III in the myocardium. The Sirt1 mRNA was significantly decreased in myosin-immunized hearts and was positively increased by RSV. The Sirt1 combined with Smad3 directly. Acetylation of Smad3 (Ac-Smad3) was significantly increased in DCM and was markedly decreased by RSV. CONCLUSION: RSV effectively ameliorated myocardial fibrosis and improved cardiac function by regulating Sirt1/Smad3 deacetylation pathway in rat model with DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Regulação da Expressão Gênica , Miocárdio/patologia , RNA/genética , Resveratrol/farmacologia , Sirtuína 1/genética , Proteína Smad3/genética , Animais , Biópsia , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Inibidores Enzimáticos/farmacologia , Fibrose/diagnóstico , Fibrose/prevenção & controle , Masculino , Sirtuína 1/biossíntese , Proteína Smad3/biossíntese , Suínos
4.
Mol Cell Biochem ; 477(1): 53-65, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34533647

RESUMO

The era of induced pluripotent stem cells (iPSCs) was used as novel biotechnology to replace embryonic stem cells bypassing the ethical concerns and problems of stem cell transplant rejection. The anti-tumour potential of iPSCs against many tumours including salivary cancer was proven in previous studies. The current study aimed to investigate the contribution of the Bax, Sirt-1, TGF-ß, and MALAT genes and/or their protein expression to the pathogenesis of submandibular carcinogenesis before and after iPSCs treatment. Thirty Wistar albino rats were equally assigned into three groups: group I (control), group II (Squamous cell carcinoma (SCC)): submandibular glands were injected SCC cells, and group III (SCC/iPSCs): SCC rats were treated by 5 × 106 iPSCs. Submandibular gland sections were subjected to histological and immunohistochemical analyses to detect mucopolysaccharides, Bax, and TGF-ß expression as well as PCR quantification for TGF-ß, Sirt-1, and lncRNA MALAT-1 gene expressions. Western blotting was also used to detect Sirt-1 and TGF-ß protein expressions. SCC group revealed infiltration by sheets of malignant squamous cells with or without keratin pearls and inflammatory cells, in addition to upregulation of TGF-ß, Sirt-1, MALAT-1, and Bax, whereas SCC/iPSCs group showed an improved submandibular histoarchitecture with the maintenance of the secretory function. Bax and TGF-ß immunoexpression were significantly reduced. The upregulated TGF-ß, Sirt-1, and MALAT-1 genes were significantly decreased. iPSCs protected against the experimentally induced submandibular gland carcinoma that might be achieved via their regenerative potential and their regulatory modulation of Sirt-1, TGF-ß, and MALAT-1 gene/protein expressions and of the apoptotic response in cancer cells.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Células-Tronco Pluripotentes Induzidas , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , Neoplasias das Glândulas Salivares , Sirtuína 1/biossíntese , Glândula Submandibular/metabolismo , Fator de Crescimento Transformador beta/biossíntese , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/terapia , Linhagem Celular Tumoral , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Ratos , Ratos Wistar , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/terapia , Proteína X Associada a bcl-2/biossíntese
5.
J Neuroinflammation ; 18(1): 226, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645465

RESUMO

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortality or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post-HIE and a mediator to secondary neuronal death. As a plasma membrane G-protein-coupled receptor, GPR39, exhibits anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39 through inhibition of inflammation post-hypoxic-ischemic (HI) injury and to elaborate the contribution of sirtuin 1(SIRT1)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)/nuclear factor, erythroid 2 like 2(Nrf2) in G-protein-coupled receptor 39 (GPR39)-mediated protection. METHODS: A total of 206 10-day-old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was administered intranasally at 1 h, 25 h, 49 h, and 73 h post-HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and PGC-1α CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post-HIE. RESULTS: The expression of GPR39 and pathway-related proteins, SIRT1, PGC-1α and Nrf2 were increased in a time-dependent manner, peaking at 24 h or 48-h post-HIE. Intranasal administration of TC-G 1008 reduced the percent infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment significantly increased the expression of SIRT1, PGC-1α and Nrf2, but downregulated the expressions of IL-6, IL-1ß, and TNF-α. GPR39 CRISPR EX527 and PGC-1α CRISPR abolished GPR39's neuroprotective effects post-HIE. CONCLUSIONS: TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1α/Nrf2 pathway in a neonatal rat model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post-neonatal HIE injury.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/biossíntese , Sirtuína 1/biossíntese , Sulfonamidas/farmacologia , Animais , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sulfonamidas/uso terapêutico
6.
Biochem Biophys Res Commun ; 579: 47-53, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34583195

RESUMO

Diabetic nephropathy (DN) is one of the most serious and major renal complications of diabetes. Previously, Six-transmembrane Protein of Prostate 2 (STAMP2) was reported to contribute to nutritional stress. The purpose of this study is to investigate whether overexpression of STAMP2 attenuates diabetic renal injuries in DN rats. We induced the DN rat model by high-fat diet and low-dose streptozotocin and evaluated the metabolite and urine albumin/creatinine. Recombinant adeno-associated virus vectors were injected for overexpression of STAMP2. Pathophysiologic and ultrastructure features of DN by histochemical stain and transmission electron microscope, autophagy-related proteins and signaling pathway by western blotting were assessed. We found the expression of STAMP2 was decreased and autophagy was blunted in DN rat kidneys. Overexpressing STAMP2 significantly ameliorated metabolic disturbance, insulin resistance, and specifically restoring diabetic renal injury. Furthermore, overexpressing STAMP2 improved the autophagy deficiency in DN rats, as revealed by changes in the expressions of Beclin1, p62, and LC3. Furthermore, STAMP2 overexpressing promoted autophagy by inhibiting the mTOR and activating the AMPK/SIRT1 signaling pathway. Our results suggested that STAMP2 overexpression attenuated renal injuries via upregulating autophagy in DN rats. STAMP2 overexpressing promoted autophagy may been involved with inhibition of the mTOR/ULK1 and activation of the AMPK/SIRT1 signaling pathway.


Assuntos
Autofagia , Nefropatias Diabéticas/metabolismo , Regulação da Expressão Gênica , Rim/lesões , Proteínas de Membrana/biossíntese , Oxirredutases/biossíntese , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/biossíntese , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Vetores Genéticos , Córtex Renal/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1/biossíntese , Estreptozocina , Serina-Treonina Quinases TOR/biossíntese , Ativação Transcricional , Regulação para Cima
7.
Mediators Inflamm ; 2021: 9965081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366713

RESUMO

Vincristine (Vin) is a well-known antitumor agent that frequently evokes neuropathic pain and decreases the quality of life of patients. Polysaccharides (GBP) extracted from Gastrodia elata Blume have been demonstrated to possess anti-inflammatory and neuroprotective effects in vivo; however, the effects of GBP on Vin-induced neuropathic pain remain unknown. The present study is aimed at exploring the alleviative potential of GBP against chemotherapy-evoked peripheral neuropathy to better understand and extend its pharmacological application. Vin was administered intraperitoneally to evoke neuropathic pain. GBP was orally administered for 21 days. The mechanical allodynia and thermal hyperalgesia were assessed using the Von Frey test and hot-plate test. Histopathological changes were assessed by hematoxylin and eosin staining. ELISA kits were used to measure the levels of inflammatory cytokines in the sciatic nerve, spinal cord, and dorsal root ganglion (DRG). qRT-PCR was employed to examine the expression of inflammatory cytokines and Sirtuin1 (SIRT1) in the sciatic nerve, spinal cord, and DRG. Our findings revealed that GBP treatment enhanced the paw withdrawal latency and paw withdrawal threshold and restored Vin-induced sciatic nerve damage in rats. GBP also attenuated the Vin-induced increase of proinflammatory cytokine levels, including IL-6, IL-8, TNF-α, IL-1ß, and NF-κB. On the molecular level, treatment with GBP downregulated the mRNA levels of IL-6, IL-8, TNF-α, and IL-1ß in the sciatic nerve, spinal cord, and DRG. Meanwhile, GBP increased SIRT1 activity and mRNA expression levels. Our data indicated that GBP exerted a potential protective effect against chemotherapy-induced neuropathic pain which might be mediated via the inhibition of neuroinflammation.


Assuntos
Gastrodia/metabolismo , Neuralgia/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Polissacarídeos/química , Vincristina/química , Animais , Comportamento Animal , Citocinas/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamação , Masculino , Monossacarídeos/química , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Sirtuína 1/biossíntese , Medula Espinal/metabolismo
8.
Neural Plast ; 2021: 8706400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221003

RESUMO

Neuroinflammation plays important roles in the pathogenesis and progression of altered neurodevelopment, sensorineural hearing loss, and certain neurodegenerative diseases. Hyperoside (quercetin-3-O-ß-D-galactoside) is an active compound isolated from Hypericum plants. In this study, we investigate the protective effect of hyperoside on neuroinflammation and its possible molecular mechanism. Lipopolysaccharide (LPS) and hyperoside were used to treat HT22 cells. The cell viability was measured by MTT assay. The cell apoptosis rate was measured by flow cytometry assay. The mRNA expression levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) were determined by quantitative reverse transcription polymerase chain reaction. The levels of oxidative stress indices superoxide dismutase (SOD), reactive oxygen species (ROS), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) were measured by the kits. The expression of neurotrophic factor and the relationship among hyperoside, silent mating type information regulation 2 homolog-1 (SIRT1) and Wnt/ß-catenin, and sonic hedgehog was examined by western blotting. In the LPS-induced HT22 cells, hyperoside promotes cell survival; alleviates the level of IL-1ß, IL-6, IL-8, TNF-α, ROS, MDA, Bax, and caspase-3; and increases the expression of CAT, SOD, GSH, Bcl-2, BDNF, TrkB, and NGF. In addition, hyperoside upregulated the expression of SIRT1. Further mechanistic investigation showed that hyperoside alleviated LPS-induced inflammation, oxidative stress, and apoptosis by upregulating SIRT1 to activate Wnt/ß-catenin and sonic hedgehog pathways. Taken together, our data suggested that hyperoside acts as a protector in neuroinflammation.


Assuntos
Neurônios/efeitos dos fármacos , Quercetina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/biossíntese , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Citocinas/sangue , Avaliação Pré-Clínica de Medicamentos , Proteínas Hedgehog/fisiologia , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos , Fatores de Crescimento Neural/fisiologia , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Sirtuína 1/genética , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
9.
Neurotox Res ; 39(5): 1393-1404, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34251648

RESUMO

SIRT1 is a deacetylase with multiple physiological functions by targeting histones and non-histone proteins. It has been shown that SIRT1 activation is involved in neuroprotection in Parkinson's disease (PD) models. In the present study, we provided direct evidences showing the neuroprotective roles of SIRT1 in dopaminergic neurons. Our data showed that increased expression of SIRT1 plays beneficial roles against MPP+ insults in SH-SY5Y cells and primary dopaminergic neurons, including increased cell viability, reduced LDH release, improved the mitochondrial membrane potential (MMP), and attenuated cell apoptosis. On the contrary, knockdown of SIRT1 further aggravated cell injuries induced by MPP+. Moreover, mutated SIRT1 without deacetylase activity (SIRT1 H363Y) failed to protect dopaminergic neurons from MPP+ injuries. Mechanistically, SIRT1 improved PGC-1α expression and mitochondrial biogenesis. Knockdown of PGC-1α almost completely abolished the neuroprotective roles of SIRT1 in SH-SY5Y cells. Collectively, our data indicate that SIRT1 has neuroprotective roles in dopaminergic neurons, which is dependent upon PGC-1α-mediated mitochondrial biogenesis. These findings suggest that SIRT1 may hold great therapeutic potentials for treating dopaminergic neuron loss associated disorders such as PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Transtornos Parkinsonianos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Sirtuína 1/biossíntese , 1-Metil-4-fenilpiridínio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/prevenção & controle , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sirtuína 1/genética
10.
Front Endocrinol (Lausanne) ; 12: 639165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248837

RESUMO

Sepsis is a common risk factor for acute kidney injury (AKI). Bone marrow-derived mesenchymal stem cells (BMSCs) bear multi-directional differentiation potential. This study explored the role of BMSCs in sepsis-induced AKI (SI-AKI). A rat model of SI-AKI was established through cecal ligation and perforation. The SI-AKI rats were injected with CM-DiL-labeled BMSCs, followed by evaluation of pathological injury of kidney tissues and kidney injury-related indicators and inflammatory factors. HK-2 cells were treated with lipopolysaccharide (LPS) to establish SI-SKI model in vitro. Levels of mitochondrial proteins, autophagy-related proteins, NLRP3 inflammasome-related protein, and expressions of Parkin and SIRT1 in renal tubular epithelial cells (RTECs) of kidney tissues and HK-2 cells were detected. The results showed that BMSCs could reach rat kidney tissues and alleviate pathological injury of SI-SKI rats. BMSCs inhibited inflammation and promoted mitophagy of RTECs and HK-2 cells in rats with SI-AKI. BMSCs upregulated expressions of Parkin and SIRT1 in HK-2 cells. Parkin silencing or SIRT1 inhibitor reversed the promoting effect of BMSCs on mitophagy. BMSCs inhibited apoptosis and pyroptosis of RTECs in kidney tissues by upregulating SIRT1/Parkin. In conclusion, BMSCs promoted mitophagy and inhibited apoptosis and pyroptosis of RTECs in kidney tissues by upregulating SIRT1/Parkin, thereby ameliorating SI-AKI.


Assuntos
Injúria Renal Aguda/complicações , Células Epiteliais/citologia , Túbulos Renais/citologia , Células-Tronco Mesenquimais/citologia , Mitofagia/fisiologia , Sepse/metabolismo , Sirtuína 1/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Animais , Apoptose , Células da Medula Óssea/citologia , Células Epiteliais/metabolismo , Feminino , Imuno-Histoquímica , Inflamassomos/metabolismo , Inflamação , Rim/metabolismo , Túbulos Renais/metabolismo , Lipopolissacarídeos/metabolismo , Mitocôndrias/metabolismo , Piroptose , Ratos , Ratos Sprague-Dawley
11.
J Am Heart Assoc ; 10(14): e020667, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34259031

RESUMO

Background Hypothalamic leptin-mediated signaling contributes to the exaggerated sympatho-excitation and increased blood pressure in obesity-associated hypertension. The aim of the study was to investigate the roles of energy-sensing enzyme sirtuin1 (Sirt1) and forkhead box protein O1 (FoxO1) on the hypothalamic leptin-mediated high sympathetic nerve activity and inflammation in obesity. Methods and Results Sprague Dawley rats were fed with high-fat diet (HFD) for 12 weeks. In vivo, the potential of Srit1 and FoxO1 in the sympathetic effects of leptin was investigated via siRNA injection to knockdown Sirt1 or FoxO1 gene in the arcuate nucleus (ARCN) of hypothalamus in rats. In vitro, the effects of Sirt1 or FoxO1 on leptin-mediated inflammation were observed in proopiomelanocortin (POMC) and microglial cells. Knockdown Sirt1 by siRNA significantly reduced the renal sympathetic nerve activity (RSNA) and blood pressure responses to leptin injection in the ARCN in the HFD rats. Conversely, knockdown FoxO1 significantly enhanced the RSNA and blood pressure responses to leptin injection in the HFD rats. Knockdown Sirt1 reduced the levels of pro-inflammatory cytokines interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), C1q/TNF-related protein-1 (CTRP1), and immune cell infiltration in the ARCN in the HFD rats. Knockdown FoxO1 significantly increased the level of IL-6 in the ARCN of HFD rats. In cultured hypothalamic POMC and microglial cells, knockdown Sirt1 significantly reduced leptin-induced IL-6 expression, affected the levels of AMP-activated protein kinase (AMPK) and serine/threonine-specific protein kinase (Akt). Knockdown FoxO1 significantly increased leptin-induced IL-6 in both POMC cells and microglial cells. Conclusions These data suggest that both Sirt1 and FoxO1 are the key modulators of leptin signaling in the hypothalamus contributed to the over sympathetic activation and inflammation in obesity.


Assuntos
Metabolismo Energético , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Inflamação/genética , Leptina/metabolismo , Obesidade/genética , Sirtuína 1/genética , Animais , Western Blotting , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hipotálamo/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , RNA/genética , Ratos , Ratos Sprague-Dawley , Sirtuína 1/biossíntese
12.
Front Endocrinol (Lausanne) ; 12: 650328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149611

RESUMO

Diabetes in pregnancy is associated with adverse pregnancy outcomes including preterm birth. Although the mechanisms leading to these pregnancy complications are still poorly understood, aberrant angiogenesis and endothelial dysfunction play a key role. FKBPL and SIRT-1 are critical regulators of angiogenesis, however, their roles in pregnancies affected by diabetes have not been examined before in detail. Hence, this study aimed to investigate the role of FKBPL and SIRT-1 in pre-gestational (type 1 diabetes mellitus, T1D) and gestational diabetes mellitus (GDM). Placental protein expression of important angiogenesis proteins, FKBPL, SIRT-1, PlGF and VEGF-R1, was determined from pregnant women with GDM or T1D, and in the first trimester trophoblast cells exposed to high glucose (25 mM) and varying oxygen concentrations [21%, 6.5%, 2.5% (ACH-3Ps)]. Endothelial cell function was assessed in high glucose conditions (30 mM) and following FKBPL overexpression. Placental FKBPL protein expression was downregulated in T1D (FKBPL; p<0.05) whereas PlGF/VEGF-R1 were upregulated (p<0.05); correlations adjusted for gestational age were also significant. In the presence of GDM, only SIRT-1 was significantly downregulated (p<0.05) even when adjusted for gestational age (r=-0.92, p=0.001). Both FKBPL and SIRT-1 protein expression was reduced in ACH-3P cells in high glucose conditions associated with 6.5%/2.5% oxygen concentrations compared to experimental normoxia (21%; p<0.05). FKBPL overexpression in endothelial cells (HUVECs) exacerbated reduction in tubule formation compared to empty vector control, in high glucose conditions (junctions; p<0.01, branches; p<0.05). In conclusion, FKBPL and/or SIRT-1 downregulation in response to diabetic pregnancies may have a key role in the development of vascular dysfunction and associated complications affected by impaired placental angiogenesis.


Assuntos
Diabetes Gestacional/sangue , Regulação para Baixo , Endotélio Vascular/metabolismo , Complicações na Gravidez/metabolismo , Sirtuína 1/biossíntese , Proteínas de Ligação a Tacrolimo/biossíntese , Linhagem Celular , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliais/citologia , Feminino , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Oxigênio/metabolismo , Placenta/irrigação sanguínea , Placenta/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Trofoblastos/metabolismo , Regulação para Cima
13.
Reprod Sci ; 28(12): 3417-3430, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929710

RESUMO

Lipopolysaccharide (LPS) - an endotoxin that is being extensively used in laboratory to mimic microbial infection that adversely affects male fertility. This study investigated the protective effects of melatonin on LPS-induced testicular nitro-oxidative stress, inflammation, and associated damages in the testes of male golden hamsters, Mesocricetus auratus. Hamsters were administered with melatonin and LPS for 7 days. Testes of LPS treated hamsters showed degenerative changes (appearance of vacuoles, exfoliation, and depletion of germ cells in the seminiferous tubules), adverse effects on spermatogenesis (sperm count and viability), and steroidogenesis (declined serum and testicular testosterone). Furthermore, LPS treatment decreased melatonin content, melatonin receptor (MT1), and antioxidant potential (catalase and SOD), and simultaneously increased nitro-oxidative stress (CRP, nitrate, TNFα). LPS upregulated NF-kB, COX-2, and iNOS expressions to increase testicular inflammatory load that resulted in the decrease of germ cell proliferation and survival, thus culminating into germ cell apoptosis as indicated by AO-EB staining and caspase-3 expression. Administration of melatonin with LPS showed improved testicular histoarchitecture, sperm parameters, and testosterone level. Melatonin increased testicular antioxidant status (SOD, catalase) to counteract the LPS-induced testicular ROS and thus reduced testicular nitro-oxidative stress. Furthermore, melatonin treatment upregulated testicular SIRT-1 expression to inhibit LPS-induced inflammatory proteins, i.e., NF-kB/COX-2/iNOS expression. The rescue effect of melatonin was further supported by increased germ cell survival (Bcl-2), proliferation (PCNA), and declined apoptosis (caspase-3). In conclusion, our result demonstrated that melatonin rescued testes from LPS-induced testicular nitro-oxidative stress, inflammation, and associated damages by upregulation of SIRT-1.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Melatonina/farmacologia , NF-kappa B/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Sirtuína 1/biossíntese , Testículo/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Cricetinae , Inibidores de Ciclo-Oxigenase 2/farmacologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Mesocricetus , NF-kappa B/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Estresse Nitrosativo/efeitos dos fármacos , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Testículo/efeitos dos fármacos , Testículo/patologia
14.
Anticancer Res ; 41(3): 1377-1386, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33788729

RESUMO

BACKGROUND/AIM: The purpose of this study was to examine the expression of estrogen receptor α (ERα) and ß (ERß), androgen receptor (AR), SIRT1, SIRT2 and SIRT3 in prostate cancer (PCa). MATERIALS AND METHODS: From October 2010 to January 2015, 70 patients who had undergone radical prostatectomy following a PCa diagnosis were enrolled in our study. Normal prostate tissue (NPT) and prostate cancer tissues (PCAT) were separated, and the expression of each receptor in each tissue was analyzed with immunochemical staining. Univariate and multivariate analyses were performed to identify factors affecting the development of PCa. RESULTS: ERß and AR were highly expressed in PCAT compared with NPT (p<0.05). SIRT2 was highly expressed in NPT and PCAT (p<0.05). Univariate and multivariate analyses showed that AR and SIRT2 affect PCa development. CONCLUSION: AR is a risk factor for PC, and SIRT2 is associated with a lower incidence of PCa.


Assuntos
Receptor alfa de Estrogênio/biossíntese , Receptor beta de Estrogênio/biossíntese , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/biossíntese , Sirtuína 1/biossíntese , Sirtuína 2/biossíntese , Sirtuína 3/biossíntese , Idoso , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prostatectomia/métodos , Neoplasias da Próstata/cirurgia
15.
Inflammation ; 44(4): 1370-1380, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33630211

RESUMO

L-arginine (Arg), a semi-essential amino acid, has recently been shown to attenuate inflammatory response during cardiovascular disease. NLRP3 inflammasome serves a central role in amplification of cellular inflammation. In this study, we aimed to confirm the modulatory effect of Arg on NLRP3 inflammasome and the underlying mechanisms in vascular endothelial cells (ECs). Arg suppressed NLRP3 inflammasome activation in ECs stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Moreover, treatment with Arg increased the expression of the deacetylase sirtuin 1 (SIRT1) in ECs. Importantly, knockdown of SIRT1 abolished the inhibitory potential of Arg on the activation of NLRP3 inflammasome. Further study indicated that Arg also alleviated LPS plus ATP-induced the generation of reactive oxygen species (ROS) in ECs. In addition, Arg may regulate NLRP3 inflammasome activation partly through suppression of ROS production. In combination, we speculate that Arg exerts an inhibitory effect on the activation of NLRP3 inflammasome in ECs, which may be partly mediated by SIRT1 and ROS.


Assuntos
Arginina/farmacologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Sirtuína 1/biossíntese , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/antagonistas & inibidores
16.
Biol Pharm Bull ; 44(1): 32-38, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390547

RESUMO

Sarcopenia is a disease whose symptoms include decreased muscle mass and weakened muscle strength with age. In sarcopenia, decreased production of insulin-like growth factor-1 (IGF-1) increases ubiquitin ligases, such as Atrogin1 and Muscle RING-Finger Protein-1 (MuRF1), by activating forkhead box O (FOXO), and inflammatory cytokines and oxidative stress increase the expression of ubiquitin ligases by activating the transcription factor nuclear factor-kappa B (NF-κB). In addition, increased levels of ubiquitin ligases cause skeletal muscle atrophy. Conversely, sirtuin 1 (Sirt1) is known to regulate the expression of ubiquitin ligases by suppressing the activities of NF-κB and FOXO. In this study, we evaluated the effect that juzentaihoto hot water extract (JTT) has on skeletal muscle atrophy and motor function by administering it to senescence-accelerated mouse prone-8 (SAMP8). The group treated with JTT displayed larger gastrocnemius muscle (GA) and extensor digitorum longus (EDL) weights, larger GA muscle fiber cross-sectional areas, and motor function decline during rota-rod tests. JTT also increased IGF-1 serum levels, as well as mRNA Sirt1 levels in GA. Serum levels of tumor necrosis factor-α, interleukin-6, and mRNA levels of Atrogin1 and MuRF1 in GA were reduced by JTT. The muscle fiber cross-sectional area of GA was correlated with the mRNA levels of Sirt1 in GA. The results of this study suggested that JTT administration suppresses skeletal muscle atrophy and motor function decline in SAMP8 mice. This effect may be associated with the increased expression levels of Sirt1 and IGF-1 by JTT.


Assuntos
Envelhecimento/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Atividade Motora/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Fator de Crescimento Insulin-Like I/biossíntese , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Sirtuína 1/biossíntese
17.
Mol Cell Biochem ; 476(2): 863-872, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33111210

RESUMO

6, 4'-Dihydroxy-7-methoxyflavanone (DMF) has been shown to possess anti-inflammatory, anti-oxidative, and neuroprotective activities. However, its effect on oxidative stress-induced aging remains undemonstrated. This study aimed at investigating the anti-senescence effect of DMF on hydrogen peroxide (H2O2)-induced premature senescence, and associated molecular mechanisms in human dermal fibroblasts (HDFs). The cells were DMF pretreated with small interfering RNA (siRNAs) of control or sirtuin 1 (SIRT1) before H2O2 exposure, and western blot analysis, senescence-associated ß-galactosidase (SA-ß-gal) activity, cell counting, gene silencing, and SIRT1 activity assay were performed. Pretreatment with DMF inhibited H2O2-induced senescence phenotypes, which showed decreased SA-ß-gal activity and increased cell growth in comparison with H2O2-treated HDFs. Meanwhile, the decreases in ac-p53, p21Cip1/WAF1, and p16Ink4a and the increases in pRb and cyclin D1 were observed. DMF was also found to induce SIRT1 expression and activity level concentration- and time-dependently. Moreover, SIRT1 inhibition abrogated DMF senescence prevention. Additionally, Akt and ERK were activated with different kinetics after H2O2 exposure, and Akt activity inhibition attenuated SA-ß-gal activity augmentation. We also found that DMF inhibited H2O2-induced Akt phosphorylation. This study indicates that DMF effectively protects against oxidative stress-induced premature senescence through SIRT1 expression up-regulation and Akt pathway inhibition in HDFs. These results suggest that DMF can be a potential therapeutic molecule for age-related diseases, or a protective agent against the aging process.


Assuntos
Fibroblastos/efeitos dos fármacos , Flavanonas/farmacologia , Peróxido de Hidrogênio/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sirtuína 1/biossíntese , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Oxidantes/efeitos adversos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 1/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo
18.
Inflammation ; 44(1): 383-396, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33064238

RESUMO

Downregulating miR-217-5p could protect cardiomyocytes against ischemia/reperfusion (I/R) injury, but its role in restoring mitochondrial function of I/R-injured cardiomyocytes remained unclear. H9C2 cardiomyocyte-derived cell line with I/R injury was established in vitro on the basis of hypoxia/reperfusion (H/R) model. Cell viability and apoptosis were respectively detected by MTT assay and flow cytometry. Contents of lactate dehydrogenase (LDH) and adenosine triphosphate (ATP) were determined. Flow cytometry was performed to measure the production of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). Target gene and potential binding sites between miR-217-5p and Sirtuin1 (SIRT1) were predicted by TargetScan and confirmed by dual-luciferase reporter assay. Relative SIRT1 and expressions of autophagy-related and apoptosis-related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. After I/R treatment, the viability of H9C2 cardiomyocyte-derived cell line and ATP contents were reduced, but LDH and ROS contents were increased, at the same time, cell apoptosis and the expressions of miR-217-5p, p62 and cleaved caspase-3 were increased, whereas the expressions of SIRT1, LC3 (light chain 3), PINK1 (PTEN-induced kinase 1), Parkin, Bcl-2, and c-IAP (inhibitor of apoptosis protein) were reduced. However, downregulating miR-217-5p expression reversed the effects of I/R. SIRT1 was predicted and verified to be the target of miR-217-5p, and silencing SIRT1 reversed the effects of downregulating miR-217-5p on I/R-injured cells. Downregulating miR-217-5p could help restore mitochondrial function via targeting SIRT1, so as to protect cardiomyocytes against I/R-induced injury.


Assuntos
Regulação para Baixo/fisiologia , MicroRNAs/biossíntese , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Sirtuína 1/biossíntese , Animais , Linhagem Celular , Potencial da Membrana Mitocondrial/fisiologia , MicroRNAs/antagonistas & inibidores , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Sirtuína 1/antagonistas & inibidores
19.
Transplantation ; 105(3): 529-539, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32852406

RESUMO

BACKGROUND: MicroRNA-145 (miR-145) has been shown to play a critical role in ischemia/reperfusion (I/R) injury; however, the expression and function of miR-145 in lung I/R injury have not been reported yet. This study aimed to elucidate the potential effects of miR-145 in lung I/R injury. METHODS: Lung I/R mice models and hypoxia/reoxygenation (H/R) pulmonary microvascular endothelial cell models were established. The expression of miR-145 and sirtuin 1 (SIRT1) was measured with reverse transcription-quantitative polymerase chain reaction and Western blot analysis in mouse lung tissue and cells. Artificial modulation of miR-145 and SIRT1 (downregulation) was done in I/R mice and H/R cells. Additionally, Pao2/FiO2 ratio, wet weight-to-dry weight ratio, and cell apoptosis in mouse lung tissues were determined by blood gas analyzer, electronic balance, and deoxyuridine triphosphate-biotin nick end-labeling assay, respectively. Autophagy marker Beclin 1 and LC3 expression, NF-κB acetylation levels, and autophagy bodies were detected in cell H/R and mouse I/R models by Western blot analysis. pulmonary microvascular endothelial cell apoptosis was detected with flow cytometry. RESULTS: miR-145 was abundantly expressed in the lung tissue of mice and PMVECs following I/R injury. In addition, miR-145 directly targeted SIRT1, which led to significantly decreased Pao2/FiO2 ratio and increased wet weight-to-dry weight ratio, elevated acetylation levels and transcriptional activity of NF-κB, upregulated expressions of tumor necrosis factor-α, interleukins-6, and Beclin 1, autophagy bodies, cell apoptosis, as well as LC3-II/LC3I ratio. CONCLUSIONS: In summary, miR-145 enhances autophagy and aggravates lung I/R injury by promoting NF-κB transcriptional activity via SIRT1 expression.


Assuntos
Proteína Beclina-1/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , NF-kappa B/metabolismo , Traumatismo por Reperfusão/genética , Sirtuína 1/genética , Regulação para Cima , Animais , Apoptose , Autofagia , Modelos Animais de Doenças , Pulmão/irrigação sanguínea , Masculino , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Sirtuína 1/biossíntese
20.
Life Sci ; 265: 118787, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249095

RESUMO

AIM: The regulation of secreted osteopontin (OPN) expression by genistein and its functional sequel in the metastatic cancer cells (MDA-MB-435 and MDA-MB-231) was ascertained. MAIN METHODS: Western blot and Real-Time PCR were used to analyse the proteins and mRNA transcripts, respectively. Possible transcriptional regulation of secreted OPN was analyzed by chromatin immunoprecipitation assay, bioinformatics analysis, transfection and luciferase reporter assay. The specific siRNAs and constitutive p-ERKs were used to evaluate the role of the MAPK pathway. The functional sequel of genistein in these cells was analyzed by colony formation-, migration- and invasion- assay. KEY FINDINGS: Secreted OPN expression was inhibited (up to ~0.7-fold) by genistein in these cells. Genistein (50 µM) displayed a reduction in the aggressiveness of these cells concerning colony formation rate, migration, and invasion. The p-ERK½ was increased by ~2.5-fold and ~1.5-fold upon 50 µM genistein and 15 µM resveratrol treatments at 24 h, respectively. Knockdown of ERK½ and PD98059, the inhibitor of MEK, promoted secreted OPN expression in vitro in these cells; while, the transfection of the constitutive active ERK2 (L73P and S151D) decreased the secreted OPN expression. Further, silent mating type information regulation 2 homolog 1 (SIRT1) expression in the cells was increased (~1.6-fold) upon genistein treatment (50 µM) likewise with resveratrol (~1.5-fold), an activator for SIRT1. Knockdown of SIRT1 increased OPN mRNA transcripts expression level and secreted OPN protein level in these cells. SIGNIFICANCE: MAPK pathway and SIRT1 activation are involved in the regulation of secreted OPN by genistein in these cells.


Assuntos
Anticarcinógenos/farmacologia , Neoplasias da Mama/metabolismo , Genisteína/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Osteopontina/biossíntese , Sirtuína 1/biossíntese , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteopontina/genética , Sirtuína 1/deficiência , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA