Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.768
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3816, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769293

RESUMO

SARS-CoV-2 infection causes severe pulmonary manifestations, with poorly understood mechanisms and limited treatment options. Hyperferritinemia and disrupted lung iron homeostasis in COVID-19 patients imply that ferroptosis, an iron-dependent cell death, may occur. Immunostaining and lipidomic analysis in COVID-19 lung autopsies reveal increases in ferroptosis markers, including transferrin receptor 1 and malondialdehyde accumulation in fatal cases. COVID-19 lungs display dysregulation of lipids involved in metabolism and ferroptosis. We find increased ferritin light chain associated with severe COVID-19 lung pathology. Iron overload promotes ferroptosis in both primary cells and cancerous lung epithelial cells. In addition, ferroptosis markers strongly correlate with lung injury severity in a COVID-19 lung disease model using male Syrian hamsters. These results reveal a role for ferroptosis in COVID-19 pulmonary disease; pharmacological ferroptosis inhibition may serve as an adjuvant therapy to prevent lung damage during SARS-CoV-2 infection.


Assuntos
COVID-19 , Ferroptose , Pulmão , Mesocricetus , SARS-CoV-2 , COVID-19/virologia , COVID-19/metabolismo , COVID-19/patologia , Animais , Humanos , Masculino , Pulmão/patologia , Pulmão/virologia , Pulmão/metabolismo , SARS-CoV-2/fisiologia , Feminino , Ferro/metabolismo , Pessoa de Meia-Idade , Modelos Animais de Doenças , Idoso , Lesão Pulmonar/virologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Sobrecarga de Ferro/metabolismo , Adulto , Cricetinae
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731873

RESUMO

The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.


Assuntos
Quelantes de Ferro , Sobrecarga de Ferro , Humanos , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/farmacologia , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/metabolismo , Ferro/metabolismo , Animais , Deferiprona/uso terapêutico , Deferiprona/farmacologia
3.
J Comput Assist Tomogr ; 48(3): 343-353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595087

RESUMO

PURPOSE: Accurate quantification of liver iron concentration (LIC) can be achieved via magnetic resonance imaging (MRI). Maps of liver T2*/R2* are provided by commercially available, vendor-provided, 3-dimensional (3D) multiecho Dixon sequences and allow automated, inline postprocessing, which removes the need for manual curve fitting associated with conventional 2-dimensional (2D) gradient echo (GRE)-based postprocessing. The main goal of our study was to investigate the relationship among LIC estimates generated by 3D multiecho Dixon sequence to values generated by 2D GRE-based R2* relaxometry as the reference standard. METHODS: A retrospective review of patients who had undergone MRI scans for estimation of LIC with conventional T2* relaxometry and 3D multiecho Dixon sequences was performed. A 1.5 T scanner was used to acquire the magnetic resonance studies. Acquisition of standard multislice multiecho T2*-based sequences was performed, and R2* values with corresponding LIC were estimated. The comparison between R2* and corresponding LIC estimates obtained by the 2 methods was analyzed via the correlation coefficients and Bland-Altman difference plots. RESULTS: This study included 104 patients (51 male and 53 female patients) with 158 MRI scans. The mean age of the patients at the time of scan was 15.2 (SD, 8.8) years. There was a very strong correlation between the 2 LIC estimation methods for LIC values up to 3.2 mg/g (LIC quantitative multiecho Dixon [qDixon; from region of interest R2*] vs LIC GRE [in-house]: r = 0.83, P < 0.01; LIC qDixon [from segmentation volume R2*] vs LIC GRE [in-house]: r = 0.92, P < 0.01); and very weak correlation between the 2 methods at liver iron levels >7 mg/g. CONCLUSION: Three-dimensional-based multiecho Dixon technique can accurately measure LIC up to 7 mg/g and has the potential to replace 2D GRE-based relaxometry methods.


Assuntos
Imageamento Tridimensional , Sobrecarga de Ferro , Fígado , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Sobrecarga de Ferro/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Adulto , Imageamento Tridimensional/métodos , Fígado/diagnóstico por imagem , Pessoa de Meia-Idade , Adulto Jovem , Idoso , Interpretação de Imagem Assistida por Computador/métodos , Adolescente , Reprodutibilidade dos Testes , Ferro
4.
Ann Hematol ; 103(6): 1887-1896, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581547

RESUMO

We evaluated the impact of the genotype on clinical and hematochemical features, hepatic and cardiac iron levels, and endocrine, hepatic, and cardiovascular complications in non-transfusion-dependent (NTD) ß-thalassemia intermedia (TI) patients. Sixty patients (39.09 ± 11.11 years, 29 females) consecutively enrolled in the Myocardial Iron Overload in Thalassemia project underwent Magnetic Resonance Imaging to quantify iron overload, biventricular function parameters, and atrial areas and to detect replacement myocardial fibrosis. Three groups of patients were identified: homozygous ß+ (N = 18), heterozygous ß0ß+ (N = 22), and homozygous ß0 (N = 20). The groups were homogeneous for sex, age, splenectomy, hematochemical parameters, chelation therapy, and iron levels. The homozygous ß° genotype was associated with significantly higher biventricular end-diastolic and end-systolic volume indexes and bi-atrial area indexes. No difference was detected in biventricular ejection fractions or myocardial fibrosis. Extramedullary hematopoiesis and leg ulcers were significantly more frequent in the homozygous ß° group compared to the homozygous ß+ group. No association was detected between genotype and liver cirrhosis, hypogonadism, hypothyroidism, osteoporosis, heart failure, arrhythmias, and pulmonary hypertension. Heart remodelling related to a high cardiac output state cardiomyopathy, extramedullary hematopoiesis, and leg ulcers were more pronounced in patients with the homozygous ß° genotype compared to the other genotypes analyzed. The knowledge of the genotype can assist in the clinical management of NTD ß-TI patients.


Assuntos
Genótipo , Sobrecarga de Ferro , Ferro , Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/complicações , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/etiologia , Ferro/metabolismo , Úlcera da Perna/etiologia , Úlcera da Perna/genética , Hematopoese Extramedular/genética , Imageamento por Ressonância Magnética , Miocárdio/patologia , Miocárdio/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/complicações , Homozigoto
5.
Ann Hematol ; 103(6): 2173-2176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637332

RESUMO

A 58-year-old female was found to have hyperferritinemia (Serum ferritin:1683 ng/mL) during work-up for mild normocytic anemia. Transferrin saturation(TSAT) was low-normal. Magnetic resonance imaging (MRI) abdomen showed evidence of hepatic iron deposition. Liver biopsy showed 4 + hepatic iron deposition without any evidence of steatosis or fibrosis. Quantitative liver iron was elevated at 348.3 µmol/g dry liver weight [Reference range(RR): 3-33 µmol/g dry liver weight]. She was presumptively diagnosed with tissue iron overload, cause uncertain. A diagnosis of ferroportin disease (FD) was considered, but the pattern of iron distribution in the liver, mainly within the hepatic parenchyma (rather than in the hepatic Kupffer cells seen in FD), and the presence of anemia (uncommon in FD) made this less likely. She was treated with intermittent phlebotomy for over a decade with poor tolerance due to worsening normocytic to microcytic anemia. A trial of deferasirox was done but it was discontinued after a month due to significant side effects. During the course of treatment, her ferritin level decreased. Over the past 1.5 years, she developed progressively worsening neurocognitive decline. MRI brain showed areas of susceptibility involving basal ganglia, midbrain and cerebellum raising suspicion for metabolic deposition disease. Neuroimaging findings led to testing for serum copper and ceruloplasmin levels which were both found to be severely low. Low serum copper, ceruloplasmin levels and neuroimaging findings led us to consider Wilson disease however prior liver biopsy showing elevated hepatic iron rather than hepatic copper excluded the diagnosis of Wilson disease. After shared decision making, ceruloplasmin gene analysis was not pursued due to patient's preference and prohibitive cost of testing. The diagnosis of aceruloplasminemia was ultimately made. The biochemical triad of hyperferritinemia, low-normal TSAT and microcytic anemia should raise the possibility of aceruloplasminemia. Since neurological manifestations are rare in most inherited iron overload syndromes, neurological symptoms in a patient with tissue iron overload should prompt consideration of aceruloplasminemia as a differential diagnosis.


Assuntos
Ceruloplasmina , Distúrbios do Metabolismo do Ferro , Imageamento por Ressonância Magnética , Humanos , Feminino , Pessoa de Meia-Idade , Ceruloplasmina/deficiência , Ceruloplasmina/análise , Distúrbios do Metabolismo do Ferro/diagnóstico , Distúrbios do Metabolismo do Ferro/genética , Doenças Neurodegenerativas/diagnóstico , Fígado/patologia , Fígado/metabolismo , Fígado/diagnóstico por imagem , Ferritinas/sangue , Ferro/metabolismo , Ferro/sangue , Diagnóstico Diferencial , Sobrecarga de Ferro/diagnóstico , Deferasirox/uso terapêutico
6.
Aging (Albany NY) ; 16(9): 7683-7703, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38683121

RESUMO

Ferroptosis, an iron-triggered modality of cellular death, has been reported to closely relate to human aging progression and aging-related diseases. However, the involvement of ferroptosis in the development and maintenance of senescent cells still remains elusive. Here, we established a doxorubicin-induced senescent HSkM cell model and found that both iron accumulation and lipid peroxidation increase in senescent cells. Moreover, such iron overload in senescent cells has changed the expression panel of the ferroptosis-response proteins. Interestingly, the iron accumulation and lipid peroxidation does not trigger ferroptosis-induced cell death. Oppositely, senescent cells manifest resistance to the ferroptosis inducers, compared to the proliferating cells. To further investigate the mechanism of ferroptosis-resistance for senescent cells, we traced the iron flux in cell and found iron arrested in lysosome. Moreover, disruption of lysosome functions by chloroquine and LLOMe dramatically triggered the senescent cell death. Besides, the ferroitinophagy-related proteins FTH1/FTL and NCOA4 knockdown also increases the senescent cell death. Thus, we speculated that iron retardation in lysosome of senescent cells is the key mechanism for ferroptosis resistance. And the lysosome is a promising target for senolytic drugs to selectively clear senescent cells and alleviate the aging related diseases.


Assuntos
Senescência Celular , Ferroptose , Ferro , Lisossomos , Ferroptose/efeitos dos fármacos , Humanos , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Doxorrubicina/farmacologia , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Linhagem Celular , Cloroquina/farmacologia , Sobrecarga de Ferro/metabolismo , Ferritinas , Oxirredutases
8.
Bone ; 184: 117092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38575048

RESUMO

PURPOSE: Bone is susceptible to fluctuations in iron homeostasis, as both iron deficiency and overload are linked to poor bone strength in humans. In mice, however, inconsistent results have been reported, likely due to different diet setups or genetic backgrounds. Here, we assessed the effect of different high and low iron diets on bone in six inbred mouse strains (C57BL/6J, A/J, BALB/cJ, AKR/J, C3H/HeJ, and DBA/2J). METHODS: Mice received a high (20,000 ppm) or low-iron diet (∼10 ppm) after weaning for 6-8 weeks. For C57BL/6J males, we used two dietary setups with similar amounts of iron, yet different nutritional compositions that were either richer ("TUD study") or poorer ("UCLA study") in minerals and vitamins. After sacrifice, liver, blood and bone parameters as well as bone turnover markers in the serum were analyzed. RESULTS: Almost all mice on the UCLA study high iron diet had a significant decrease of cortical and trabecular bone mass accompanied by high bone resorption. Iron deficiency did not change bone microarchitecture or turnover in C57BL/6J, A/J, and DBA/2J mice, but increased trabecular bone mass in BALB/cJ, C3H/HeJ and AKR/J mice. In contrast to the UCLA study, male C57BL/6J mice in the TUD study did not display any changes in trabecular bone mass or turnover on high or low iron diet. However, cortical bone parameters were also decreased in TUD mice on the high iron diet. CONCLUSION: Thus, these data show that cortical bone is more susceptible to iron overload than trabecular bone and highlight the importance of a nutrient-rich diet to potentially mitigate the negative effects of iron overload on bone.


Assuntos
Osso e Ossos , Sobrecarga de Ferro , Animais , Masculino , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Sobrecarga de Ferro/metabolismo , Camundongos , Deficiências de Ferro , Dieta , Camundongos Endogâmicos C57BL , Ferro da Dieta/administração & dosagem , Fígado/metabolismo
9.
Redox Biol ; 72: 103160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631120

RESUMO

Iron overload can lead to oxidative stress and intestinal damage and happens frequently during blood transfusions and iron supplementation. However, how iron overload influences intestinal mucosa remains unknown. Here, the aim of current study was to investigate the effects of iron overload on the proliferation and differentiation of intestinal stem cells (ISCs). An iron overload mouse model was established by intraperitoneal injection of 120 mg/kg body weight iron dextran once a fortnight for a duration of 12 weeks, and an iron overload enteroid model was produced by treatment with 3 mM or 10 mM of ferric ammonium citrate for 24 h. We found that iron overload caused damage to intestinal morphology with a 64 % reduction in villus height/crypt depth ratio, and microvilli injury in the duodenum. Iron overload mediated epithelial function by inhibiting the expression of nutrient transporters and enhancing the expression of secretory factors in the duodenum. Meanwhile, iron overload inhibited the proliferation of ISCs and regulated their differentiation into secretory mature cells, such as goblet cells, through inhibiting Notch signaling pathway both in mice and enteroid. Furthermore, iron overload caused oxidative stress and ferroptosis in intestinal epithelial cells. In addition, ferroptosis could also inhibit Notch signaling pathway, and affected the proliferation and differentiation of ISCs. These findings reveal the regulatory role of iron overload on the proliferation and differentiation of ISCs, providing a new insight into the internal mechanism of iron overload affecting intestinal health, and offering important theoretical basis for the scientific application of iron nutrition regulation.


Assuntos
Diferenciação Celular , Ferroptose , Células Caliciformes , Sobrecarga de Ferro , Estresse Oxidativo , Receptores Notch , Transdução de Sinais , Células-Tronco , Animais , Ferroptose/efeitos dos fármacos , Camundongos , Células Caliciformes/metabolismo , Sobrecarga de Ferro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular/efeitos dos fármacos , Receptores Notch/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Masculino
10.
Int Immunopharmacol ; 131: 111848, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479156

RESUMO

BACKGROUNDS: Joint iron overload in hemochromatosis induces M1 polarization in synovial macrophages, releasing pro-inflammatory factors and leading to osteoarthritis development. However, the mechanism by which iron overload regulates M1 polarization remains unclear. This study aims to elucidate the mechanism by which synovial iron overload promotes macrophage M1 polarization. METHODS: In vitro, RAW264.7 macrophages were treated with iron and divided into five groups based on the concentration of the iron chelator, desferrioxamine (DFO): Ctrl, Fe, DFO1, DFO2, and DFO3. In vivo, rats were categorized into five groups based on iron overload and intra-articular DFO injection: A-Ctrl, A-Fe, A-DFO1, A-DFO2, and A-DFO3. Osteoarthritis was induced by transecting the left knee anterior cruciate ligament. Macrophage morphology was observed; Prussian Blue staining quantified iron deposition in macrophages, synovium, and liver; serum iron concentration was measured using the ferrozine method; cartilage damage was assessed using H&E and Safranin O-Fast Green staining; qPCR detected iNOS and Arg-1 expression; Western Blot analyzed the protein expression of iNOS, Arg-1, 4E-BP1, phosphorylated 4E-BP1, p70S6K, and phosphorylated p70S6K; ELISA measured TNF-α and IL-6 concentrations in supernatants; and immunohistochemistry examined the protein expression of F4/80, iNOS, Arg-1, 4E-BP1, phosphorylated 4E-BP1, p70S6K, and phosphorylated p70S6K in the synovium. RESULTS: In vitro, iron-treated macrophages exhibited Prussian Blue staining indicative of iron overload and morphological changes towards M1 polarization. qPCR and Western Blot revealed increased expression of the M1 polarization markers iNOS and its protein. ELISA showed elevated TNF-α and IL-6 levels in supernatants. In vivo, ferrozine assay indicated significantly increased serum iron concentrations in all groups except A-Ctrl; Prussian Blue staining showed increased liver iron deposition in all groups except A-Ctrl. Iron deposition in rat synovium decreased in a DFO concentration-dependent manner; immunohistochemistry showed a corresponding decrease in iNOS and phosphorylated 4E-BP1 expression, and an increase in Arg-1 expression. CONCLUSION: Intracellular iron overload may exacerbate joint cartilage damage by promoting synovial macrophage M1 polarization through phosphorylation of 4E-BP1 in the mTORC1-p70S6K/4E-BP1 pathway.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Osteoartrite , Animais , Ratos , Ferrocianetos , Ferrozina , Hemocromatose/metabolismo , Hemocromatose/patologia , Interleucina-6 , Ferro , Alvo Mecanístico do Complexo 1 de Rapamicina , Osteoartrite/metabolismo , Osteoartrite/patologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Necrose Tumoral alfa
11.
Ann Hematol ; 103(5): 1525-1539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519604

RESUMO

INTRODUCTION: The increase in the number of patients with hemoglobinopathies in Europe in recent decades highlights the need for more detailed epidemiological information in Spain. To fulfil this need, the Spanish Society of Pediatric Hematology and Oncology (SEHOP) sponsored the creation of a national registry of hemoglobinopathies known as REHem-AR (Spanish Registry of Hemoglobinopathies and Rare Anemias). Data from the transfusion-dependent (TDT) and non-transfusion-dependent (NTDT) ß-thalassemia cohorts are described and analyzed. METHODS: We performed an observational, multicenter, and ambispective study, which included patients of any age with TDT and NTDT, registered up to December 31, 2021. RESULTS: Among the 1741 patients included, 168 cases of thalassemia were identified (103 TDT and 65 NTDT-patients). Survival at 18 years was 93% for TDT and 100% for NTDT. Regarding management, 80 patients with TDT (77.7%) and 23 patients with NTDT (35.4%) started chelation treatment during follow-up, with deferasirox being the most widely used. A total of 76 patients within the TDT cohort presented at least 1 complication (73.8%), the most frequent being hemosiderosis and osteopenia-osteoporosis. Comparison of both cohorts revealed significant differences in the diagnosis of hepatic hemosiderosis (p = 0.00024), although these were not observed in the case of cardiac iron overload (p = 0.27). DISCUSSION: Our registry enabled us to describe the management of ß thalassemia in Spain and to analyze the morbidity and mortality of the cohorts of patients with TDT and NTDT. Complications related to iron overload in TDT and NTDT account for most of the morbidity and mortality of the disease, which is associated with a considerable social, psychological, and economic impact, although cardiac, osteopathy and endocrinological complications requiring more attention. The convenience and simplicity of online registries make it possible to homogenize variables and periodically update data, thus providing valuable information on these diseases.


Assuntos
Hemossiderose , Sobrecarga de Ferro , Talassemia beta , Criança , Humanos , Talassemia beta/complicações , Talassemia beta/epidemiologia , Talassemia beta/terapia , Transfusão de Sangue , Sobrecarga de Ferro/etiologia , Demografia
12.
Chem Biodivers ; 21(5): e202400005, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38504590

RESUMO

OBJECTIVE: To delve into the primary active ingredients and mechanism of Pueraria lobata for alleviating iron overload in alcoholic liver disease. METHODS: Pueraria lobata's potential targets and signaling pathways in treating alcohol-induced iron overloads were predicted using network pharmacology analysis. Then, animal experiments were used to validate the predictions of network pharmacology. The impact of puerarin or genistein on alcohol-induced iron accumulation, liver injury, oxidative stress, and apoptosis was assessed using morphological examination, biochemical index test, and immunofluorescence. Key proteins implicated in linked pathways were identified using RT-qPCR, western blot analysis, and immunohistochemistry. RESULTS: Network pharmacological predictions combined with animal experiments suggest that the model group compared to the control group, exhibited activation of the MAPK/ERK signaling pathway, suppression of hepcidin expression, and aggravated iron overload, liver damage, oxidative stress, and hepatocyte death. Puerarin and genistein, the active compounds in Pueraria lobata, effectively mitigated the aforementioned alcohol-induced effects. No statistically significant disparities were seen in the effects above between the two groups receiving drug therapy. CONCLUSION: This study preliminarily demonstrated that puerarin and genistein in Pueraria lobata may increase hepcidin production to alleviate alcohol-induced iron overload by inhibiting the MAPK/ERK signaling pathway.


Assuntos
Sobrecarga de Ferro , Isoflavonas , Hepatopatias Alcoólicas , Sistema de Sinalização das MAP Quinases , Pueraria , Pueraria/química , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/patologia , Animais , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Isoflavonas/farmacologia , Isoflavonas/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Genisteína/farmacologia , Genisteína/química , Camundongos , Apoptose/efeitos dos fármacos
13.
J Nat Med ; 78(3): 488-504, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530577

RESUMO

Osteoporosis (OP) is closely related to iron overload. Bajitianwan (BJTW) is a traditional Chinese medicine formulation used for treating senile diseases such as dementia and osteoporosis. Modern pharmacological researches have found that BJTW has beneficial effect on bone loss and memory impairment in aging rats. This paper aimed to explore the role and mechanism of BJTW in ameliorating iron overload-induced bone loss. Furthermore, BJTW effectively improved the bone micro-structure of the femur in mice, and altered bone metabolism biomarkers alkaline phosphatase (ALP) and osteocalcin (OCN) in serum, as well as oxidative indexes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) glutathione (GSH) and malondialdehyde (MDA) in liver. As for network pharmacology, 73 components collected from BJTW regulated 99 common targets merged in the BJTW and OP. The results of RNA-seq indicated that there were 418 potential targets in BJTW low dose group (BJTW-L) and 347 potential targets in BJTW high dose group (BJTW-H). Intriguingly, both PI3K-AKT signaling pathway and the AGEs-RAGE signaling pathway were contained in the KEGG pathways enrichment results of network pharmacology and transcriptomics, which were considered as the potential mechanism. Additionally, we verified that BJTW regulated the expression of related proteins in RAGE/PI3K-AKT pathways in MC3T3-E1 cells. In summary, BJTW has potent effect on protecting against iron overload-induced OP, and its mechanism may be related to the activation of the RAGE/PI3K-AKT signaling pathways.


Assuntos
Medicamentos de Ervas Chinesas , Sobrecarga de Ferro , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Sobrecarga de Ferro/tratamento farmacológico , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Masculino , Osteoporose/tratamento farmacológico , Perfilação da Expressão Gênica
14.
Sci Total Environ ; 923: 171378, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447712

RESUMO

Trichloroethylene (TCE) is a common environmental contaminant that can cause a severe allergic reaction called TCE hypersensitivity syndrome, which often implicates the patient's kidneys. Our previous study revealed that C5b-9-induced tubular ferroptosis is involved in TCE-caused kidney damage. However, the study did not explain how tubule-specific C5b-9 causes free iron overload, a key event in ferroptosis. Here, we aimed to explore the role of NCOA4-mediated ferritinophagy in C5b-9-induced iron overload and ferroptosis in TCE-sensitized mice. Our results showed that TCE sensitization does not affect iron import or export, but does affect iron storage, causing ferritin degradation and free iron overload. In addition, mitochondrial ROS was upregulated, and these changes were blocked by C5b-9 inhibition. Interestingly, TCE-induced ferritin degradation and ferroptosis were significantly antagonized by the application of the mitochondrial ROS inhibitor, Mito-TEMPO. Moreover, all of these modes of action were further verified in C5b-9-attack signalling HK-2 cells. Further investigation demonstrated that C5b-9-upregulated mitochondrial ROS induced a marked increase in nuclear receptor coactivator 4 (NCOA4), a master regulator of ferritinophagy. In addition, the application of NCOA4 small interfering RNA not only significantly reversed ferritinophagy caused by C5b-9 but also reduced C5b-9-induced ferroptosis in HK-2 cells. Taken together, these results suggest that tubule-specific C5b-9 deposition activates NCOA4 through the upregulation of mitochondrial ROS, causing ferritin degradation and elevated free iron, which ultimately leads to tubular epithelial cell ferroptosis and kidney injury in TCE-sensitized mice.


Assuntos
Ferroptose , Sobrecarga de Ferro , Tricloroetileno , Animais , Camundongos , Humanos , Tricloroetileno/toxicidade , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ferro/toxicidade , Ferro/metabolismo , Ferritinas/metabolismo , Células Epiteliais
15.
Int J Biol Macromol ; 265(Pt 1): 130897, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490376

RESUMO

Although iron in meat is an important trace element for human diet, its presence also induces postprandial oxidative stress and aggravates the condition of patients with iron overload. To overcome this situation, a type of new tunable Fe-absorption bioactive materials was constructed in this study. First, four phenolic acids (Caffeic acid, Gallic acid, Protocatechuic acid, Chlorogenic acid) were grafted onto chitosan. Then, the copolymers were prepared into micron-level microspheres by emulsification method, which were characterized in adsorption isotherms (Langmuir model), swelling behavior and digestion characteristics. In order to verify the practical application effect of microspheres, Protocatechuic acid grafted chitosan microspheres as the representative were used in sirloin powder to observe their effects in vitro digestion and rat experiment. In the present study, microspheres were innovatively applied in meat consumption, which significantly inhibited the oxidation of meat in the process of digestion and effectively controlled the iron absorption. These results are expected to play an important role in promoting the healthy consumption of meat around the world, improving gastrointestinal redox status through dietary assistance, and treating diseases related to iron overload.


Assuntos
Quitosana , Hidroxibenzoatos , Sobrecarga de Ferro , Humanos , Ratos , Animais , Microesferas , Oxirredução , Carne , Ferro , Digestão
16.
Artigo em Inglês | MEDLINE | ID: mdl-38532551

RESUMO

PM2.5 is an important risk factor for the development and progression of cognitive impairment-related diseases. Ferroptosis, a new form of cell death driven by iron overload and lipid peroxidation, is proposed to have significant implications. To verify the possible role of ferroptosis in PM2.5-induced neurotoxicity, we investigated the cytotoxicity, intracellular iron content, iron metabolism-related genes, oxidative stress indices and indicators involving in Nrf2 and ferroptosis signaling pathways. Neurotoxicity biomarkers as well as the ferroptotic cell morphological changes were determined by Western Blot and TEM analysis. Our results revealed that PM2.5 induced cytotoxicity, lipid peroxidation, as indicated by MDA content, and neurotoxicity via Aß deposition in a dose-related manner. Decreased cell viability and excessive iron accumulation in HT-22 cells can be partially blocked by ferroptosis inhibitors. Interestingly, GPX activity, Nrf2, and its regulated ferroptotic-related proteins (i.e. GPX4 and HO-1) were significantly up-regulated by PM2.5. Moreover, gene expression of DMT1, TfR1, IRP2 and FPN1 involved in iron homeostasis and NCOA4-dependent ferritinophagy were activated after PM2.5 exposure. The results demonstrated that PM2.5 triggered ferritinophagy-dependent ferroptotic cell death due to iron overload and redox imbalance. Activation of Nrf2 signaling pathways may confer a protective mechanism for PM2.5-induced oxidative stress and ferroptosis.


Assuntos
Ferroptose , Sobrecarga de Ferro , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Ferro , Material Particulado/toxicidade
17.
Magn Reson Imaging ; 109: 18-26, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430975

RESUMO

PURPOSE: To develop a fully automatic parenchyma extraction method for the T2* relaxometry of iron overload liver. METHODS: A retrospective multicenter collection of liver MR examinations from 177 transfusion-dependent patients was conducted. The proposed method extended a semiautomatic parenchyma extraction algorithm to a fully automatic approach by introducing a modified TransUNet on the R2* (1/T2*) map for liver segmentation. Axial liver slices from 129 patients at 1.5 T were allocated to training (85%) and internal test (15%) sets. Two external test sets separately included 1.5 T data from 20 patients and 3.0 T data from 28 patients. The final T2* measurement was obtained by fitting the average signal of the extracted liver parenchyma. The agreement between T2* measurements using fully and semiautomatic parenchyma extraction methods was assessed using coefficient of variation (CoV) and Bland-Altman plots. RESULTS: Dice of the deep network-based liver segmentation was 0.970 ± 0.019 on the internal dataset, 0.960 ± 0.035 on the external 1.5 T dataset, and 0.958 ± 0.014 on the external 3.0 T dataset. The mean difference bias between T2* measurements of the fully and semiautomatic methods were separately 0.12 (95% CI: -0.37, 0.61) ms, 0.04 (95% CI: -1.0, 1.1) ms, and 0.01 (95% CI: -0.25, 0.23) ms on the three test datasets. The CoVs between the two methods were 4.2%, 4.8% and 2.0% on the internal test set and two external test sets. CONCLUSIONS: The developed fully automatic parenchyma extraction approach provides an efficient and operator-independent T2* measurement for assessing hepatic iron content in clinical practice.


Assuntos
Sobrecarga de Ferro , Ferro , Humanos , Reprodutibilidade dos Testes , Fígado/diagnóstico por imagem , Sobrecarga de Ferro/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
18.
Ecotoxicol Environ Saf ; 274: 116193, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460407

RESUMO

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.


Assuntos
Acetatos , Clormequat , Sobrecarga de Ferro , Fenóis , Espermatogênese , Animais , Masculino , Camundongos , Ratos , Clormequat/metabolismo , Clormequat/toxicidade , Sobrecarga de Ferro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Sementes , Espermatogênese/efeitos dos fármacos , Testículo , eIF-2 Quinase/efeitos dos fármacos , eIF-2 Quinase/metabolismo
19.
Arch Biochem Biophys ; 754: 109954, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432564

RESUMO

Iron overload has detrimental effects on bone marrow mesenchymal stem cells (BMMSCs), cells crucial for bone marrow homeostasis and hematopoiesis support. Excessive iron accumulation leads to the production of reactive oxygen species (ROS), resulting in cell death, cell cycle arrest, and disruption of vital cellular pathways. Although apoptosis has been extensively studied, other programmed cell death mechanisms including autophagy, necroptosis, and ferroptosis also play significant roles in iron overload-induced bone marrow cell death. Studies have highlighted the involvement of ROS production, DNA damage, MAPK pathways, and mitochondrial dysfunction in apoptosis. In addition, autophagy and ferroptosis are activated, as shown by the degradation of cellular components and lipid peroxidation, respectively. However, several compounds and antioxidants show promise in mitigating iron overload-induced cell death by modulating ROS levels, MAPK pathways, and mitochondrial integrity. Despite early indications, more comprehensive research and clinical studies are needed to better understand the interplay between these programmed cell death mechanisms and enable development of effective therapeutic strategies. This review article emphasizes the importance of studying multiple cell death pathways simultaneously and investigating potential rescuers to combat iron overload-induced bone marrow cell death.


Assuntos
Sobrecarga de Ferro , Ferro , Humanos , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medula Óssea/metabolismo , Sobrecarga de Ferro/metabolismo , Apoptose , Células da Medula Óssea/metabolismo
20.
Cell Rep ; 43(3): 113900, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38460132

RESUMO

Iron overload is closely associated with metabolic dysfunction. However, the role of iron in the hypothalamus remains unclear. Here, we find that hypothalamic iron levels are increased, particularly in agouti-related peptide (AgRP)-expressing neurons in high-fat-diet-fed mice. Using pharmacological or genetic approaches, we reduce iron overload in AgRP neurons by central deferoxamine administration or transferrin receptor 1 (Tfrc) deletion, ameliorating diet-induced obesity and related metabolic dysfunction. Conversely, Tfrc-mediated iron overload in AgRP neurons leads to overeating and adiposity. Mechanistically, the reduction of iron overload in AgRP neurons inhibits AgRP neuron activity; improves insulin and leptin sensitivity; and inhibits iron-induced oxidative stress, endoplasmic reticulum stress, nuclear factor κB signaling, and suppression of cytokine signaling 3 expression. These results highlight the critical role of hypothalamic iron in obesity development and suggest targets for treating obesity and related metabolic disorders.


Assuntos
Sobrecarga de Ferro , Doenças Metabólicas , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/metabolismo , Ferro/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA