Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 486
Filtrar
1.
ACS Chem Neurosci ; 15(6): 1197-1205, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451201

RESUMO

Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 µM) increases relative to that in the control group (1.34 ± 0.22 µM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 µM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.


Assuntos
Córtex Auditivo , Zumbido , Ratos , Animais , Córtex Auditivo/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Neuroproteção , Zumbido/tratamento farmacológico , Zumbido/metabolismo , Ácido Glutâmico/metabolismo , Modelos Animais de Doenças , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo
2.
J Vet Med Sci ; 85(11): 1237-1244, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37866885

RESUMO

Cystine-glutamate transporter (xCT) is a plasma membrane transporter that imports cystine and indirectly contributes to the oxidative stress resistance associated with increased intracellular glutathione levels. Canine adipose-derived stem cells (CADSCs) include an xCT-positive subpopulation and show relatively low expression of osteogenic markers during in vitro osteogenic differentiation. Sulfasalazine (SSZ), a drug used to treat rheumatoid arthritis, suppresses xCT expression in cancer cells. In this study, we found that the SSZ treatment at 100 µM significantly suppressed xCT mRNA expression in CADSCs but did not significantly affect cell proliferation under the same conditions. Additionally, this treatment decreased the intracellular glutathione concentration. During in vitro osteogenic differentiation, the SSZ treatment at 50 µM and 100 µM significantly increased alizarin red staining and its quantification, as well as the concentration-dependent osteogenic differentiation markers (BMP1 and SPP) mRNA expression. Our results suggested that SSZ enhances the osteogenic differentiation potential of CADSCs and can potentially exhibit a superior therapeutic profile in canine bone regenerative medicine.


Assuntos
Osteogênese , Sulfassalazina , Animais , Cães , Sulfassalazina/farmacologia , Cistina , Diferenciação Celular , Glutationa , Sistema X-AG de Transporte de Aminoácidos , Células-Tronco , RNA Mensageiro
3.
Brain Res Bull ; 200: 110683, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301482

RESUMO

Synapse loss is a major contributor to cognitive dysfunction in Alzheimer's disease (AD). Impairments in the expression and/or glutamate uptake activity of glia glutamate transporter-1 (GLT-1) contribute to synapse loss in AD. Hence, targeting the restoration of GLT-1 activity may have potential for alleviating synapse loss in AD. Ceftriaxone (Cef) can upregulate the expression and glutamate uptake activity of GLT-1 in many disease models, including those for AD. The present study investigated the effects of Cef on synapse loss and the role of GLT-1 using APP/PS1 transgenic and GLT-1 knockdown APP/PS1 AD mice. Furthermore, the involvement of microglia in the process was investigated due to its important role in synapse loss in AD. We found that Cef treatment significantly ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice, evidenced by an increased dendritic spine density, decreased dendritic beading density, and upregulated levels of postsynaptic density protein 95 (PSD95) and synaptophysin. The effects of Cef were suppressed by GLT-1 knockdown in GLT-1+/-/APP/PS1 AD mice. Simultaneously, Cef treatment inhibited ionized calcium binding adapter molecule 1 (Iba1) expression, decreased the proportion of CD11b+CD45hi cells, declined interleukin-6 (IL-6) content, and reduced the co-expression of Iba1 with PSD95 or synaptophysin in APP/PS1 AD mice. In conclusion, Cef treatment ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice in a GLT-1-dependent manner, and the inhibitory effect of Cef on the activation of microglia/macrophages and their phagocytosis for synaptic elements contributed to the mechanism.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Ceftriaxona/farmacologia , Microglia/metabolismo , Sinaptofisina/metabolismo , Camundongos Transgênicos , Hipocampo/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Macrófagos/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Peptídeos beta-Amiloides/metabolismo
4.
Front Biosci (Landmark Ed) ; 28(3): 57, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37005761

RESUMO

Glial cells play an essential role in the complex function of the nervous system. In particular, astrocytes provide nutritive support for neuronal cells and are involved in regulating synaptic transmission. Oligodendrocytes ensheath axons and support information transfer over long distances. Microglial cells constitute part of the innate immune system in the brain. Glial cells are equipped with the glutamate-cystine-exchanger xCT (SLC7A11), the catalytic subunit of system xc-, and the excitatory amino acid transporter 1 (EAAT1, GLAST) and EAAT2 (GLT-1). Thereby, glial cells maintain balanced extracellular glutamate levels that enable synaptic transmission and prevent excitotoxic states. Expression levels of these transporters, however, are not fixed. Instead, expression of glial glutamate transporters are highly regulated in reaction to the external situations. Interestingly, such regulation and homeostasis is lost in diseases such as glioma, (tumor-associated) epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis or multiple sclerosis. Upregulation of system xc- (xCT or SLC7A11) increases glutamate export from the cell, while a downregulation of EAATs decreases intracellular glutamate import. Occurring simultaneously, these reactions entail excitotoxicity and thus harm neuronal function. The release of glutamate via the antiporter system xc- is accompanied by the import of cystine-an amino acid essential in the antioxidant glutathione. This homeostasis between excitotoxicity and intracellular antioxidant response is plastic and off-balance in central nervous system (CNS) diseases. System xc- is highly expressed on glioma cells and sensitizes them to ferroptotic cell death. Hence, system xc- is a potential target for chemotherapeutic add-on therapy. Recent research reveals a pivotal role of system xc- and EAAT1/2 in tumor-associated and other types of epilepsy. Numerous studies show that in Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease, these glutamate transporters are dysregulated-and disease mechanisms could be interposed by targeting system xc- and EAAT1/2. Interestingly, in neuroinflammatory diseases such as multiple sclerosis, there is growing evidence for glutamate transporter involvement. Here, we propose that the current knowledge strongly suggest a benefit from rebalancing glial transporters during treatment.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Glioma , Esclerose Múltipla , Doença de Parkinson , Humanos , Sistema X-AG de Transporte de Aminoácidos , Cistina/metabolismo , Antioxidantes , Ácido Glutâmico/metabolismo , Microglia/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo
5.
J Pain ; 24(7): 1163-1180, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36641029

RESUMO

Systemic lupus erythematosus (SLE) is an unpredictable autoimmune disease where the body's immune system mistakenly attacks healthy tissues in many parts of the body. Chronic pain is one of the most frequently reported symptoms among SLE patients. We previously reported that MRL lupus prone (MRL/lpr) mice develop hypersensitivity to mechanical and heat stimulation. In the present study, we found that the spinal protease-activated receptor-1(PAR1) plays an important role in the genesis of chronic pain in MRL/lpr mice. Female MRL/lpr mice with chronic pain had activation of astrocytes, over-expression of thrombin and PAR1, enhanced glutamatergic synaptic activity, as well as suppressed activity of adenosine monophosphate-activated protein kinase (AMPK) and glial glutamate transport function in the spinal cord. Intrathecal injection of either the PAR1 antagonist, or AMPK activator attenuated heat hyperalgesia and mechanical allodynia in MRL/lpr mice. Furthermore, we also identified that the enhanced glutamatergic synaptic activity and suppressed activity of glial glutamate transporters in the spinal dorsal horn of MRL/lpr mice are caused by activation of the PAR1 and suppression of AMPK signaling pathways. These findings suggest that targeting the PAR1 and AMPK signaling pathways in the spinal cord may be a useful approach for treating chronic pain caused by SLE. PERSPECTIVE: Our study provides evidence suggesting activation of PAR1 and suppression of AMPK in the spinal cord induces thermal hyperalgesia and mechanical allodynia in a lupus mouse model. Targeting signaling pathways regulating the PAR1 and AMPK could potentially provide a novel approach to the management of chronic pain caused by SLE.


Assuntos
Dor Crônica , Lúpus Eritematoso Sistêmico , Camundongos , Feminino , Animais , Dor Crônica/etiologia , Dor Crônica/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Receptor PAR-1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Glutamatos/metabolismo
6.
Glia ; 71(3): 720-741, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36416239

RESUMO

Deficiency of glutamate transporter GLAST in Müller cells may be culpable for excessive extracellular glutamate, which involves in retinal ganglion cell (RGC) damage in glaucoma. We elucidated how GLAST was regulated in rat chronic ocular hypertension (COH) model. Western blot and whole-cell patch-clamp recordings showed that GLAST proteins and GLAST-mediated current densities in Müller cells were downregulated at the early stages of COH. In normal rats, intravitreal injection of the ephrinA3 activator EphA4-Fc mimicked the changes of GLAST in COH retinas. In purified cultured Müller cells, EphA4-Fc treatment reduced GLAST expression at mRNA and protein levels, which was reversed by the tyrosine kinase inhibitor PP2 or transfection with ephrinA3-siRNA (Si-EFNA3), suggesting that EphA4/ephrinA3 reverse signaling mediated GLAST downregulation. EphA4/ephrinA3 reverse signaling-induced GLAST downregulation was mediated by inhibiting PI3K/Akt/NF-κB pathways since EphA4-Fc treatment of cultured Müller cells reduced the levels of p-Akt/Akt and NF-κB p65, which were reversed by transfecting Si-EFNA3. In Müller cells with ephrinA3 knockdown, the PI3K inhibitor LY294002 still decreased the protein levels of NF-κB p65 in the presence of EphA4-Fc, and the mRNA levels of GLAST were reduced by LY294002 and the NF-κB inhibitor SN50, respectively. Pre-injection of the PI3K/Akt pathway activator 740 Y-P reversed the GLAST downregulation in COH retinas. Western blot and TUNEL staining showed that transfecting of Si-EFNA3 reduced Müller cell gliosis and RGC apoptosis in COH retinas. Our results suggest that activated EphA4/ephrinA3 reverse signaling induces GLAST downregulation in Müller cells via inhibiting PI3K/Akt/NF-κB pathways, thus contributing to RGC damage in glaucoma.


Assuntos
Efrina-A3 , Transportador 1 de Aminoácido Excitatório , Glaucoma , Hipertensão Ocular , Receptor EphA4 , Animais , Ratos , Sistema X-AG de Transporte de Aminoácidos , Regulação para Baixo , Células Ependimogliais , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Retina , Transportador 1 de Aminoácido Excitatório/metabolismo , Receptor EphA4/metabolismo , Efrina-A3/metabolismo
7.
Exp Brain Res ; 241(1): 201-209, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436003

RESUMO

Astrocyte-specific glutamate transporter subtype 1 (GLT-1) plays an important role in influencing glutamate excitatory toxicity and preventing the death of excitatory toxic neurons. Although the mammalian target of rapamycin (mTOR)/protein kinase B(Akt)/nuclear factor kappa B signaling cascade is involved in the upregulation of astrocytic GLT-1 in oxygen-glucose deprivation (OGD), it is unclear whether the mTOR/Akt pathway is involved in astrocytic GLT-1 upregulation in OGD and reoxygenation (OGD/R). In this study, we found that the treatment of cultured astrocytes with rapamycin and triciribine led to the decreased astrocytes' protrusions, smaller nuclei, and an increased apoptotic rate. The inhibitors of mTOR complex 1 significantly increased the expression levels of phosphorylated Akt-Ser473 (p-Akt), phosphorylated Akt-Thr308(p-Akt), and GLT-1, while Akt-specific inhibitors blocked GLT-1 expression, suggesting that the mTOR/Akt pathway is involved in GLT-1 upregulation. We further demonstrated that astrocytes under OGD/R adapted to environmental changes through the mTOR/Akt pathway, mainly by altering cell morphology and apoptosis and upregulating the expression levels of p-Akt and GLT-1. Our results suggested that astrocytes may adapt to short-term ischemic-reperfusion injury by regulating cell morphology, apoptosis and GLT-1 upregulation.


Assuntos
Oxigênio , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Astrócitos/metabolismo , Glucose/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Células Cultivadas
8.
J Integr Neurosci ; 22(6): 144, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38176931

RESUMO

BACKGROUND: Experimental investigations have reported the efficacy of marrow mesenchymal stem cell-derived exosomes (MSC-Exos) for the treatment of ischemic stroke. The therapeutic mechanism, however, is still unknown. The purpose of the study is to show whether MSC-Exos increases astrocytic glutamate transporter-1 (GLT-1) expression in response to ischemic stroke and to investigate further mechanisms. METHODS AND RESULTS: An in vitro ischemia model (oxygen-glucose deprivation/reperfusion, OGD/R) was used. MSC-Exos was identified by Western blot (WB) and transmission electron microscopy (TEM). To further investigate the mechanism, MSC-Exos, miR-124 inhibitor, and mimics, and a mTOR pathway inhibitor (rapamycin, Rap) were used. The interaction between GLT-1 and miR-124 was analyzed by luciferase reporter assay. The GLT-1 RNA expression and miR-124 was assessed by quantitative real-time polymerase chain reaction (qRTPCR). The protein expressions of GLT-1, S6, and pS6 were detected by WB. Results demonstrated that MSC-Exos successfully inhibited the decrease of GLT-1 and miR-124 expression and the increase of pS6 expression in astrocytes after OGD/R. miR-124 inhibitor suppressed the effect of MSC-Exos on GLT-1 upregulation after OGD/R. Rapamycin notably decreased pS6 expression with significantly higher GLT-1 expression in astrocytes injured by OGD/R. Luciferase activity of the reporter harboring the wild-type or mutant GLT-1 3'UTR was not inhibited by miR-124 mimics. Further results showed that the inhibiting effect of MSC-Exos on pS6 expression and promoting effect of MSC-Exos on GLT-1 expression could be reversed by miR-124 inhibitor after OGD/R; meanwhile, the above conditions could be reversed again by rapamycin. CONCLUSIONS: Results show that miR-124 and the mTOR pathway are involved in regulation of MSC-Exos on GLT-1 expression in astrocytes injured by OGD/R. miR-124 does not directly target GLT-1. MSC-Exos upregulates GLT-1 expression via the miR-124/mTOR pathway in astrocytes injured by OGD/R.


Assuntos
Exossomos , AVC Isquêmico , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Humanos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Medula Óssea/metabolismo , Exossomos/genética , Exossomos/metabolismo , Glucose/metabolismo , MicroRNAs/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
9.
Int J Med Sci ; 19(11): 1680-1694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237989

RESUMO

Gastric cancer is a highly malignant tumor. Gastric cancer stem cells (GCSCs) are the main causes of drug resistance, metastasis, recurrence, and poor prognosis. As a secondary metabolite of lichen, Atranorin has a variety of biological effects, such as antibacterial, anti-inflammatory, analgesic, and wound healing; however, its killing effect on GCSCs has not been reported. In this study, we constructed Atranorin complexes comprising superparamagnetic iron oxide nanoparticles (SPION) (Atranorin@SPION). In vitro and in vivo experiments confirmed that Atranorin@SPION could significantly inhibit the proliferation, invasion, angiogenesis, and tumorigenicity of CD44+/ CD24+ GCSCs, and induce oxidative stress injury, Fe2+ accumulation, and ferroptosis. Quantitative real-time reverse transcription PCR and western blotting results showed that Atranorin@SPION not only reduced the expression levels of GCSC stem cell markers and cell proliferation and division markers, but also significantly inhibited the expression levels of key molecules in the cystine/glutamate transporter (Xc-)/glutathione peroxidase 4 (GPX4) and Tet methylcytosine dioxygenase (TET) family proteins. The results of high performance liquid chromatography-mass spectrometry and Dot blotting showed that Atranorin@SPION significantly inhibited the mRNA 5­hydroxymethylcytidine modification of GCSCs. Meanwhile, the results of RNA immunoprecipitation-PCR also indicated that Atranorin@SPIONs significantly reduced the 5-hydroxymethylcytidine modification level of GPX4 and SLC7A11 mRNA 3' untranslated region in GCSCs, resulting in a decrease in their stability, shortening their half-lives and reducing translation activity. Therefore, this study revealed that Atranorin@SPIONs induced ferroptosis of GCSCs by weakening the expression of the Xc-/GPX4 axis and the 5-hydroxymethylcytidine modification of mRNAs in the pathway, thereby achieving their therapeutic effect on gastric cancer.


Assuntos
Dioxigenases , Ferroptose , Neoplasias Gástricas , Regiões 3' não Traduzidas , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sistema X-AG de Transporte de Aminoácidos/farmacologia , Analgésicos/uso terapêutico , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Cistina/genética , Cistina/metabolismo , Cistina/farmacologia , Citidina/análogos & derivados , Dioxigenases/genética , Dioxigenases/metabolismo , Dioxigenases/farmacologia , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Hidroxibenzoatos , Nanopartículas Magnéticas de Óxido de Ferro , Células-Tronco Neoplásicas/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
10.
Brain Res Bull ; 185: 56-63, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490908

RESUMO

Chronic tobacco exposure can alter the endocannabinoid (eCB) system, consequently leading to an anxiety state. In this study, we investigated the effects of waterpipe tobacco smoke (WTS) on cannabinoid receptor 1 and 2 (CBR1 and CBR2) gene and protein expression in mesocorticolimbic brain regions. Using elevated plus maze (EPM) and open field (OF) tests, the effects of WTS exposure on withdrawal-induced anxiety-like behavior were examined. The effect of ceftriaxone (CEF), a ß-lactam known to upregulate glutamate transporter 1 (GLT-1), on anxiety and the expression of cannabinoid receptors was also determined. Male Sprague-Dawley rats were randomly assigned to four groups: 1) the Control group was exposed only to standard room air; 2) the WTS group was exposed to tobacco smoke and treated with saline vehicle; 3) the WTS-CEF group was exposed to WTS and treated with ceftriaxone; and 4) the CEF group was exposed only to standard room air and treated with ceftriaxone. Rats were exposed to WTS (or room air) for two hours per day, five days per week for a period of four weeks. Behavioral tests (EPM and OF) were conducted weekly during acute withdrawal, 24 h following WTS exposure. Rats were given either saline or ceftriaxone (200 mg/kg i.p.) for five days during Week 4, 30 min prior to WTS exposure. Withdrawal-induced anxiety was induced by WTS exposure but was reduced by ceftriaxone treatment. WTS exposure decreased CBR1 mRNA and protein expression in the NAc and VTA, but not PFC, and ceftriaxone treatment attenuated these effects. WTS exposure did not change CBR2 mRNA expression in the NAc, VTA, or PFC. These findings demonstrate that WTS exposure dysregulated the endocannabinoid system and increased anxiety-like behavior, and these effects were reversed by ceftriaxone treatment, which suggest the involvement of glutamate transporter 1 in these effects.


Assuntos
Ceftriaxona , Tabaco para Cachimbos de Água , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Ceftriaxona/farmacologia , Endocanabinoides , Transportador 2 de Aminoácido Excitatório/metabolismo , Masculino , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Fumaça/efeitos adversos , Nicotiana/metabolismo
11.
Mol Psychiatry ; 27(3): 1754-1764, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34857913

RESUMO

Alcohol misuse is common in many societies worldwide and is associated with extensive morbidity and mortality, often leading to alcohol use disorders (AUD) and alcohol-related end-organ damage. The underlying mechanisms contributing to the development of AUD are largely unknown; however, growing evidence suggests that alcohol consumption is strongly associated with alterations in DNA methylation. Identification of alcohol-associated methylomic variation might provide novel insights into pathophysiology and novel treatment targets for AUD. Here we performed the largest single-cohort epigenome-wide association study (EWAS) of alcohol consumption to date (N = 8161) and cross-validated findings in AUD populations with relevant endophenotypes, as well as alcohol-related animal models. Results showed 2504 CpGs significantly associated with alcohol consumption (Bonferroni p value < 6.8 × 10-8) with the five leading probes located in SLC7A11 (p = 7.75 × 10-108), JDP2 (p = 1.44 × 10-56), GAS5 (p = 2.71 × 10-47), TRA2B (p = 3.54 × 10-42), and SLC43A1 (p = 1.18 × 10-40). Genes annotated to associated CpG sites are implicated in liver and brain function, the cellular response to alcohol and alcohol-associated diseases, including hypertension and Alzheimer's disease. Two-sample Mendelian randomization confirmed the causal relationship of consumption on AUD risk (inverse variance weighted (IVW) p = 5.37 × 10-09). A methylation-based predictor of alcohol consumption was able to discriminate AUD cases in two independent cohorts (p = 6.32 × 10-38 and p = 5.41 × 10-14). The top EWAS probe cg06690548, located in the cystine/glutamate transporter SLC7A11, was replicated in an independent cohort of AUD and control participants (N = 615) and showed strong hypomethylation in AUD (p < 10-17). Decreased CpG methylation at this probe was consistently associated with clinical measures including increased heavy drinking days (p < 10-4), increased liver function enzymes (GGT (p = 1.03 × 10-21), ALT (p = 1.29 × 10-6), and AST (p = 1.97 × 10-8)) in individuals with AUD. Postmortem brain analyses documented increased SLC7A11 expression in the frontal cortex of individuals with AUD and animal models showed marked increased expression in liver, suggesting a mechanism by which alcohol leads to hypomethylation-induced overexpression of SLC7A11. Taken together, our EWAS discovery sample and subsequent validation of the top probe in AUD suggest a strong role of abnormal glutamate signaling mediated by methylomic variation in SLC7A11. Our data are intriguing given the prominent role of glutamate signaling in brain and liver and might provide an important target for therapeutic intervention.


Assuntos
Alcoolismo , Sistema y+ de Transporte de Aminoácidos , Epigenoma , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Sistema X-AG de Transporte de Aminoácidos , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Cistina/genética , Metilação de DNA/genética , Estudo de Associação Genômica Ampla/métodos , Glutamatos/genética , Humanos
12.
Mol Neurobiol ; 59(1): 266-275, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34665406

RESUMO

Status epilepticus (SE) develops from abnormal electrical discharges, resulting in neuronal damage. Current treatments include antiepileptic drugs. However, the most common drugs used to treat seizures may sometimes be ineffective and have many side effects. Melatonin is an endogenous physiological hormone that is considered an alternative treatment for neurological disorders because of its free radical scavenging property. Thus, this study aimed to determine the effects of melatonin pretreatment on SE by inducing glutamatergic hyperstimulation in zebrafish. Seizures were induced in zebrafish using kainic acid (KA), a glutamate analog, and the seizure intensity was recorded for 60 min. Melatonin treatment for 7 days showed a decrease in seizure intensity (28%), latency to reach score 5 (14 min), and duration of SE (29%). In addition, melatonin treatment attenuated glutamate transporter levels, which significantly decreased in the zebrafish brain after 12 h of KA-induced seizures. Melatonin treatment reduced the increase in oxidative stress by reactive oxygen species formation through thiobarbituric acid reactive substances and 2',7'-dichiorofluorescin, induced by KA-seizure. An imbalance of antioxidant enzyme activities such as superoxide dismutase and catalase was influenced by melatonin and KA-induced seizures. Our study indicates that melatonin promotes a neuroprotective response against the epileptic profile in zebrafish. These effects could be related to the modulation of glutamatergic neurotransmission, recovery of glutamate uptake, and oxidative stress parameters in the zebrafish brain.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo , Ácido Caínico/toxicidade , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estado Epiléptico/prevenção & controle , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Glutationa/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Superóxido Dismutase/metabolismo , Peixe-Zebra
13.
Neurochem Res ; 47(1): 148-162, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33550531

RESUMO

Plasma membrane glutamate transporters move glutamate across the cell membrane in a process that is thought to involve elevator-like movement of the transport domain relative to the static trimerization domain. Conformational changes associated with this elevator-like movement have been blocked by covalent crosslinking of cysteine pairs inserted strategically in several positions in the transporter structure, resulting in inhibition of steady-state transport activity. However, it is not known how these crosslinking restraints affect other partial reactions of the transporter that were identified based on pre-steady-state kinetic analysis. Here, we re-examine two different introduced cysteine pairs in the rat glutamate transporter EAAC1 recombinantely expressed in HEK293 cells, W440C/K268C and K64C/V419C, with respect to the molecular mechanism of their impairment of transporter function. Pre-steady-state kinetic studies of glutamate-induced partial reactions were performed using laser photolysis of caged glutamate to achieve sub-millisecond time resolution. Crosslinking of both cysteine pairs abolished steady-state transport current, as well as the majority of pre-steady-state glutamate-induced charge movements, in both forward and reverse transport mode, suggesting that it is not only the elevator-like movement associated with translocation, but also other transporter partial reactions that are inhibited. In contrast, sodium binding to the empty transporter, and glutamate-induced anion conductance were still intact after the W440C/K268C crosslink. Our results add to the previous mechanistic view of how covalent restraints of the transporter affect function and structural changes linked to individual steps in the transport cycle.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Transportador 3 de Aminoácido Excitatório , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Transportador 3 de Aminoácido Excitatório/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Cinética , Ratos , Sódio
14.
J Thorac Cardiovasc Surg ; 164(6): e269-e283, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34090694

RESUMO

OBJECTIVE: This experimental study aimed to assess the efficacy of hydrogen gas inhalation against spinal cord ischemia-reperfusion injury and reveal its mechanism by measuring glutamate concentration in the ventral horn using an in vivo microdialysis method. METHODS: Male Sprague-Dawley rats were divided into the following 6 groups: sham, only spinal ischemia, 3% hydrogen gas (spinal ischemia + 3% hydrogen gas), 2% hydrogen gas (spinal ischemia + 2% hydrogen gas), 1% hydrogen gas (spinal ischemia + 1% hydrogen gas), and hydrogen gas dihydrokainate (spinal ischemia + dihydrokainate [selective inhibitor of glutamate transporter-1] + 3% hydrogen gas). Hydrogen gas inhalation was initiated 10 minutes before the ischemia. For the hydrogen gas dihydrokainate group, glutamate transporter-1 inhibitor was administered 20 minutes before the ischemia. Immunofluorescence was performed to assess the expression of glutamate transporter-1 in the ventral horn. RESULTS: The increase in extracellular glutamate induced by spinal ischemia was significantly suppressed by 3% hydrogen gas inhalation (P < .05). This effect was produced in increasing order: 1%, 2%, and 3%. Conversely, the preadministration of glutamate transporter-1 inhibitor diminished the suppression of spinal ischemia-induced glutamate increase observed during the inhalation of 3% hydrogen gas. Immunofluorescence indicated the expression of glutamate transporter-1 in the spinal ischemia group was significantly decreased compared with the sham group, which was attenuated by 3% hydrogen gas inhalation (P < .05). CONCLUSIONS: Our study demonstrated hydrogen gas inhalation exhibits a protective and concentration-dependent effect against spinal ischemic injury, and glutamate transporter-1 has an important role in the protective effects against spinal cord injury.


Assuntos
Traumatismo por Reperfusão , Isquemia do Cordão Espinal , Animais , Masculino , Ratos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Modelos Animais de Doenças , Glutamatos/metabolismo , Hidrogênio/farmacologia , Isquemia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Medula Espinal/metabolismo , Isquemia do Cordão Espinal/prevenção & controle , Isquemia do Cordão Espinal/metabolismo
15.
Neurochem Res ; 46(10): 2687-2695, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33661442

RESUMO

Changes in astrocyte channels, transporters, and metabolism play a critical role in seizure generation and epilepsy. In particular, alterations in astrocyte potassium, glutamate, water and adenosine homeostasis and gap junctional coupling have all been associated with hyperexcitability and epileptogenesis (largely in temporal lobe epilepsy). Distinct astrocytic changes have also been identified in other types of epilepsy, such as tuberous sclerosis, tumor-associated epilepsy and post-traumatic epilepsy. Together, the emerging literature on astrocytes and epilepsy provides powerful rationale for distinct new therapeutic targets that are astrocyte-specific.


Assuntos
Astrócitos/metabolismo , Epilepsia/metabolismo , Adenosina/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Aquaporina 4/metabolismo , Epilepsia/etiologia , Junções Comunicantes/metabolismo , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
16.
Alcohol Alcohol ; 56(2): 210-219, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33063090

RESUMO

AIM: Reinforcing properties of ethanol and cocaine are mediated in part through the glutamatergic system. Extracellular glutamate concentration is strictly maintained through several glutamate transporters, such as glutamate transporter 1 (GLT-1), cystine/glutamate transporter (xCT) and glutamate aspartate transporter (GLAST). Previous findings revealed that cocaine and ethanol exposure downregulated GLT-1 and xCT, and that ß-lactam antibiotics restored their expression. METHODS: In this study, we investigated the effect of ampicillin/sulbactam (AMP/SUL) (200 mg/kg, i.p.), a ß-lactam antibiotic, on cocaine-induced reinstatement and locomotor activity in male alcohol preferring (P) rats using free choice ethanol (15 and 30%, v/v) and water. We also investigated the effect of co-exposure to ethanol and cocaine (20 mg/kg, i.p.) on GLT-1, xCT and GLAST expression in the nucleus accumbens (NAc) core, NAc shell and dorsomedial prefrontal cortex (dmPFC). RESULTS: Cocaine exposure decreased ethanol intake and preference. Cocaine and ethanol co-exposure acquired place preference and increased locomotor activity compared to ethanol-exposed rats. GLT-1 and xCT expression were downregulated after cocaine and ethanol co-exposure in the NAc core and shell, but not in dmPFC. AMP/SUL attenuated reinstatement to cocaine as well attenuated the decrease in locomotor activity and ethanol intake and preference. These effects were associated with upregulation of GLT-1 and xCT expression in the NAc core/shell and dmPFC. GLAST expression was not affected after ethanol and cocaine co-exposure or AMP/SUL treatment. CONCLUSION: Our findings demonstrate that astrocytic glutamate transporters within the mesocorticolimbic area are critical targets in modulating cocaine-seeking behavior while being consuming ethanol.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/administração & dosagem , Comportamento de Procura de Droga , Etanol/administração & dosagem , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Masculino , Ratos , beta-Lactamas/farmacologia
17.
Glia ; 69(2): 296-309, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32835451

RESUMO

Recent evidence has shown that the vascular endothelial growth factor (VEGF) system plays a crucial role in several neuropathological processes. We previously reported an upregulation of VEGF-C and its receptor, VEGFR-3, in reactive astrocytes after the onset of status epilepticus (SE). However, it remains unknown, which molecules act as downstream signals following VEGFR-3 upregulation, and are involved in reactive astrogliosis after SE. Therefore, we investigated whether VEGFR-3 upregulation within reactive astrocytes is associated with the activation of mammalian target of rapamycin (mTOR) signaling, which we confirmed by assaying for the phosphorylated form of S6 protein (pS6), and whether VEGFR-3-mediated mTOR activation induces astroglial glutamate transporter-1 (GLT-1) expression in the hippocampus after pilocarpine-induced SE. We found that spatiotemporal expression of pS6 was consistent with VEGFR-3 expression in the hippocampus after SE, and that both pS6 and VEGFR-3 were highly expressed in SE-induced reactive astrocytes. Treatment with the mTOR inhibitor rapamycin decreased astroglial VEGFR-3 expression and GLT-1 expression after SE. Treatment with a selective inhibitor for VEGFR-3 attenuated astroglial pS6 expression as well as suppressed GLT-1 expression and astroglial reactivity in the hippocampus after SE. These findings demonstrate that VEGFR-3-mediated mTOR activation could contribute to the regulation of GLT-1 expression in reactive astrocytes during the subacute phase of epilepsy. In conclusion, the present study suggests that VEGFR-3 upregulation in reactive astrocytes may play a role in preventing hyperexcitability induced by continued seizure activity.


Assuntos
Estado Epiléptico , Sistema X-AG de Transporte de Aminoácidos , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório , Hipocampo/metabolismo , Humanos , Pilocarpina/toxicidade , Estado Epiléptico/induzido quimicamente , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular
18.
ACS Chem Neurosci ; 12(1): 163-175, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33315395

RESUMO

Excitatory amino acid transporters (EAATs) serve to maintain extracellular neurotransmitter concentrations below neurotoxic levels by transporting glutamate from the synaptic cleft into apposed glia and neurons. Although the crystal structures of the archaeal EAAT homologue from Pyrococcus horikoshii, GltPh, and the human glutamate transporter, EAAT1cryst, have been resolved, the transport mechanism of the transmembrane 3-4 (TM3-4) loop and its structural rearrangement during transport have remained poorly understood. In order to explore the spatial position and function of the TM3-4 loop in the transport cycle, we engineered a pair of cysteine residues between the TM3-4 loop and hairpin loop 2 (HP2) in cysteine-less EAAT2 (CL-EAAT2). We observed that the oxidative cross-linking reagent Cu(II)(1,10-phenanthroline)3 (CuPh) had a significant inhibitory effect on transport in the disubstituted A167C/G437C mutant, whereas dl-dithiothreitol (DTT) reversed the effect of cross-linking A167C/G437C on transport activity, as assayed by d-[3H]-aspartate uptake. Furthermore, we found that the effect of CuPh in this mutant was due to the formation of disulfide bonds in the transporter molecule. Moreover, dl-threo-ß-benzyloxyaspartic acid (TBOA) attenuated, while l-glutamate or KCl enhanced, the CuPh-mediated inhibitory effect in the A167C/G437C mutant, suggesting that the A167C and G437C cysteines were farther apart in the outward-facing configuration and closer in the inward-facing configuration. Taken together, our findings provide evidence that the TM3-4 loop and HP2 change spatial proximity during the transport cycle.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Cisteína , Sistema X-AG de Transporte de Aminoácidos/genética , Ácido Aspártico , Cisteína/genética , Transportador 2 de Aminoácido Excitatório/genética , Células HeLa , Humanos , Mutagênese
19.
J Neurotrauma ; 38(12): 1702-1716, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183134

RESUMO

Concentrated conditioned media from adipose tissue-derived mesenchymal stem cells (ASC-CCM) show promise for retinal degenerative diseases. In this study, we hypothesized that ASC-CCM could rescue retinal damage and thereby improve visual function by acting through Müller glia in mild traumatic brain injury (mTBI). Adult C57Bl/6 mice were subjected to a 50-psi air pulse on the left side of the head, resulting in an mTBI. After blast injury, 1 µL (∼100 ng total protein) of human ASC-CCM was delivered intravitreally and followed up after 4 weeks for visual function assessed by electroretinogram and histopathological markers for Müller cell-related markers. Blast mice that received ASC-CCM, compared with blast mice that received saline, demonstrated a significant improvement in a- and b-wave response correlated with a 1.3-fold decrease in extracellular glutamate levels and a concomitant increase in glutamine synthetase (GS), as well as the glutamate transporter (GLAST) in Müller cells. Additionally, an increase in aquaporin-4 (AQP4) in Müller cells in blast mice received saline restored to normal levels in blast mice that received ASC-CCM. In vitro studies on rMC-1 Müller glia exposed to 100 ng/mL glutamate or RNA interference knockdown of GLAST expression mimicked the increased Müller cell glial fibrillary acidic protein (a marker of gliosis) seen with mTBI, and suggested that an increase in glutamate and/or a decrease in GLAST might contribute to the Müller cell activation in vivo. Taken together, our data suggest a novel neuroprotective role for ASC-CCM in the rescue of the visual deficits and pathologies of mTBI via restoration of Müller cell health.


Assuntos
Concussão Encefálica , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Retina/efeitos dos fármacos , Sistema X-AG de Transporte de Aminoácidos/biossíntese , Animais , Aquaporina 4/biossíntese , Traumatismos por Explosões/patologia , Concussão Encefálica/complicações , Células Ependimogliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato-Amônia Ligase/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Retina/patologia , Transtornos da Visão/etiologia
20.
Biomed Res Int ; 2020: 2054293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195689

RESUMO

BACKGROUND: The aim of this study was to research the effects of glutamine synthetase (GS) and glutamate aspartate transporter (GLAST) in rat Müller cells and the effects of an adenosine A2AR antagonist (SCH 442416) on GS and GLAST in hypoxia both in vivo and in vitro. METHODS: This study used RT-PCR and Western blotting to quantify the expressions of GS and GLAST under different hypoxic conditions as well as the expressions of GS and GLAST at different drug concentrations. A cell viability assay was used to assess drug toxicity. RESULTS: mRNA and protein expression of GS and GLAST in hypoxia Group 24 h was significantly increased. mRNA and protein expressions of GS and GLAST both increased in Group 1 µM SCH 442416 compared with other groups. One micromolar SCH 442416 could upregulate GS and GLAST's activity in hypoxia both in vivo and in vitro. CONCLUSIONS: Hypoxia activates GS and GLAST in rat retinal Müller cells in a short time in vitro. (2) A2AR antagonists upregulate the activity of GS and GLAST in hypoxia both in vivo and in vitro.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Sistema X-AG de Transporte de Aminoácidos/genética , Glutamato-Amônia Ligase/genética , Hipóxia/enzimologia , Hipóxia/genética , Regulação para Cima/efeitos dos fármacos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Glutamato-Amônia Ligase/metabolismo , Pirazóis/farmacologia , Pirazóis/toxicidade , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA