Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 204: 111819, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32062388

RESUMO

Solanum aculeatissimum Jacq. is a common plant in much of Brazil. Despite containing metabolites with a wide range of pharmacological applications, there are few tissue culture reports for this plant. The possibility of large-scale in vitro production of this material has significant biotechnological potential. Therefore, the objective of this study was to investigate the effect of light conditions on the growth of cells in suspension, observing the production and yield of biomass and bioactive compounds and the enzymatic behavior. Calli obtained from leaf segments were cultured in solid medium supplemented with 1 mg L-1 of 2,4-D, 2.5 mg L-1 kinetin, pH 5.7, in the dark. After 110 days of subculture, the calli were transferred to liquid medium. Cells were kept in the dark under agitation at 110 rpm and 25 °C and subcultured every 30 days. After 90 days of culture, 20 mL aliquots of cell suspension were added to flasks containing approximately 20 mL of medium (1:1) and cultured at different wavelengths (white, green, blue, red, and blue/red) under a photoperiod of 16 h with irradiance of 50 µmol m-2 s-1) and in the absence of light. The experiment was performed in a 6 × 6 factorial design (light condition × culture time). The cell cultures showed viability throughout the entire cycle, and chlorogenic and ferulic acids, orientin, quercitrin and, in higher amounts, quercetin, were detected in the first 7 days of culture. There was an increase in superoxide dismutase and catalase and a decrease in ascorbate peroxidase after exposure to different light conditions; for phenylalanine ammonia lyase, no differences were observed. The different light conditions were not sufficient to trigger responses in the concentrations of bioactive compounds, despite the detection of increased levels of the enzymes involved in cellular homeostasis.


Assuntos
Luz , Solanum/metabolismo , Catalase/metabolismo , Técnicas de Cultura de Células , Ácido Clorogênico/metabolismo , Condutividade Elétrica , Flavonoides/metabolismo , Glucosídeos/metabolismo , Concentração de Íons de Hidrogênio , Células Vegetais/metabolismo , Células Vegetais/efeitos da radiação , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Quercetina/análogos & derivados , Quercetina/metabolismo , Solanum/citologia , Superóxido Dismutase/metabolismo
2.
Plant Biol (Stuttg) ; 22(1): 13-20, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31529608

RESUMO

Signalling events through small peptides are essential in multiple aspects of plant reproduction. The ScRALF3 Solanum chacoense Rapid Alkalinization Factor (RALF) peptide was previously shown to regulate multiple aspects of cell-cell communication between the surrounding sporophytic tissue and the female gametophyte during ovule development. We analysed the global expression pattern of ScRALF3 with GUS reporter gene under control of the ScRALF3 promoter and validated it with in situ hybridisation. To better understand the role of ScRALF3 we used three different RNA interference (RNAi) lines that reduced the expression of ScRALF3 during pollen development. Both expression methods showed the presence of ScRALF3 in different tissues, including stigma, style, vascular tissues and during stamen development. Down-regulation of ScRALF3 expression through RNAi showed drastic defects in early stages of pollen development, mainly on the first mitosis. These results suggest that the ScRALF3 secreted peptide regulates the transition from sporogenesis to gametogenesis in both male and female gametophytes.


Assuntos
Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais , Mitose , Proteínas de Plantas , Pólen , Transdução de Sinais , Solanum , Mitose/genética , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Pólen/citologia , Transdução de Sinais/genética , Solanum/citologia , Solanum/genética , Solanum/crescimento & desenvolvimento
3.
PLoS One ; 11(11): e0165531, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832091

RESUMO

INTRODUCTION: An efficient and reliable method to estimate plant cell viability, especially of pollen, is important for plant breeding research and plant production processes. Pollen quality is determined by classical methods, like staining techniques or in vitro pollen germination, each having disadvantages with respect to reliability, analysis speed, and species dependency. Analysing single cells based on their dielectric properties by impedance flow cytometry (IFC) has developed into a common method for cellular characterisation in microbiology and medicine during the last decade. The aim of this study is to demonstrate the potential of IFC in plant cell analysis with the focus on pollen. METHOD: Developing and mature pollen grains were analysed during their passage through a microfluidic chip to which radio frequencies of 0.5 to 12 MHz were applied. The acquired data provided information about the developmental stage, viability, and germination capacity. The biological relevance of the acquired IFC data was confirmed by classical staining methods, inactivation controls, as well as pollen germination assays. RESULTS: Different stages of developing pollen, dead, viable and germinating pollen populations could be detected and quantified by IFC. Pollen viability analysis by classical FDA staining showed a high correlation with IFC data. In parallel, pollen with active germination potential could be discriminated from the dead and the viable but non-germinating population. CONCLUSION: The presented data demonstrate that IFC is an efficient, label-free, reliable and non-destructive technique to analyse pollen quality in a species-independent manner.


Assuntos
Citometria de Fluxo/métodos , Germinação , Pólen/citologia , Análise de Célula Única/métodos , Capsicum/citologia , Capsicum/crescimento & desenvolvimento , Sobrevivência Celular , Cucumis sativus/citologia , Cucumis sativus/crescimento & desenvolvimento , Impedância Elétrica , Dispositivos Lab-On-A-Chip , Ondas de Rádio , Solanum/citologia , Solanum/crescimento & desenvolvimento , Nicotiana/citologia , Nicotiana/crescimento & desenvolvimento
4.
Plant J ; 73(6): 1019-33, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23237060

RESUMO

Small peptides have been shown to regulate numerous aspects of plant development through cell-cell communication. These signaling events are particularly important during reproduction, regulating gamete development and embryogenesis. Rapid alkalinization factor (RALF)-like genes, a large gene family that encodes secreted peptides, have specific or ubiquitous expression patterns. Previously, five RALF-like genes with potential involvement during reproduction were isolated from Solanum chacoense. Here, we show that ScRALF3 is an important peptide regulator of female gametophyte development. Its expression, which is auxin-inducible, is strictly regulated before and after fertilization. Down-regulation of ScRALF3 expression by RNA interference leads to the production of smaller fruits that produce fewer seeds, due to improper development of the embryo sacs. Defects include loss of embryo sac nuclei polarization, as well as an increase in asynchronous division, accounting for cellular dysfunctions and premature embryo sac development arrest during megagametogenesis. ScRALF3 is expressed in the sporophytic tissue surrounding the embryo sac, the integument and the nucellus, as revealed by in situ hybridization and GUS staining. As expected for a secreted peptide, fluorescence from an ScRALF3-GFP fusion construct is detected throughout the secretory pathway. Therefore, the ScRALF3 secreted peptide may be directly involved in the regulation of multiple aspects of cell-cell communication between the female gametophyte and its surrounding sporophytic tissue during ovule development.


Assuntos
Comunicação Celular , Óvulo Vegetal/citologia , Óvulo Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Solanum/genética , Núcleo Celular/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Óvulo Vegetal/genética , Peptídeos/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Elementos de Resposta , Sementes/citologia , Sementes/metabolismo , Solanum/citologia , Solanum/crescimento & desenvolvimento
5.
Phytochem Anal ; 23(4): 400-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22009634

RESUMO

INTRODUCTION: Solanum lyratum, a rare species, is used to treat cancer, tumours and warts. Plant cell and tissue culture of S. lyratum, producing steroidal alkaloids, could be useful supplements to natural sources. OBJECTIVE: To study the production of solanine, solanidine and solasodine by adding auxin-type phytohormones including indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) to cell and callus cultures of S. lyratum. METHODOLOGY: Methanolic extracts were made from callus and cell cultures of S. lyratumand and analysed using RP C18 HPLC with UV detection. RESULTS: 2,4-D-induced calli from roots led to a significant enhancement in solanine production with a value of 4.13 mg/g dry weight (DW). The maximal solanidine and solasodine levels of 6.26 and 7.69 mg/g DW were respectively obtained with IBA- and IAA-treated S. lyratum cells at concentrations of 1 and 5 mg/L. CONCLUSION: Auxins were found to be useful phytohormones for the production of steroidal alkaloids. The callus and cell culture system developed is simple and can hence be a method of production of steroidal alkaloids in S. lyratum and other Solanaceae species.


Assuntos
Proliferação de Células , Ácidos Indolacéticos/farmacologia , Alcaloides de Solanáceas/biossíntese , Solanum/efeitos dos fármacos , Ácido 2,4-Diclorofenoxiacético/farmacologia , Técnicas de Cultura de Células/métodos , Tamanho Celular , Cromatografia Líquida de Alta Pressão , Diosgenina/química , Indóis/farmacologia , Metanol/química , Ácidos Naftalenoacéticos/farmacologia , Células Vegetais/química , Células Vegetais/efeitos dos fármacos , Extratos Vegetais/análise , Extratos Vegetais/química , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Alcaloides de Solanáceas/química , Solanina/química , Solanum/química , Solanum/citologia , Técnicas de Cultura de Tecidos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA