Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Cell Rep ; 37(5): 109916, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731608

RESUMO

Intestinal epithelial cells (IECs) have long been understood to express high levels of major histocompatibility complex class II (MHC class II) molecules but are not considered canonical antigen-presenting cells, and the impact of IEC-MHC class II signaling on gut homeostasis remains enigmatic. As IECs serve as the primary barrier between underlying host immune cells, we reasoned that IEC-intrinsic antigen presentation may play a role in responses toward the microbiota. Mice with an IEC-intrinsic deletion of MHC class II (IECΔMHC class II) are healthy but have fewer microbial-bound IgA, regulatory T cells (Tregs), and immune repertoire selection. This was associated with increased interindividual microbiota variation and altered proportions of two taxa in the ileum where MHC class II on IECs is highest. Intestinal mononuclear phagocytes (MNPs) have similar MHC class II transcription but less surface MHC class II and are capable of acquiring MHC class II from IECs. Thus, epithelial-myeloid interactions mediate development of adaptive responses to microbial antigens within the gastrointestinal tract.


Assuntos
Imunidade Adaptativa , Bactérias/imunologia , Células Epiteliais/imunologia , Microbioma Gastrointestinal , Antígenos de Histocompatibilidade Classe II/imunologia , Íleo/microbiologia , Imunidade nas Mucosas , Sistema Fagocitário Mononuclear/imunologia , Células Mieloides/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Linhagem Celular , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Interações Hospedeiro-Patógeno , Íleo/imunologia , Íleo/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Fagocitário Mononuclear/metabolismo , Sistema Fagocitário Mononuclear/microbiologia , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
2.
J Cardiovasc Pharmacol ; 76(4): 407-413, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33027195

RESUMO

Myocardial infarction (MI) is an irreversible damage of the heart muscle, which often leads to adverse cardiac remodeling and progressive heart failure. After MI, immune cells play a vital role in the clearance of the dying tissue and cardiac remodeling. Post-MI events include the release of danger signals by necrotic cardiomyocytes and the migration of the inflammatory cells, such as dendritic cells, neutrophils, monocytes, and macrophages, into the site of the cardiac injury to digest the cell debris and secrete a variety of inflammatory factors activating the inflammatory response. In this review, we focus on the role of immune cells in the cardiac remodeling after MI and the novel immunotherapies targeting immune cells.


Assuntos
Leucócitos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Infarto do Miocárdio/imunologia , Remodelação Ventricular , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Imunoterapia , Leucócitos/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Sistema Fagocitário Mononuclear/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais
3.
PLoS One ; 15(5): e0233044, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453801

RESUMO

Mice deficient in the transcription factor Runx3 develop a multitude of immune system defects, including early onset colitis. This paper demonstrates that Runx3 is expressed in colonic mononuclear phagocytes (MNP), including resident macrophages (RM) and dendritic cell subsets (cDC2). Runx3 deletion in MNP causes early onset colitis due to their impaired maturation. Mechanistically, the resulting MNP subset imbalance leads to up-regulation of pro-inflammatory genes as occurs in IL10R-deficient RM. In addition, RM and cDC2 display a marked decrease in expression of anti-inflammatory/TGF ß-regulated genes and ß-catenin signaling associated genes, respectively. MNP transcriptome and ChIP-seq data analysis suggest that a significant fraction of genes affected by Runx3 loss are direct Runx3 targets. Collectively, Runx3 imposes intestinal immune tolerance by regulating maturation of colonic anti-inflammatory MNP, befitting the identification of RUNX3 as a genome-wide associated risk gene for various immune-related diseases in humans, including gastrointestinal tract diseases such as Crohn's disease and celiac.


Assuntos
Colite/imunologia , Colo/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Sistema Fagocitário Mononuclear/imunologia , Animais , Diferenciação Celular , Colite/genética , Modelos Animais de Doenças , Humanos , Camundongos , Receptores de Interleucina-10/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , beta Catenina/metabolismo
4.
Immunol Rev ; 295(1): 54-67, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32242952

RESUMO

We have only recently started to appreciate the extent to which immune cell activation involves significant changes in cellular metabolism. We are now beginning to understand how commitment to specific metabolic pathways influences aspects of cellular biology that are the more usual focus of immunological studies, such as activation-induced changes in gene transcription, post-transcriptional regulation of transcription, post-translational modifications of proteins, cytokine secretion, etc. Here, we focus on metabolic reprogramming in mononuclear phagocytes downstream of stimulation with inflammatory signals (such as LPS and IFNγ) vs alternative activation signals (IL-4), with an emphasis on work on dendritic cells and macrophages from our laboratory, and related studies from others. We cover aspects of glycolysis and its branching pathways (glycogen synthesis, pentose phosphate, serine synthesis, hexose synthesis, and glycerol 3 phosphate shuttle), the tricarboxylic acid pathway, fatty acid synthesis and oxidation, and mitochondrial biology. Although our understanding of the metabolism of mononuclear phagocytes has progressed significantly over the last 10 years, major challenges remain, including understanding the effects of tissue residence on metabolic programming related to cellular activation, and the translatability of findings from mouse to human biology.


Assuntos
Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Animais , Metabolismo Energético , Humanos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Sistema Fagocitário Mononuclear/citologia , Fagócitos/citologia
5.
Exp Neurol ; 328: 113259, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32105709

RESUMO

Neuroinflammation is increasingly recognized as an important mediator of disease progression in patients with amyotrophic lateral sclerosis (ALS). Recent research suggests that pro-inflammatory microglia in ALS mice promote motoneuron cytotoxicity by secreting reactive oxygen species and pro-inflammatory cytokines. Gene expression analyses indicate that peripheral circulating monocytes from ALS patients are skewed towards a pro-inflammatory state that contributes to ALS disease progression. Better understanding of macrophage phenotypes of ALS patients is therefore warranted. In this study, we demonstrate that M1 macrophages differentiated from ALS circulating monocytes produced more pro-inflammatory cytokines, including IL-6 and TNFα, than M1 macrophages derived from healthy control monocytes. More importantly, IL-6 protein levels of ALS M1 macrophages positively correlated with disease burden, and TNFα protein levels of ALS M1 macrophages positively correlate with disease progression rates. Collectively, these data suggest that monocytes from ALS patients are more readily activated and differentiated to a pro-inflammatory M1 phenotype, and represent a potential target for immunomodulatory therapy.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Inflamação/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Adulto , Idoso , Diferenciação Celular/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
6.
Methods Enzymol ; 632: 67-90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32000915

RESUMO

The intestinal tract is home to trillions of microbes that make up the gut microbiota and is a major source of environmental antigens that can be derived from food, commensal microorganisms, and potential pathogens. Amidst this complex environment, myeloid cells, including macrophages (MPs) and dendritic cells (DCs), are key immunological sentinels that locally maintain both tissue and immune homeostasis. Recent research has revealed substantial functional and developmental heterogeneity within the intestinal DC and MP compartments, with evidence pointing to their regulation by the microbiota. DCs are classically divided into three subsets based on their CD103 and CD11b expression: CD103+CD11b-(XCR1+) cDC1s, CD103+CD11b+ cDC2s, and CD103-CD11b+ cDC2s. Meanwhile, mature gut MPs have recently been classified by their expression of Tim-4 and CD4 into a long-lived, self-maintaining Tim-4+CD4+ population and short-lived, monocyte-derived Tim-4-CD4+ and Tim-4-CD4- populations. In this chapter, we provide experimental procedures to classify and isolate these myeloid subsets from the murine intestinal lamina propria for functional characterization.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Intestinos/citologia , Sistema Fagocitário Mononuclear/citologia , Fagócitos/citologia , Animais , Antígenos CD/análise , Antígenos CD/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Feminino , Microbioma Gastrointestinal , Intestinos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Células Mieloides/imunologia , Fagócitos/imunologia , Coloração e Rotulagem/métodos
7.
Front Immunol ; 11: 609921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33746939

RESUMO

The central nervous system (CNS) parenchyma is enclosed and protected by a multilayered system of cellular and acellular barriers, functionally separating glia and neurons from peripheral circulation and blood-borne immune cells. Populating these borders as dynamic observers, CNS-resident macrophages contribute to organ homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these phagocytes start playing additional roles as immune regulators contributing to disease evolution. At the same time, pathological CNS conditions drive the migration and recruitment of blood-borne monocyte-derived cells across distinct local gateways. This invasion process drastically increases border complexity and can lead to parenchymal infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue repair. While recent studies and technical advancements have highlighted the extreme heterogeneity of these resident and CNS-invading cells, both the compartment-specific mechanism of invasion and the functional specification of intruding and resident cells remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS interfaces, indicating how further studies of CNS border dynamics are crucially needed to shed light on local and systemic regulation of CNS functions and dysfunctions.


Assuntos
Movimento Celular , Doenças do Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Sistema Fagocitário Mononuclear/metabolismo , Animais , Comunicação Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Transdução de Sinais
8.
BMC Immunol ; 20(1): 42, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718550

RESUMO

BACKGROUND: Myeloid cells, especially mononuclear phagocytes, which include monocytes, macrophages and dendritic cells (DC), play vital roles in innate immunity, and in the initiation and maintenance of adaptive immunity. While T cell-associated activation pathways and cytokines have been identified and evaluated in inflammatory bowel disease (IBD) patients (Neurath, Nat Rev Gastroenterol Hepatol 14:269-78, 1989), the role of mononuclear phagocytes are less understood. Recent reports support the crucial role of DC subsets in the development of acute colitis models (Arimura et al., Mucosal Immunol 10:957-70, 2017), and suggest they may contribute to the pathogenesis of ulcerative colitis (UC) by inducing Th1/Th2/Th17 responses (Matsuno et al., Inflamm Bowel Dis 23:1524-34, 2017). RESULTS: We performed in silico analysis and evaluated the enrichment of immune cells, with a focus on mononuclear phagocytes in IBD patient colonic biopsies. Samples were from different gut locations, with different levels of disease severity, and with treatment response to current therapies. We observe enrichment of monocytes, M1 macrophages, activated DCs (aDCs) and plasmacytoid dendritic cells (pDCs) in inflamed tissues from various gut locations. This enrichment correlates with disease severity. Additionally, the same mononuclear phagocytes subsets are among the top enriched cell types in both infliximab and vedolizumab treatment non-responder samples. We further investigated the enrichment of selected DC and monocyte subsets based on gene signatures derived from a DC- and monocyte-focused single cell RNA-seq (scRNA-seq) study (Villani et al., Science 356:eaah4573, 2017), and verified enrichment in both inflamed tissues and those with treatment resistance. Moreover, we validated an increased mononuclear phagocyte subset abundance in a Dextran Sulphate Sodium (DSS) induced colitis model in C57Bl/6 mice representative of chronic inflammation. CONCLUSIONS: We conducted an extensive analysis of immune cell populations in IBD patient colonic samples and identified enriched subsets of monocytes, macrophages and dendritic cells in inflamed tissues. Understanding how they interact with other immune cells and other cells in the colonic microenvironment such as epithelial and stromal cells will help us to delineate disease pathogenesis.


Assuntos
Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Biópsia , Microambiente Celular , Colo/imunologia , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Resistência a Medicamentos , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Infliximab/farmacologia , Infliximab/uso terapêutico , Contagem de Leucócitos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Sistema Fagocitário Mononuclear/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
9.
Int J Mol Sci ; 20(15)2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357698

RESUMO

The proper functioning of the monocyte-macrophage system, an important unit of innate immunity, ensures the normal course of pregnancy. In this review, we present the current data on the origin of the monocyte-macrophage system and its functioning in the female reproductive system during the ovarian cycle, and over the course of both normal and complicated pregnancy. Preeclampsia is a crucial gestation disorder characterized by pronounced inflammation in the maternal body that affects the work of the monocyte-macrophage system. The effects of inflammation at preeclampsia manifest in changes in monocyte counts and their subset composition, and changes in placental macrophage counts and their polarization. Here we summarize the recent data on this issue for both the maternal organism and the fetus. The influence of estrogen on macrophages and their altered levels in preeclampsia are also discussed.


Assuntos
Imunidade Inata/genética , Inflamação/genética , Sistema Fagocitário Mononuclear/imunologia , Pré-Eclâmpsia/genética , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Ciclo Menstrual/genética , Ciclo Menstrual/imunologia , Monócitos/imunologia , Placenta/imunologia , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/patologia , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/imunologia , Complicações na Gravidez/patologia
10.
Front Immunol ; 10: 378, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918507

RESUMO

Due to their ability to present foreign antigens and prime naïve T cells, macrophages, and dendritic cells (DCs) are referred to as professional antigen-presenting cells (APCs). Although activated macrophages may function as APCs, these cells are particularly effective at directly engaging pathogens through phagocytosis, and production of antimicrobial compounds. On the other hand, DCs possess superb antigen-presenting and costimulatory capacity and they are essential for commencement and regulation of adaptive immune responses. In in vitro models, development of mature mammalian DCs from monocytes requires sequential exposure to growth factors (including GM-CSF and IL-4) and proinflammatory stimuli such as toll-like receptor (TLR) ligands. Currently, except for IL-4/13, neither orthologs nor functional analogs of the growth factors which are essential for the differentiation of mammalian DCs (including GM-CSF and FLT3) have been identified in teleosts and data about differentiation of piscine APCs is scant. In the present study, primary salmon mononuclear phagocytes (MPs) stimulated in vitro for 5-7 days with a B-class CpG oligodeoxynucleotides (ODN 2006PS) underwent morphological differentiation and developed "dendritic" morphology, characterized by long, branching pseudopodia. Transcriptional profiling showed that these cells expressed high levels of proinflammatory mediators characteristic for M1 polarized MPs. However, the cells treated with CpGs for 7 days downregulated their surface MHCII molecules as well as their capacity to endocytose ovalbumin and exhibited attenuated allostimulatory activity. This concurred with transcriptional downregulation of costimulatory CD80/86 and upregulation of inhibitory CD274 (B7-H1) genes. Despite their exhausted allostimulatory activity, these cells were still responsive to re-stimulation with gardiquimod (a TLR7/8 ligand) and further upregulated a wide array of immune genes including proinflammatory mediators such as intereukin-1 beta and tumor necrosis factor. Overall, the presented data highlight the disparate effects TLR ligands may have on the proinflammatory status of APCs, on one side, and their antigen-presenting/costimulatory functions, on the other. These findings also indicate that despite the poor phylogenetic conservation of the growth factors involved in the differentiation of DCs, some of the processes that orchestrate the development and the differentiation of professional APCs are conserved between teleosts in mammals.


Assuntos
Diferenciação Celular/imunologia , Dendritos , Sistema Fagocitário Mononuclear/citologia , Sistema Fagocitário Mononuclear/metabolismo , Oligodesoxirribonucleotídeos/imunologia , Salmo salar/genética , Salmo salar/imunologia , Transcriptoma , Animais , Biomarcadores , Células Cultivadas , Perfilação da Expressão Gênica , Mediadores da Inflamação , Sistema Fagocitário Mononuclear/imunologia , Fagocitose/genética , Fagocitose/imunologia , Salmo salar/metabolismo
11.
Trends Immunol ; 40(2): 98-112, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30579704

RESUMO

The mononuclear phagocyte system (MPS) is defined as a cell lineage in which committed marrow progenitors give rise to blood monocytes and tissue macrophages. Here, we discuss the concept of self-proscribed macrophage territories and homeostatic regulation of tissue macrophage abundance through growth factor availability. Recent studies have questioned the validity of the MPS model and argued that tissue-resident macrophages are a separate lineage seeded during development and maintained by self-renewal. We address this issue; discuss the limitations of inbred mouse models of monocyte-macrophage homeostasis; and summarize the evidence suggesting that during postnatal life, monocytes can replace resident macrophages in all major organs and adopt their tissue-specific gene expression. We conclude that the MPS remains a valid and accurate framework for understanding macrophage development and homeostasis.


Assuntos
Macrófagos/imunologia , Monócitos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Animais , Homeostase , Humanos , Camundongos
12.
World J Gastroenterol ; 24(44): 4962-4973, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30510371

RESUMO

The mononuclear phagocyte system (MPS), which consists of monocytes, dendritic cells (DCs), and macrophages, plays a vital role in the innate immune defense against pathogens. Hepatitis C virus (HCV) is efficient in evading the host immunity, thereby facilitating its development into chronic infection. Chronic HCV infection is the leading cause of end-stage liver diseases, liver cirrhosis, and hepatocellular carcinoma. Acquired immune response was regarded as the key factor to eradicate HCV. However, innate immunity can regulate the acquired immune response. Innate immunity-derived cytokines shape the adaptive immunity by regulating T-cell differentiation, which determines the outcome of acute HCV infection. Inhibition of HCV-specific T-cell responses is one of the most important strategies for immune system evasion. It is meaningful to illustrate the role of innate immune response in HCV infection. With the MPS being the important factor in innate immunity, therefore, understanding the role of the MPS in HCV infection will shed light on the pathophysiology of chronic HCV infection. In this review, we outline the impact of HCV infection on the MPS and cytokine production. We discuss how HCV is detected by the MPS and describe the function and impairment of MPS components in HCV infection.


Assuntos
Imunidade Adaptativa/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Imunidade Inata/imunologia , Sistema Fagocitário Mononuclear/imunologia , Hepatite C Crônica/virologia , Humanos
13.
Front Immunol ; 9: 2375, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30369933

RESUMO

CD1d-restricted Natural Killer T (NKT) cells are regarded as sentinels of tissue integrity by sensing local cell stress and damage. This occurs via recognition of CD1d-restricted lipid antigens, generated by stress-related metabolic changes, and stimulation by inflammatory cytokines, such as IL-12 and IL-18. Increasing evidence suggest that this occurs mainly upon NKT cell interaction with CD1d-expressing cells of the Mononuclear Phagocytic System, i.e., monocytes, macrophages and DCs, which patrol parenchymatous organs and mucosae to maintain tissue homeostasis and immune surveillance. In this review, we discuss critical examples of this crosstalk, presenting the known underlying mechanisms and their effects on both cell types and the environment, and suggest that the interaction with CD1d-expressing mononuclear phagocytes in tissues is the fundamental job of NKT cells.


Assuntos
Comunicação Celular , Suscetibilidade a Doenças , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos/imunologia , Fagócitos/imunologia , Fagócitos/metabolismo , Microambiente Tumoral
14.
Trends Mol Med ; 24(10): 838-855, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30100517

RESUMO

The lack of effective treatment options for chronic neurological conditions, such as multiple sclerosis (MS), highlights the need to re-evaluate disease pathophysiology in the process of identifying novel therapeutic targets. The persistent activation of mononuclear phagocytes (MPs) is one of the major drivers of neurodegeneration and it sustains central nervous system (CNS) damage. Mitochondrial metabolism influences the activity of MPs, and the metabolites that they produce have key signalling roles in inflammation. However, how changes in immune cell metabolism sustain a chronic state of neuroinflammation is not fully understood. Novel molecular and cellular therapies for chronic neuroinflammation should be developed to target mitochondrial metabolism in innate immune cells to prevent secondary neurological damage and the accumulation of irreversible disability in patients.


Assuntos
Sistema Nervoso Central/metabolismo , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/métodos , Esclerose Múltipla Crônica Progressiva/metabolismo , Doenças Neurodegenerativas/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Crotonatos/uso terapêutico , Fumarato de Dimetilo/uso terapêutico , Transporte de Elétrons/efeitos dos fármacos , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/imunologia , Sistema Glinfático/metabolismo , Sistema Glinfático/patologia , Humanos , Hidroxibutiratos , Imunidade Inata , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/imunologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/patologia , Sistema Fagocitário Mononuclear/efeitos dos fármacos , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Sistema Fagocitário Mononuclear/patologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Crônica Progressiva/terapia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Nitrilas , Transdução de Sinais , Transplante de Células-Tronco/métodos , Toluidinas/uso terapêutico
15.
Arthritis Rheumatol ; 70(12): 2003-2013, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29869839

RESUMO

OBJECTIVE: Gut-derived innate lymphoid cell 3 (ILC3) has been shown to participate in the pathogenesis of ankylosing spondylitis (AS). CX3 CR1+ mononuclear phagocytes (MNPs) have been demonstrated to modulate ILC3 function in the gut. This study was undertaken to investigate the role of proinflammatory CX3 CR1+CD59+ MNPs in modulating ILC3 function in AS patients. METHODS: MNP subsets in the blood of AS patients and controls were analyzed by flow cytometry. The presence of CX3 CR1+CD59+ cells in tissue was confirmed by confocal microscopy. Expression of the proinflammatory chemokines CX3 CL1 and CCL2 and decoy receptor 6 (DcR-6) was analyzed. Peripheral CX3 CR1+CD59+ cells were cocultured with ILC3, and changes in their frequency were evaluated by flow cytometry. Transcriptome analysis of circulating CX3 CR1+ monocytes was also performed. RESULTS: DcR-6 deficiency and CCL2 overexpression were observed in inflamed tissues from AS patients. In the gut, the proinflammatory CX3 CR1+CD59+ MNP population was expanded, correlated with the presence of bacteria, and produced high levels of tumor necrosis factor-like molecule 1A (TL1A) and interleukin-23 (IL-23). MNPs positive for CD11b, CD11c, and major histocompatibility complex class II, predominantly expressing CX3 CR1, were also expanded in the small intestines of treatment-naive SKG relative to BALB/c mice. The frequency of gut-derived CX3 CR1+CD59+CCR9+TL1A+IL-23+ MNPs was significantly higher in the peripheral blood and synovial fluid of AS patients than controls. CCR9+CX3 CR1+CD59+ monocytes were also expanded in AS synovial and bone marrow samples. Transcriptome analysis of isolated CX3 CR1+CD59+ monocytes demonstrated a specific proinflammatory profile in AS. Isolated proinflammatory CX3 CR1+CD59+ MNPs from AS patients induced the expansion and activation of ILC3. CONCLUSION: Proinflammatory CX3 CR1+CD59+TL1A+IL-23+ MNPs are expanded in AS patients and display a specific proinflammatory transcriptome profile. Given the ability of these cells to support ILC3 expansion, they may promote a sustained proinflammatory status in AS.


Assuntos
Imunidade Inata , Linfócitos/imunologia , Monócitos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Espondilite Anquilosante/imunologia , Adulto , Antígenos CD59/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Interleucina-23/imunologia , Masculino , Pessoa de Meia-Idade , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia
16.
Cell Immunol ; 330: 97-104, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29748002

RESUMO

The kidney contains a large and complex network of mononuclear phagocytes, which includes dendritic cells (DCs) and macrophages (MØs). The distinction between these cell types is traditionally based on the expression of molecular markers and morphology. However, several classification systems are used in parallel to identify DCs and MØs, leading to considerable uncertainty about their identity and functional roles. The discovery that a substantial proportion of macrophages in tissues like the kidney are embryonically derived further complicates the situation. Recent studies have used newly identified transcription factors such as ZBTB46 and lineage tracing techniques for classifying mononuclear phagocytes. These approaches have shed new light on the functional specialization of these cells in health and disease, uncovered an influence of the renal microenvironment and revealed considerable cellular plasticity, especially in inflammatory situations. In this review, the current knowledge about the developmental origins and versatile functional roles of DCs and MØs in kidney homeostasis and disease is discussed.


Assuntos
Células Dendríticas/imunologia , Rim/imunologia , Macrófagos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Animais , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Homeostase/imunologia , Humanos , Rim/citologia , Rim/metabolismo , Nefropatias/imunologia , Nefropatias/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Sistema Fagocitário Mononuclear/citologia , Sistema Fagocitário Mononuclear/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
17.
PLoS Pathog ; 14(5): e1007069, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782555

RESUMO

The opportunistic fungal pathogen Candida albicans frequently causes diseases such as oropharyngeal candidiasis (OPC) in immunocompromised individuals. Although it is well appreciated that the cytokine IL-17 is crucial for protective immunity against OPC, the cellular source and the regulation of this cytokine during infection are still a matter of debate. Here, we directly visualized IL-17 production in the tongue of experimentally infected mice, thereby demonstrating that this key cytokine is expressed by three complementary subsets of CD90+ leukocytes: RAG-dependent αß and γδ T cells, as well as RAG-independent ILCs. To determine the regulation of IL-17 production at the onset of OPC, we investigated in detail the myeloid compartment of the tongue and found a heterogeneous and dynamic mononuclear phagocyte (MNP) network in the infected tongue that consists of Zbtb46-Langerin- macrophages, Zbtb46+Langerin+ dendritic cells (DCs) and Ly6C+ inflammatory monocytes. Of those, the Langerin+ DC population stands out by its unique capacity to co-produce the cytokines IL-1ß, IL-6 and IL-23, all of which promote IL-17 induction in response to C. albicans in the oral mucosa. The critical role of Langerin+ DCs for the innate IL-17 response was confirmed by depletion of this cellular subset in vivo, which compromised IL-17 induction during OPC. In conclusion, our work revealed key regulatory factors and their cellular sources of innate IL-17-dependent antifungal immunity in the oral mucosa.


Assuntos
Antígenos de Superfície/imunologia , Candida albicans/imunologia , Candidíase Bucal/imunologia , Células Dendríticas/imunologia , Interleucina-17/biossíntese , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Mucosa Bucal/imunologia , Animais , Candidíase Bucal/microbiologia , Citocinas/imunologia , Feminino , Citometria de Fluxo , Interleucina-1beta/biossíntese , Interleucina-23/biossíntese , Interleucina-23/imunologia , Interleucina-6/biossíntese , Leucócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Fagocitário Mononuclear/imunologia , Mucosa Bucal/citologia , Mucosa Bucal/microbiologia , Neutrófilos/imunologia , Organismos Livres de Patógenos Específicos , Baço/citologia , Baço/imunologia , Antígenos Thy-1/imunologia , Língua/citologia , Língua/imunologia , Língua/microbiologia
18.
Cell Immunol ; 330: 159-167, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29395860

RESUMO

In mammals, macrophages (MF) are present in virtually all tissues where they serve many different functions linked primarily to the maintenance of homeostasis, innate defense against pathogens, tissue repair and metabolism. Although some of these functions appear common to all tissues, others are specific to the homing tissue. Thus, MF become adapted to perform particular functions in a given tissue. Accordingly, MF express common markers but also sets of tissue-specific markers linked to dedicated functions. One of the largest pool of MF in the body lines up the wall of the gut. Located in the small intestine, Peyer's patches (PP) are primary antigen sampling and mucosal immune response inductive sites. Surprisingly, although markers of intestinal MF, such as F4/80, have been identified more than 30 years ago, MF of PP escaped any kind of phenotypic description and remained "unknown" for decades. In absence of MF identification, the characterization of the PP mononuclear phagocyte system (MPS) functions has been impaired. However, taking into account that PP are privileged sites of entry for pathogens, it is important to understand how the latter are handled by and/or escape the PP MPS, especially MF, which role in killing invaders is well known. This review focuses on recent advances on the PP MPS, which have allowed, through new criteria of PP phagocyte subset identification, the characterization of PP MF origin, diversity, specificity, location and functions.


Assuntos
Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Macrófagos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Nódulos Linfáticos Agregados/imunologia , Imunidade Adaptativa/imunologia , Animais , Imunidade nas Mucosas/imunologia , Sistema Fagocitário Mononuclear/citologia , Nódulos Linfáticos Agregados/citologia , Fagócitos/imunologia
19.
Front Immunol ; 9: 193, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479353

RESUMO

The mononuclear phagocyte system (MPS) constitutes dendritic cells, monocytes, and macrophages. This system contributes to various functions that are essential for maintaining homeostasis, activation of innate immunity, and bridging it with the adaptive immunity. Consequently, MPS is highly important in bolstering immunity against the pathogens. However, MPS is the frontline cells in destroying Mycobacterium tuberculosis (Mtb), yet the bacterium prefers to reside in the hostile environment of macrophages. Therefore, it may be very interesting to study the struggle between Mtb and MPS to understand the outcome of the disease. In an event when MPS predominates Mtb, the host remains protected. By contrast, the situation becomes devastating when the pathogen tames and tunes the host MPS, which ultimately culminates into tuberculosis (TB). Hence, it becomes extremely crucial to reinvigorate MPS functionality to overwhelm Mtb and eliminate it. In this article, we discuss the strategies to bolster the function of MPS by exploiting the molecules associated with the innate immunity and highlight the mechanisms involved to overcome the Mtb-induced suppression of host immunity. In future, such approaches may provide an insight to develop immunotherapeutics to treat TB.


Assuntos
Imunidade Inata , Sistema Fagocitário Mononuclear/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Imunidade Adaptativa , Animais , Células Dendríticas/imunologia , Humanos , Inflamação , Macrófagos/imunologia , Camundongos , Monócitos/imunologia , Tuberculose/prevenção & controle
20.
ACS Nano ; 11(10): 10539-10548, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28953351

RESUMO

The clearance of nanoparticles (NPs) by mononuclear phagocyte system (MPS) from blood leads to high liver and spleen uptake and negatively impacts their tumor delivery efficiency. Here we systematically evaluated the in vitro and in vivo nanobio interactions of a two-dimensional (2D) model, gold (Au) nanorings, which were compared with Au nanospheres and Au nanoplates of similar size. Among different shapes, Au nanorings achieved the lowest MPS uptake and highest tumor accumulation. Among different sizes, 50 nm Au nanorings showed the highest tumor delivery efficiency. In addition, we demonstrated the potential use of Au naonrings in photoacoustic imaging and photothermal therapy. Thus, engineering the shape, surface area, and size of Au nanostructures is important in controlling NP-MPS interactions and improving the tumor uptake efficiency.


Assuntos
Antineoplásicos/farmacologia , Ouro/farmacologia , Sistema Fagocitário Mononuclear/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fototerapia , Animais , Antineoplásicos/química , Diagnóstico por Imagem , Ouro/química , Macrófagos/efeitos dos fármacos , Camundongos , Sistema Fagocitário Mononuclear/imunologia , Neoplasias/diagnóstico , Tamanho da Partícula , Tomografia por Emissão de Pósitrons , Células RAW 264.7 , Propriedades de Superfície , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA