RESUMO
The AP2/ERF family constitutes one of the largest groups of transcription factors in the Solanaceae. AP2/ERF contributes to various plant biological processes, including growth, development, and responses to various stresses. The origins and functional diversification of AP2/ERF within the Solanaceae family remain poorly understood, primarily because of the complex interactions between whole-genome duplications (WGDs) and tandem duplications. In this study, a total of 1282 AP2/ERF proteins are identified from 7 Solanaceae genomes. The amplification of AP2/ERF genes was driven not only by WGDs but also by the presence of clusters of tandem duplicated genes. The conservation of synteny across different chromosomes provides compelling evidence for the impact of the WGD event on the distribution pattern of AP2/ERF genes. Distinct expression patterns suggest that the multiple copies of AP2/ERF genes evolved in different functional directions, catalyzing the diversification of roles among the duplicated genes, which was of great significance for the adaptability of Solanaceae. Gene silencing and overexpression assays suggest that ERF-1 members' role in regulating the timing of floral initiation in C. annuum. Our findings provide insights into the genomic origins, duplication events, and function divergence of the Solanaceae AP2/ERF.
Assuntos
Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Solanaceae , Solanaceae/genética , Solanaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Evolução Molecular , Genoma de Planta , Família Multigênica , SinteniaRESUMO
BACKGROUND: Athenaea fasciculata, a Brazilian native species from the Solanaceae family, is recognized as a promising source of bioactive withanolides, particularly Aurelianolide A and B, which exhibit significant antitumoral activities. Despite its potential, research on the chemical constituents of this species remains limited. This study aimed to dereplicate extracts and partitions of A. fasciculata to streamline the discovery of bioactive withanolides. METHODS: Using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), various extracts-including n-hexane, methanol, and ethanol-were analyzed, and their mass spectrometry data were processed through the GNPS platform for the generation of molecular networking. The results indicated that crude extracts displayed comparable cytotoxicity against Jurkat cells, by treatment at 150 µg/mL, while alcoholic extracts achieved approximately 80% inhibition of K562 cells and K562-Lucena 1 at the same concentration. Notably, the dichloromethane partition exhibited the highest cytotoxicity across leukemia cell lines, particularly against Jurkat cells (IC50 = 14.34 µg/mL). A total of 22 compounds were annotated by manual inspection and different libraries, with six of them demonstrating significant cytotoxic effects. CONCLUSIONS: This research underscores the therapeutic potential of A. fasciculata and highlights the effectiveness of integrating advanced analytical methods in drug discovery, paving the way for further exploration of its bioactive compounds.
Assuntos
Antineoplásicos Fitogênicos , Extratos Vegetais , Espectrometria de Massas em Tandem , Vitanolídeos , Humanos , Vitanolídeos/farmacologia , Vitanolídeos/química , Vitanolídeos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células Jurkat , Solanaceae/química , Espectrometria de Massas por Ionização por Electrospray , Linhagem Celular Tumoral , Células K562RESUMO
Withanolides are steroidal lactones commonly found in plants of the Solanaceae family that have significant medicinal value. In this study, three withanolides extracted from Iochroma arborescens leaves were isolated and characterized. These included withaphysalin F (3: ) and two newly identified epimeric compounds: 18R- and 18S-O-methyl-withaphysalin F (1: and 2: ). Their structures were elucidated by NMR, IR, MS, CD, and X-ray diffraction analysis, and their potential against cell proliferation and migration was investigated. The cytotoxic assay revealed activity against different tumor and non-tumor cell lines. (18S)-O-methyl-withaphysalin F (2: ) presented cell death effects after at least 6 hours of exposure. MDA-MB-231 cells were exposed to 0.06 and 0.6 µM of (18S)-O-methyl-withaphysalin F (2: ), and reductions in cell adhesion, migration, and clonogenicity were observed. Morphological analysis revealed negative regulation in filopodia, salience, and roughness, as well as alterations in cellular microarchitecture. These results provide clues as to the effects of (18S)-O-methyl-withaphysalin F (2: ), allowing new molecular modifications to improve potency and selectivity and increase our antineoplastic arsenal.
Assuntos
Antineoplásicos Fitogênicos , Movimento Celular , Proliferação de Células , Humanos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Vitanolídeos/farmacologia , Vitanolídeos/isolamento & purificação , Vitanolídeos/química , Solanaceae/química , Estrutura Molecular , Folhas de Planta/químicaRESUMO
The advent of highly efficient genome editing (GE) tools, coupled with high-throughput genome sequencing, has paved the way for the accelerated domestication of crop wild relatives. New crops could thus be rapidly created that are well adapted to cope with drought, flooding, soil salinity, or insect damage. De novo domestication avoids the complexity of transferring polygenic stress resistance from wild species to crops. Instead, new crops can be created by manipulating major genes in stress-resistant wild species. However, the genetic basis of certain relevant domestication-related traits often involve epistasis and pleiotropy. Furthermore, pan-genome analyses show that structural variation driving gene expression changes has been selected during domestication. A growing body of work suggests that the Solanaceae family, which includes crop species such as tomatoes, potatoes, eggplants, peppers, and tobacco, is a suitable model group to dissect these phenomena and operate changes in wild relatives to improve agronomic traits rapidly with GE. We briefly discuss the prospects of this exciting novel field in the interface between fundamental and applied plant biology and its potential impact in the coming years.
Assuntos
Produtos Agrícolas , Domesticação , Edição de Genes , Solanaceae , Solanaceae/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Genoma de Planta , Melhoramento Vegetal/métodosRESUMO
Peps are endogenous damage-associated polypeptides that evoke defense responses in plants. Like other damage-associated molecular patterns, Pep signals are transduced by receptors. PEPRs are the receptors that transduce Pep danger signals. This paper identifies new putative Peps in the Solanaceae (including Solanum spp., Nicotiana spp., and Petunia spp.) and Coffea and explores their properties. Using these newly identified Peps we derive sequence logos that present a refinement of the current understanding of the importance of specific residues in the Pep signaling molecules in Solanaceae, including several arginines, prolines that restrict peptide's conformations, and C-terminal asparagine. We examine the degree of disorder in Pep, which is likely important to the mechanism of Pep perception. This work also calls into question some of the evolutionary relationships between Peps in Solanaceae and specific Arabidopsis Peps published in previous literature, culminating in a conclusion that SlPep should not be named SlPep6 due to the lack of conservation of protein sequences in AtPROPEP6 and SlPROPEP, and that SlPep probably does not have two receptors in tomato, based on phylogenetic analysis. Our analyses advance understanding of the Pep signaling system in Solanaceae.
Assuntos
Proteínas de Plantas , Transdução de Sinais , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Sequência de Aminoácidos , Peptídeos/metabolismo , Estresse Fisiológico/genética , Solanaceae/genética , Solanaceae/metabolismoRESUMO
The evolution of oviposition preference in insects is considered a key evolutionary strategy in the context of host-plant interaction. It is hypothesized that insects maximize the survival and fitness of the subsequent generations by preferring specific host plant(s), known as the "preference-performance hypothesis." In this study, we tested whether adult host preference reflects the immature performance in an oligophagous insect, Phthorimaea absoluta Meyrick, a rapidly emerging invasive pest in Asia, Africa, and Europe. Based on a preliminary survey of the potential host plants of P. absoluta, we selected 6 Solanaceae species, namely, tomato, potato, eggplant, black nightshade, sweet pepper, and tobacco, for the oviposition preference studies. The results indicated that the tomato was the most preferred host in no-, dual- and multiple-choice assays, followed by potato, eggplant, and black nightshade. Subsequently, the insect life-table parameters were found to be superior on tomato compared to other hosts. The order of oviposition preference on the host plants was strongly correlated with the life-table parameters of P. absoluta. Thus, we provide clear evidence for the preference-performance hypothesis in the host selection behavior of P. absoluta. We also emphasize the necessity of conducting oviposition behavior research at various geographic locations to develop tailor-made integrated pest management programs.
Assuntos
Mariposas , Oviposição , Solanaceae , Animais , Mariposas/fisiologia , Mariposas/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , MasculinoRESUMO
Nuclear factor Y (NF-Y) gene family is an important transcription factor composed of three subfamilies of NF-YA, NF-YB and NF-YC, which is involved in plant growth, development and stress response. In this study, 63 tobacco NF-Y genes (NtNF-Ys) were identified in Nicotiana tabacum L., including 17 NtNF-YAs, 30 NtNF-YBs and 16 NtNF-YCs. Phylogenetic analysis revealed ten pairs of orthologues from tomato and tobacco and 25 pairs of paralogues from tobacco. The gene structure of NtNF-YAs exhibited similarities, whereas the gene structure of NtNF-YBs and NtNF-YCs displayed significant differences. The NtNF-Ys of the same subfamily exhibited a consistent distribution of motifs and protein 3D structure. The protein interaction network revealed that NtNF-YC12 and NtNF-YC5 exhibited the highest connectivity. Many cis-acting elements related to light, stress and hormone response were found in the promoter of NtNF-Ys. Transcriptome analysis showed that more than half of the NtNF-Y genes were expressed in all tissues, and NtNF-YB9/B14/B15/B16/B17/B29 were specifically expressed in roots. A total of 15, 12, 5, and 6 NtNF-Y genes were found to respond to cold, drought, salt, and alkali stresses, respectively. The results of this study will lay a foundation for further study of NF-Y genes in tobacco and other Solanaceae plants.
Assuntos
Nicotiana , Solanaceae , Nicotiana/genética , Filogenia , Fator de Ligação a CCAAT/genéticaRESUMO
The intercellular space or apoplast constitutes the main interface in plant-pathogen interactions. Apoplastic subtilisin-like proteases-subtilases-may play an important role in defence and they have been identified as targets of pathogen-secreted effector proteins. Here, we characterise the role of the Solanaceae-specific P69 subtilase family in the interaction between tomato and the vascular bacterial wilt pathogen Ralstonia solanacearum. R. solanacearum infection post-translationally activated several tomato P69s. Among them, P69D was exclusively activated in tomato plants resistant to R. solanacearum. In vitro experiments showed that P69D activation by prodomain removal occurred in an autocatalytic and intramolecular reaction that does not rely on the residue upstream of the processing site. Importantly P69D-deficient tomato plants were more susceptible to bacterial wilt and transient expression of P69B, D and G in Nicotiana benthamiana limited proliferation of R. solanacearum. Our study demonstrates that P69s have conserved features but diverse functions in tomato and that P69D is involved in resistance to R. solanacearum but not to other vascular pathogens like Fusarium oxysporum.
Assuntos
Ralstonia solanacearum , Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genética , Nicotiana/genética , Ralstonia solanacearum/fisiologia , Doenças das Plantas/microbiologiaRESUMO
Hydrochar from agricultural wastes is regarded as a prospective and low-cost material to activate peroxymonosulfate (PMS) for degrading pollutants. Herein, a novel in-situ N-doped hydrochar composite (RHCM4) was synthesized using montmorillonite and waste reed straw rich in nitrogen as pyrolysis catalyst and carbon source, respectively. The fabricated RHCM4 possessed excellent PMS activation performance for decomposing quinclorac (QC), a refractory herbicide, with a high removal efficiency of 100.0% and mineralization efficiency of 75.1%. The quenching experiments and electron spin resonance (ESR) detection disclosed free radicals (â¢OH, â¢SO4-, and â¢O2-) and non-radicals (1O2) took part in the QC degradation process. Additionally, the catalytic mechanisms were analyzed in depth with the aid of various characterizations. Moreover, the QC degradation intermediates and pathways were clarified by density functional theory calculations and HPLC-MS. Importantly, phytotoxicity experiments showed that RHCM4/PMS could efficaciously mitigate the injury of QC to Solanaceae crops (pepper, tomato, and tobacco). These findings give a new idea for enhancing the catalytic activity of hydrochar from agricultural wastes and broaden its application in the field of agricultural environment.
Assuntos
Solanaceae , Estudos Prospectivos , Peróxidos , VerdurasRESUMO
Vassobia breviflora belongs to the Solanaceae family, possessing biological activity against tumor cells and is a promising alternative for therapy. The aim of this investigation was to determine the phytochemical properties V. breviflora using ESI-ToF-MS. The cytotoxic effects of this extract were examined in B16-F10 melanoma cells and the relationship if any to purinergic signaling was involved. The antioxidant activity of total phenols, (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was analyzed, as well as production of reactive oxygen species (ROS) and nitric oxide (NO) was determined. Genotoxicity was assessed by DNA damage assay. Subsequently, the structural bioactive compounds were docked against purinoceptors P2X7 and P2Y1 receptors. The bioactive compounds found in V. breviflora were N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline, calystegine B, 12-O-benzoyl- tenacigenin A and bungoside B. In vitro cytotoxicity was demonstrated at concentration ranges of 0.1-10 mg/ml, and plasmid DNA breaks only at the concentration of 10 mg/ml. V. breviflora extracts affected hydrolysis by ectoenzymes, such as ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ectoadenosine deaminase (E-ADA) which control levels of degradation and formation of nucleosides and nucleotides. In the presence of substrates ATP, ADP, AMP and adenosine, the activities of E-NTPDase, 5´-NT or E-ADA were significantly modulated by V. breviflora. N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline presented higher binding affinity (according to receptor-ligand complex estimated binding affinity as evidenced by ∆G values) to bind to both P2X7 and P2Y1purinergic receptors.Our results suggest a putative interaction of V. breviflora bioactive compounds with growth inhibitory potential in B16-F10 melanoma and suggest that may be considered as promising compounds in melanoma and cancer treatment.
Assuntos
Melanoma , Solanaceae , Humanos , Antioxidantes/farmacologia , Água , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Melanoma/tratamento farmacológico , Proliferação de CélulasRESUMO
Cocaine and hyoscyamine are two tropane alkaloids (TA) from Erythroxylaceae and Solanaceae, respectively. These famous compounds possess anticholinergic properties that can be used to treat neuromuscular disorders. While the hyoscyamine biosynthetic pathway has been fully elucidated allowing its de novo synthesis in yeast, the cocaine pathway remained only partially elucidated. Recently, the Huang research group has completed the cocaine biosynthetic route by characterizing its two missing enzymes. This allowed the whole pathway to be transferring into Nicotiana benthamiana to achieve cocaine production. Here, besides highlighting the impact of this discovery, we discuss how TA biosynthesis evolved via the recruitment of two distinct and convergent pathways in Erythroxylaceae and Solanaceae. Finally, while enriching our knowledge on TA biosynthesis, this diversification of the molecular actors involved in cocaine and hyoscyamine biosynthesis opens perspectives in metabolic engineering by exploring enzyme biochemical plasticity that can ease and shorten TA pathway reconstitution in heterologous organisms.
Assuntos
Cocaína , Hiosciamina , Solanaceae , Cocaína/metabolismo , Tropanos/química , Tropanos/metabolismo , Solanaceae/metabolismo , Antagonistas Colinérgicos/metabolismoRESUMO
Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature peripheral T-lymphocytes caused by human T-cell leukemia virus type I (HTLV-I). There are an estimated 5-20 million HTLV-1-infected individuals worldwide. Conventional chemotherapeutic regimens used against other malignant lymphomas have been administered to patients with ATL, but the therapeutic outcomes of acute and lymphoma-type ATL remain extremely poor. In the course of our screening program for novel chemotherapeutic candidate compounds from plants against two human T-cell leukemia virus I-infected T-cell lines (MT-1 and MT-2), we screened 16 extracts obtained from different parts of 7 Solanaceae plants. We identified that the extracts of Physalis pruinosa and P. philadelphica showed potent anti-proliferative activity in MT-1 and MT-2 cells. In our previous study, we have isolated withanolides from extract of aerial parts of P. pruinosa and examined their structure-activity relationships. In addition, we are also investigating further structure-activity relationships about other withanolides from Solanaceae plants (Withania somnifera, Withania coagulans, Physalis angulate, Nicandra physalodes, Petunia hybrida, and Solanum cilistum). In this study, we attempted to isolate their active compounds against MT-1 and MT-2 from extracts of P. philadelphica. We identified 13 withanolides, including six newly isolated compounds [24R, 25S-4ß, 16ß, 20R-trihydroxy-1-oxowitha-2-en-5ß, 6 ß -epoxy-22,26-olide (1), 4ß, 7ß,20R-trihydroxy-1-oxowitha-2-en-5ß, 6ß -epoxy-22,26-olide (2), 17ß,20 S-dihydroxywithanone (3), 2,3-dihydro-3ß-methoxy-23ß-hydroxywithaphysacarpin (4), 3-O-(4-rhamnosyl)glucosyl-physalolactone B (5), and 17R, 20R, 22S, 23S, 24R, 25R-4ß, 5α, 6ß, 20ß, 22α -tetrahydroxy-16ß, 23-diepoxy-1-oxowitha-2-en-26, 23-olide (6)], from the extract and examined the structure-activity relationships. The 50% effective concentration of withaphysacarpin (compound 7) [MT-1: 0.10 µM and MT-2: 0.04 µM] was comparable to that of etoposide [MT-1: 0.08 µM and MT-2: 0.07 µM]. Therefore, withanolides might be promising candidates for the treatment of ATL.
Assuntos
Leucemia-Linfoma de Células T do Adulto , Physalis , Solanaceae , Vitanolídeos , Humanos , Vitanolídeos/farmacologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Relação Estrutura-Atividade , Extratos Vegetais/farmacologiaRESUMO
Lycium barbarum L. is a species widely used in dietary supplements and natural healthcare products. The berries, also known as goji or wolfberries, mostly grow in China, but recent reports on their outstanding bioactive properties have increased their popularity and cultivation around the world. Goji berries are a remarkable source of phenolic compounds (such as phenolic acids and flavonoids), carotenoids, organic acids, carbohydrates (fructose and glucose), and vitamins (ascorbic acid). Several biological activities, such as antioxidant, antimicrobial, anti-inflammatory, prebiotic, and anticancer activities, have been associated with its consumption. Hence, goji berries were highlighted as an excellent source of functional ingredients with promising applications in food and nutraceutical fields. This review aims to summarize the phytochemical composition and biological activities, along with various industrial applications, of L. barbarum berries. Simultaneously, the valorization of goji berries by-products, with its associated economic advantages, will be emphasized and explored.
Assuntos
Lycium , Solanaceae , Frutas/química , Antioxidantes/análise , Ácido Ascórbico/análiseRESUMO
Vassobia breviflora (Sendtn.) Hunz is a plant of the Solanaceae family from South America and there are no apparent studies reported on the biological activity of the hexane extract. The aim of this investigation was to conduct phytochemical analyses using ESI-TOF-MS, while antioxidant activities were evaluated by the following methods 1,1-diphenyl-2-picrylhydrazyl (DPPH) 2,2"-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical capture (ABTS), ferric reducing antioxidant power (FRAP), total antioxidant capacity (TAC), and total oxidant status (TOS). Antimicrobial activities were performed by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiofilm formed. Cytotoxicity was measured by MTT and dsDNA PicoGreen tests, beyond the production of reactive oxygen species (ROS) determined by Dichlorodihydrofluorescein diacetate (DCFH-DA). The hexane extract showed the presence of 5 (choline, pantothenic acid, calystegine B, lanciphodylactone I, and 15"-cis-zeaxanthin) compounds detected. V. breviflora extract demonstrated reliable results utilizing different antioxidant methods. In antibacterial activity, V. breviflora extract exhibited inhibitory, bactericidal, and antibiofilm action in biofilm-forming bacteria. The hexane extract exhibited cytotoxicity against melanoma, lung cancer, glioblastoma, leukemia, uterine colon, and hepatocarcinoma tumor cells. In addition, all tested strains resulted in increased production of ROS. This plant extract may be considered in future as an alternative for development of new therapeutic options aimed at the treatment of diverse pathologies.
Assuntos
Antioxidantes , Solanaceae , Antioxidantes/farmacologia , Antioxidantes/química , Espécies Reativas de Oxigênio , Hexanos , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologiaRESUMO
BACKGROUND AND AIMS: The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS: We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS: RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS: The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.
Assuntos
Nicotiana , Solanaceae , Nicotiana/genética , Filogenia , Solanaceae/genética , Tamanho do Genoma , Genoma de Planta , Evolução Molecular , Austrália , Poliploidia , Verduras/genética , Cromossomos de PlantasRESUMO
The mycoparasite Pythium oligandrum is a nonpathogenic oomycete that can boost plant immune responses. Elicitins are microbe-associated molecular patterns (MAMPs) specifically produced by oomycetes that activate plant defense. Here, we identified a novel elicitin, PoEli8, from P. oligandrum that exhibits immunity-inducing activity in plants. In vitro-purified PoEli8 induced strong innate immune responses and enhanced resistance to the oomycete pathogen Phytophthora capsici in Solanaceae plants, including Nicotiana benthamiana, tomato, and pepper. Cell death and reactive oxygen species (ROS) accumulation triggered by the PoEli8 protein were dependent on the plant coreceptors receptor-like kinases (RLKs) BAK1 and SOBIR1. Furthermore, REli from N. benthamiana, a cell surface receptor-like protein (RLP) was implicated in the perception of PoEli8 in N. benthamiana. These results indicate the potential value of PoEli8 as a bioactive formula to protect Solanaceae plants against Phytophthora.
Assuntos
Phytophthora , Pythium , Solanaceae , Phytophthora/fisiologia , Pythium/fisiologia , Resistência à Doença , Plantas , Nicotiana , Doenças das Plantas/parasitologiaRESUMO
Tropane alkaloids (TAs) are heterocyclic nitrogenous metabolites found across seven orders of angiosperms, including Malpighiales (Erythroxylaceae) and Solanales (Solanaceae). Despite the well-established euphorigenic properties of Erythroxylaceae TAs like cocaine, their biosynthetic pathway remains incomplete. Using yeast as a screening platform, we identified and characterized the missing steps of TA biosynthesis in Erythroxylum coca. We first characterize putative E. coca polyamine synthase- and amine oxidase-like enzymes in vitro, in yeast, and in planta to show that the first tropane ring closure in Erythroxylaceae occurs via bifunctional spermidine synthase/N-methyltransferases and both flavin- and copper-dependent amine oxidases. We next identify a SABATH family methyltransferase responsible for the 2-carbomethoxy moiety characteristic of Erythroxylaceae TAs and demonstrate that its coexpression with methylecgonone reductase in yeast engineered to express the Solanaceae TA pathway enables the production of a hybrid TA with structural features of both lineages. Finally, we use clustering analysis of Erythroxylum transcriptome datasets to discover a cytochrome P450 of the CYP81A family responsible for the second tropane ring closure in Erythroxylaceae, and demonstrate the function of the core coca TA pathway in vivo via reconstruction and de novo biosynthesis of methylecgonine in yeast. Collectively, our results provide strong evidence that TA biosynthesis in Erythroxylaceae and Solanaceae is polyphyletic and that independent recruitment of unique biosynthetic mechanisms and enzyme classes occurred at nearly every step in the evolution of this pathway.