Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Eye Contact Lens ; 50(2): 91-101, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019569

RESUMO

ABSTRACT: Half of the individuals who wear contact lenses use reusable lenses that require proper care. Improper contact lens (CL) care and using inadequate disinfecting solutions can lead to lens contamination, CL-related microbial keratitis, and Acanthamoeba keratitis. Oxidative disinfecting solutions, such as hydrogen peroxide, show higher efficacy than multipurpose solutions. Povidone-iodine (PVP-I), an oxidative disinfectant used in ophthalmic surgery, has been proven to be safe and effective. The PVP-I system, a CL disinfecting solution developed in Japan, has demonstrated excellent antimicrobial and antiviral properties. Although CL discomfort does not have a risk of ocular disorders with poor visual prognosis, such as keratitis, CL discomfort can still lead to lens dropout and thus needs to be addressed. To mitigate CL discomfort, it is essential to use disinfecting solutions containing surfactants and wetting agents that improve wettability of the lens surface. A CL solution containing hyaluronic acid derivatives (HADs) as wetting agents that permanently adhere to the lens surface to improve wettability of the lens surface was developed in Japan. There is potential for HAD to be integrated into various solutions. This article reviews the efficacy of novel PVP-I-based disinfecting solution and HAD wetting agents.


Assuntos
Ceratite por Acanthamoeba , Lentes de Contato , Desinfetantes , Humanos , Desinfetantes/farmacologia , Povidona-Iodo/farmacologia , Agentes Molhantes , Japão , Soluções para Lentes de Contato/farmacologia
2.
Cont Lens Anterior Eye ; 46(2): 101758, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36243521

RESUMO

PURPOSE: This aim of this study was to assess anti-parasitic properties of deep eutectic solvents against eye pathogen, Acanthamoeba, often associated with the use of contact lens. METHODS: Assays were performed to investigate the effects of various Methyltrioctylammonium chloride-based deep eutectic solvents on Acanthamoeba castellanii, comprising amoebicidal assays, encystment assays, excystment assays, cytotoxicity assays by measuring lactate dehydrogenase release from human cells, and cytopathogenicity assays to determine parasite-mediated host cell death. RESULTS: In a 2 h incubation period, DES-B, DES-C, DES-D, and DES-E exhibited up to 85 % amoebicidal activity at micromolar doses, which was enhanced further following 24 h incubation. When tested in encystment assays, selected deep eutectic solvents abolished cyst formation and were able to block excystment of A. castellanii. All solvents exhibited minimal human cell cytotoxicity except DES-D. Finally, all tested deep eutectic solvents inhibited amoeba-mediated cytopathogenicity, except DES-B. CONCLUSIONS: Deep eutectic solvents show potent antiamoebic effects. These findings are promising and could lead to the development of novel contact lens disinfectants, as well as opening several avenues to explore the molecular mechanisms, various doses and incubation periods, and use of different bases against Acanthamoeba castellanii.


Assuntos
Acanthamoeba castellanii , Amebicidas , Humanos , Solventes Eutéticos Profundos , Amebicidas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Soluções para Lentes de Contato/farmacologia
3.
PeerJ ; 10: e14468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523474

RESUMO

Garcinia mangostana L., also known as the mangosteen tree, is a native medicinal plant in Southeast Asia having a wide variety of pharmacologically active compounds, including xanthonoid mangostin. In this study, we examined the pharmacological activities of the selected semi-synthetic mangostin derivative, namely, amoebicidal activity, encystation inhibition, excystation activity, and removal capacity of adhesive Acanthamoeba from the surface of contact lens (CL). Among the three derivatives, C1 exhibited promising anti-Acanthamoeba activity against Acanthamoeba triangularis WU19001 trophozoites and cysts. SEM images displayed morphological changes in Acanthamoeba trophozoites, including the loss of acanthopodia, pore formation in the cell membrane, and membrane damage. In addition, the treated cyst was shrunken and adopted an irregular flat cyst shape. Under a fluorescence microscope, acridine orange and propidium iodide (AO/PI) staining revealed C1 induced condensation of cytoplasm and chromatin with the loss of cell volume in the treated trophozoites, while calcofluor white staining demonstrated the leakage of cell wall in treated cysts, leading to cell death. Interestingly, at the concentration ranges in which C1 showed the anti-Acanthamoeba effects (IC50 values ranging from 0.035-0.056 mg/mL), they were not toxic to Vero cells. C1 displayed the highest inhibitory effect on A. triangularis encystation at 1/16×MIC value (0.004 mg/mL). While C1 demonstrated the excystation activity at 1/128×MIC value with a high rate of 89.47%. Furthermore, C1 exhibited the removal capacity of adhesive Acanthamoeba from the surface of CL comparable with commercial multipurpose solutions (MPSs). Based on the results obtained, C1 may be a promising lead agent to develop a therapeutic for the treatment of Acanthamoeba infections and disinfectant solutions for CL.


Assuntos
Acanthamoeba , Lentes de Contato , Animais , Chlorocebus aethiops , Células Vero , Soluções para Lentes de Contato/farmacologia , Trofozoítos
4.
Exp Parasitol ; 240: 108330, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35868573

RESUMO

BACKGROUND: Acanthamoeba keratitis is a painful, sight-threatening infection. It is commonly associated with the use of contact lens. Several lines of evidence suggest inadequate contact lens solutions especially against the cyst forms of pathogenic Acanthamoeba, indicating the need to develop effective disinfectants. OBJECTIVE: In this work, the application and assessment of montmorillonite clay (Mt-clay), cetylpyridinium chloride (CPC) and cetylpyridinium chloride-montmorillonite clay complex (CPC-Mt) against keratitis-causing A. castellanii belonging to the T4 genotype was studied. METHODS: Adhesion to human cells and amoeba-mediated cytopathogenicity assays were conducted to determine the impact of Mt-clay, CPC and CPC-Mt complex on amoeba-mediated binding and host cell death. Furthermore, assays were also performed to determine inhibitory effects of Mt-clay, CPC and CPC-Mt complex on encystment and excystment. In addition, the cytotoxicity of Mt-clay, CPC and CPC-Mt complex against human cells was examined. RESULTS: The results revealed that CPC and CPC-Mt complex presented significant antiamoebic effects against A. castellanii at microgram dose. Also, the CPC and CPC-Mt complex inhibited amoebae binding to host cells. Furthermore, CPC and CPC-Mt complex, were found to inhibit the encystment and excystment processes. Finally, CPC and CPC-Mt complex showed minimal host cell cytotoxicity. These results show that CPC and CPC-Mt complex exhibit potent anti-acanthamoebic properties. CONCLUSION: Given the ease of usage, safety, cost-effectiveness and long-term stability, CPC and CPC-Mt complex can prove to be an excellent choice in the rational development of contact-lens disinfectants to eradicate pathogenic Acanthamoeba effectively.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Lentes de Contato , Ceratite por Acanthamoeba/etiologia , Ceratite por Acanthamoeba/prevenção & controle , Bentonita/farmacologia , Cetilpiridínio/farmacologia , Argila , Soluções para Lentes de Contato/farmacologia , Lentes de Contato/efeitos adversos , Desinfecção/métodos , Humanos
5.
Mol Biochem Parasitol ; 250: 111493, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35753525

RESUMO

Acanthamoeba castellanii is a protist pathogen that can cause sight-threatening keratitis and a fatal infection of the central nervous system, known as granulomatous amoebic encephalitis. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on A. castellanii were investigated. These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P < 0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of A. castellanii, and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against Acanthamoeba castellanii.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Lentes de Contato , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/prevenção & controle , Amebicidas/química , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Soluções para Lentes de Contato/farmacologia , Soluções para Lentes de Contato/uso terapêutico , Solventes Eutéticos Profundos , Humanos , Ácido Salicílico/farmacologia , Ácido Salicílico/uso terapêutico
6.
Microbiol Spectr ; 10(1): e0213821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138157

RESUMO

Microbial keratitis is a devastating disease that can cause eye damage and blindness and can be the result of infections by several common ocular pathogens. Importantly, some of these pathogens, such as Acanthamoeba, are particularly unsusceptible to biocides in common contact lens care solutions. Therefore, the disinfection efficacy of preservative-free (PF) disinfection systems against bacteria, fungi, and Acanthamoeba trophozoites and cysts should be assessed as products with the most potential to be efficacious against resistant organisms. PF disinfection systems were analyzed for antimicrobial efficacy. These were the one-step (hydrogen peroxide-based) Clear Care and Clear Care Plus systems and the two-step (povidone-iodine-based) Cleadew system. Stand-alone challenges using bacteria, fungi, and Acanthamoeba were prepared according to the International Standards Organization method 14729. These same challenges were also conducted in the presence of the following contact lenses: Boston RGP, Acuvue Oasys, Biofinity, Ultra, and 2-week PremiO. All challenges were performed at the manufacturer's recommended disinfection time. All preservative-free disinfection systems demonstrated similarly high rates of antimicrobial efficacy when challenged with bacteria or fungi, with or without lenses. However, both Clear Care and Clear Care Plus demonstrated significantly greater disinfection efficacy against Acanthamoeba trophozoites and cysts, with and without lenses (P < 0.05). Cleadew efficacy was impacted by the addition of contact lenses, whereas Clear Care/Clear Care Plus maintained similar efficacies in the absence or presence of lenses. While both hydrogen peroxide and povidone-iodine are highly effective against bacteria and fungi, hydrogen peroxide maintains significantly greater disinfection capabilities than povidone-iodine against all forms of Acanthamoeba. IMPORTANCE Understanding the most efficacious products will allow clinicians to best communicate to patients and consumers the safest products on the market to reduce adverse events, including microbial keratitis, during contact lens use.


Assuntos
Anti-Infecciosos/farmacologia , Soluções para Lentes de Contato/farmacologia , Desinfecção/métodos , Oftalmopatias/prevenção & controle , Acanthamoeba/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Lentes de Contato/microbiologia , Lentes de Contato/parasitologia , Desinfecção/instrumentação , Oftalmopatias/microbiologia , Oftalmopatias/parasitologia , Fungos/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Povidona-Iodo/farmacologia
7.
Invest Ophthalmol Vis Sci ; 63(1): 11, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994769

RESUMO

Purpose: To determine the amoebicidal activity of functionalized poly-epsilon-lysine hydrogels (pɛK+) against Acanthamoeba castellanii. Methods: A. castellanii trophozoites and cysts were grown in the presence of pɛK solution (0-2.17 mM), pɛK or pɛK+ hydrogels, or commercial hydrogel contact lens (CL) for 24 hours or 7 days in PBS or Peptone-Yeast-Glucose (PYG) media (nutrient-deplete or nutrient-replete cultures, respectively). Toxicity was determined using propidium iodide and imaged using fluorescence microscopy. Ex vivo porcine corneas were inoculated with A. castellanii trophozoites ± pɛK, pɛK+ hydrogels or commercial hydrogel CL for 7 days. Corneal infection was assessed by periodic acid-Schiff staining and histologic analysis. Regrowth of A. castellanii from hydrogel lenses and corneal discs at 7 days was assessed using microscopy and enumeration. Results: The toxicity of pɛK+ hydrogels resulted in the death of 98.52% or 83.31% of the trophozoites at 24 hours or 7 days, respectively. The toxicity of pɛK+ hydrogels resulted in the death of 70.59% or 82.32% of the cysts in PBS at 24 hours or 7 days, respectively. Cysts exposed to pɛK+ hydrogels in PYG medium resulted in 75.37% and 87.14% death at 24 hours and 7 days. Ex vivo corneas infected with trophozoites and incubated with pɛK+ hydrogels showed the absence of A. castellanii in the stroma, with no regrowth from corneas or pɛK+ hydrogel, compared with infected-only corneas and those incubated in presence of commercial hydrogel CL. Conclusions: pɛK+ hydrogels demonstrated pronounced amoebicidal and cysticidal activity against A. castellanii. pɛK+ hydrogels have the potential for use as CLs that could minimize the risk of CL-associated Acanthamoeba keratitis.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Córnea/parasitologia , Infecções Oculares Parasitárias/tratamento farmacológico , Hidrogéis/farmacologia , Polilisina/farmacologia , Ceratite por Acanthamoeba/parasitologia , Amebicidas/toxicidade , Animais , Células Cultivadas , Soluções para Lentes de Contato/farmacologia , Modelos Animais de Doenças , Epitélio Corneano/efeitos dos fármacos , Infecções Oculares Parasitárias/parasitologia , Humanos , Hidrogéis/toxicidade , Microscopia de Fluorescência , Polilisina/toxicidade , Suínos , Trofozoítos/efeitos dos fármacos
8.
Parasit Vectors ; 13(1): 624, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353560

RESUMO

BACKGROUND: Free-living amoebae of the genus Acanthamoeba are cosmopolitan, widely distributed protozoans that cause a severe, vision-threatening corneal infection known as Acanthamoeba keratitis (AK). The majority of the increasing number of AK cases are associated with contact lens use. Appropriate eye hygiene and effective contact lens disinfection are crucial in the prevention of AK because of the lack of effective therapies against it. Currently available multipurpose contact lens disinfection systems are not fully effective against Acanthamoeba trophozoites and cysts. There is an urgent need to increase the disinfecting activity of these systems to prevent AK infections. Synthesized nanoparticles (NPs) have been recently studied and proposed as a new generation of anti-microbial agents. It is also known that some plant metabolites, including tannins, have anti-parasitic activity. The aim of this study was to evaluate the anti-amoebic activity and cytotoxicity of tannic acid-modified silver NPs (AgTANPs) conjugated with selected multipurpose contact lens solutions. METHODS: The anti-amoebic activities of pure contact lens care solutions, and NPs conjugated with contact lens care solutions, were examined in vitro by a colorimetric assay based on the oxido-reduction of alamarBlue. The cytotoxicity assays were performed using a fibroblast HS-5 (ATCC CRL-11882) cell line. The results were statistically analysed by ANOVA and Student-Newman-Keuls test using P < 0.05 as the level of statistical significance. RESULTS: We show that the NPs enhance the anti-Acanthamoeba activities of the tested contact lens solutions without increasing their cytotoxicity profiles. The activities are enhanced within the minimal disinfection time recommended by the manufacturers. CONCLUSIONS: The conjugation of the selected contact lens solutions with AgTANPs might be a novel and promising approach for the prevention of AK infections among contact lens users.


Assuntos
Ceratite por Acanthamoeba/prevenção & controle , Acanthamoeba castellanii/efeitos dos fármacos , Soluções para Lentes de Contato/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Taninos/farmacologia , Animais , Humanos
9.
Ann Agric Environ Med ; 26(1): 198-202, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30922053

RESUMO

INTRODUCTION: Various Acanthamoeba species are free-living organisms widely distributed in the human environment. Amphizoic amoebae as facultative parasites may cause vision-threatening eye disease - Acanthamoeba keratitis, mostly among contact lens wearers. As the number of cases is increasing, and applied therapy often unsuccessful, proper hygienic measures and effective contact lenses disinfection are crucial for the prevention of this disease. Available contact lens solutions are not fully effective against amphizoic amoebae; there is a need to enhance their disinfecting activity to prevent amoebic infections. The use of developing nanotechnology methods already applied with success in the prevention, diagnostic and therapy of other infectious diseases might be helpful regarding amoebic keratitis. This study assesses the in vitro effect of selected contact lens solutions conjugated with nanoparticles against Acanthamoeba trophozoites. MATERIAL AND METHODS: Three selected contact lens solutions conjugated with silver and gold nanoparticles in concentration of 0.25-2.5 ppm were used in vitro against the axenically cultured ATCC 30010 type Acanthamoeba castellanii strain. The anti-amoebic efficacy was examined based on the oxido-reduction of AlamarBlue. The cytotoxicity tests based on the measurement of lactate dehydrogenase (LDH) activity were performed using a fibroblast HS-5 cell line. RESULTS: Enhancement of the anti-amoebic activity of contact lens solutions conjugated with selected nanoparticles expressed in the dose dependent amoebic growth inhibition with a low cytotoxicity profile was observed. CONCLUSIONS: Results of the study showed that conjugation of selected contact lens solutions with silver nanoparticles might be a promising approach to prevent Acanthamoeba keratitis among contact lens users.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Soluções para Lentes de Contato/farmacologia , Nanopartículas Metálicas/uso terapêutico , Ceratite por Acanthamoeba/prevenção & controle , Linhagem Celular Tumoral , Soluções para Lentes de Contato/toxicidade , Ouro/farmacologia , Ouro/toxicidade , Humanos , L-Lactato Desidrogenase/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/farmacologia , Prata/toxicidade , Trofozoítos/efeitos dos fármacos
10.
Eye Contact Lens ; 45(3): 164-170, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30138250

RESUMO

PURPOSE: To compare the antimicrobial effects of CLEAR CARE, a 3% hydrogen peroxide (H2O2) solution formulated for simultaneous cleaning, daily protein removal, disinfection, and storage of soft (hydrophilic) hydrogel, silicone hydrogel, and gas-permeable contact lenses, and CLEAR CARE PLUS, consisting of the 3% H2O2 solution plus a novel wetting agent, polyoxyethylene-polyoxybutylene (EOBO-21). METHODS: Three lots each of the 2 solutions were incubated with 5 compendial microorganisms required by the Food and Drug Administration (FDA) 510(k) and International Organization for Standardization (ISO) 14729 stand-alone procedures, 4 clinical isolates of Gram-positive and Gram-negative bacteria, and trophozoites and cysts of 2 Acanthamoeba strains that are associated with microbial keratitis. Microbial loads were evaluated after disinfection and neutralization. RESULTS: Both solutions exceeded the FDA/ISO stand-alone primary criteria against Gram-positive and Gram-negative compendial bacteria, yeast, and mold after only 1.5-hr disinfection/neutralization. At the recommended minimum disinfection time, bacteria were reduced by 4.4 to 5.1 logs, yeast by 4.4 to 4.9 logs, and mold by 2.9 to 3.5 logs with and without organic soil. In addition, both solutions eliminated or effectively reduced populations of clinically relevant ocular bacterial isolates (4.5-5.0 logs), Acanthamoeba trophozoites (3.4-4.2 logs), and cysts (1.5-2.1 logs). CONCLUSION: Both solutions eliminated or reduced populations of FDA/ISO compendial bacteria and fungi as well as clinically relevant microorganisms and Acanthamoeba trophozoites and cysts. The addition of EOBO-21 to the 3% H2O2 lens care solution had no impact on antimicrobial activity.


Assuntos
Acanthamoeba/efeitos dos fármacos , Antibacterianos/farmacologia , Soluções para Lentes de Contato/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Agentes Molhantes/farmacologia , Lentes de Contato Hidrofílicas/microbiologia , Desinfetantes , Fungos/efeitos dos fármacos , Polienos/farmacologia , Polietilenoglicóis/farmacologia , Trofozoítos/efeitos dos fármacos
11.
Korean J Parasitol ; 56(5): 491-494, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30419735

RESUMO

Multipurpose contact lens disinfecting solutions (MPDS) are widely used to cleanse and disinfect microorganisms. However, disinfection efficacy of these MPDS against Acanthamoeba cyst remain insufficient. 2, 6-dichlorobenzonitrile (DCB), a cellulose synthesis inhibitor, is capable of increasing the amoebical effect against Acanthamoeba by inhibiting its encystation. In this study, we investigated the possibility of DCB as a disinfecting agent to improve the amoebicidal activity of MPDS against Acanthamoeba cyst. Eight commercial MPDS (from a to h) were assessed, all of which displayed insufficient amoebicidal activity against the mature cysts. Solution e, f, and h showed strong amoebicidal effect on the immature cysts. Amoebicidal efficacy against mature cysts remained inadequate even when the 8 MPDS were combined with 100 µM DCB. However, 4 kinds of MPDS (solution d, e, f, and h) including 100 µM DCB demonstrated strong amoebicidal activity against the immature cysts. The amoebicidal activity of solution d was increased by addition of DCB. Cytotoxicity was absent in human corneal epithelial cells treated with either DCB or mixture of DCB with MPDS. These results suggested that DCB can enhance the amoebicical activity of MPDS against Acanthamoeba immature cyst in vitro.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Soluções para Lentes de Contato/farmacologia , Nitrilas/farmacologia , Acanthamoeba/metabolismo , Células Cultivadas , Celulose/metabolismo , Soluções para Lentes de Contato/efeitos adversos , Lentes de Contato/parasitologia , Células Epiteliais/efeitos dos fármacos , Epitélio Corneano/efeitos dos fármacos , Humanos , Nitrilas/efeitos adversos , Encistamento de Parasitas/efeitos dos fármacos
12.
Cont Lens Anterior Eye ; 41(6): 542-546, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30100388

RESUMO

This study investigated the efficacy of a novel povidone-iodine based disinfection solution for rigid gas permeable (RGP) lenses compared to three other currently available multipurpose and hydrogen peroxide solutions. Bactericidal and fungicidal activities were assessed using ISO 14729 reference methods, whilst amoebicidal properties were evaluated using an automated viability counter. All solutions were also assessed for long term storage stability over a 3-month period. The FDA guidelines were adequately achieved by all solutions tested and 3-month storage did not affect their activity against bacterial and fungal agents. Activity against Acanthamoeba castellani trophozoites reached 1-log reduction for the povidone-iodine solution and approached this level for the remaining solutions. Activity against cysts was somewhat reduced and ranged from 78 to 86% reduction in viability. A povidone-iodine based solution, which may offer advantages as resistance to this agent has not been demonstrated and it lacks toxicity, provided equivalent antimicrobial activity to other RGP solutions.


Assuntos
Bactérias/isolamento & purificação , Soluções para Lentes de Contato/farmacologia , Desinfecção/métodos , Infecções Oculares Bacterianas/prevenção & controle , Infecções Oculares Fúngicas/prevenção & controle , Fungos/isolamento & purificação , Povidona-Iodo/farmacologia , Anti-Infecciosos Locais/farmacologia , Bactérias/efeitos dos fármacos , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Fúngicas/microbiologia , Fungos/efeitos dos fármacos , Humanos
13.
Int J Biochem Cell Biol ; 101: 54-63, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29800726

RESUMO

Sodium fluorescein ('fluorescein') staining of the ocular surface is frequently an indicator of compromised ocular health, and increases in the presence of certain contact lens multi-purpose solutions (MPS), a phenomenon known as solution induced corneal staining (SICS). The mechanism(s) underpinning fluorescein hyperfluorescence are uncertain, though may reflect increased cellular uptake of fluorescein by corneal epithelial cells. We have developed an in vitro model to study fluorescein uptake in both 'generic' mammalian cells (murine fibroblasts) and human corneal cells. Fluorescein hyperfluorescence increased after treatment with two MPS associated with clinical corneal fluorescein staining, yet there was no cellular hyperfluorescence for two MPS that do not cause this staining. Increased fluorescein uptake did not correlate with presence of a necrotic or an apoptotic marker (propidium iodide and caspase-3 respectively). Incubation of MPS-treated cells with dynasore (an inhibitor of dynamin, implicated in endocytic pathways) reduced fluorescein uptake irrespective of MPS treatment. The non-ionic surfactant Tetronic 1107 (present in both MPS associated with corneal fluorescein staining) increased uptake of fluorescein for both cell types, whereas an unrelated surfactant (Triton X-100) did not. We conclude that the clinical hyperfluorescence profile observed after exposure to four MPS can be reproduced using a simple model of cellular fluorescein uptake, suggesting this is the biological basis for SICS. Fluorescein entry does not correlate with necrosis or apoptosis, but instead involves a dynamin-dependent active process. Moreover the surfactant Tetronic 1107 appears to be a key MPS constituent triggering increased fluorescein entry, and may be the major factor responsible for SICS.


Assuntos
Soluções para Lentes de Contato/farmacologia , Dinaminas/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Etilenodiaminas/farmacologia , Animais , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Soluções para Lentes de Contato/química , Córnea/citologia , Córnea/efeitos dos fármacos , Córnea/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fluoresceína/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Expressão Gênica , Humanos , Hidrazonas/farmacologia , Camundongos , Microscopia de Fluorescência , Propídio/química , Coloração e Rotulagem/métodos
14.
Exp Parasitol ; 188: 102-106, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29625097

RESUMO

Acanthamoeba keratitis is commonly encountered by contact lens wearers. Contact lens solution plays an important role in the safe use of contact lenses. The most popular products for disinfecting lenses are multipurpose disinfecting solutions (MPDS). However, almost all MPDS retailed in Korea are ineffective in killing Acanthamoeba. The objective of this study was to determine the possibility of using autophagy inhibitor chloroquine as a disinfecting agent to improve the amoebicidal activity of MPDS against Acanthamoeba, especially the cyst. Amoebicidal effects of eight different MPDSs combined with chloroquine (CQ), an autophagy inhibitor, and their cytotoxicities to human corneal epithelium cells were determined. Almost all MPDS showed strong amoebicidal effect on trophozoites after 8 h of exposure. However, they showed inadequate amoebicidal effect on cysts even after 24 h of exposure. MPDSs combined with 100 µM CQ increased their amoebicidal effects on immature cyst by inhibiting formation of mature cysts. Incubation with 100 µM CQ for 30 min did not have cytotoxicity to human corneal epithelial cells.


Assuntos
Ceratite por Acanthamoeba/prevenção & controle , Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Cloroquina/farmacologia , Soluções para Lentes de Contato/farmacologia , Amebicidas/toxicidade , Autofagia/efeitos dos fármacos , Cloroquina/toxicidade , Soluções para Lentes de Contato/toxicidade , Epitélio Corneano/citologia , Epitélio Corneano/efeitos dos fármacos , Humanos , República da Coreia
15.
Eye Contact Lens ; 44(6): 367-371, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29373390

RESUMO

OBJECTIVES: To evaluate the interlaboratory and intralaboratory reproducibility of a proposed protocol for multipurpose contact lens solution (MPS) disinfection efficacy against Acanthamoeba. METHODS: Acanthamoeba castellanii and Acanthamoeba polyphaga and four MPS with different biocidal agents were used to evaluate the protocol in two different laboratories. In addition to the negative control, a positive control and neutralization control were used. One experiment was performed in triplicate, and all other experiments were performed in duplicate in each laboratory. Acanthamoeba trophozoites were grown axenically, and cysts were generated using the starvation method. Trophozoites and cysts at a concentration of 2.0 × 10 to 2.0 × 10 organisms per milliliter were exposed to the test MPS for 0, 4 or 6 (manufacturer's recommended soak time [MRST]), 8, and 24 hr. Survivors were determined by a limiting dilution method that used a most probable number evaluation. RESULTS: The positive and negative controls displayed consistent results and trends both within each laboratory and between each laboratory for trophozoites and cysts of both A. castellanii and A. polyphaga. The neutralization control consistently demonstrated the ability of the neutralizing agents to neutralize the MPS and the positive control and demonstrated no inhibition of Acanthamoeba by the negative control. Testing in triplicate and duplicate demonstrated the reproducibility of the protocol both within each laboratory and between the laboratories. Our results demonstrated that the MPS at the MRST and at 8 hr (likely overnight soak time) are generally more effective against trophozoites than they are against cysts. Only the MPS with hydrogen peroxide as the biocidal agent was able to provide a greater than three-log kill of cysts at the MRST and longer. Among the MPS we tested, trophozoites of A. castellanii and A. polyphaga showed similar responses. Some variability was observed when testing cysts of both species. In both laboratories, one nonhydrogen peroxide containing MPS had some effect (>1 log kill) on A. polyphaga cysts. This solution had no effect (<1 log kill) on A. castellanii cysts, A. castellanii trophozoites, and A. polyphaga trophozoites. CONCLUSIONS: The protocol that we have revised and evaluated is a well-controlled and reproducible procedure that can effectively evaluate the efficacy of MPS against Acanthamoeba trophozoites. Some variability was observed when testing the cyst stage.


Assuntos
Ceratite por Acanthamoeba/prevenção & controle , Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Soluções para Lentes de Contato/farmacologia , Desinfetantes/farmacologia , Acanthamoeba castellanii/efeitos dos fármacos , Cistos , Humanos , Peróxido de Hidrogênio/farmacologia , Reprodutibilidade dos Testes , Trofozoítos/efeitos dos fármacos
16.
Cont Lens Anterior Eye ; 41(3): 277-281, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29233457

RESUMO

PURPOSE: Contact lens (CL) wear is a risk factor for the acquisition of microbial keratitis. Accordingly, compliance to manufacturers' recommended hygiene and disinfection procedures are vital to safe (CL) use. In this study we evaluated a novel povidone-iodine (PI) (CL) disinfection system (cleadew, Ophtecs Corporation, Japan) against a range of bacterial, fungal and Acanthamoeba. METHODS: Antimicrobial assays were conducted according to ISO 14729 using the recommended strains of bacteria and fungi, with and without the presence of organic soil. Regrowth of bacteria and fungi in the disinfection system was also examined. The activity on biofilms formed from Stenotrophomonas maltophilia and Achromobacter sp. was evaluated. Efficacy against A. castellanii trophozoites and cysts was also investigated. RESULTS: The PI system gave >4 log10 kill of all bacteria and fungi following the manufacturer's recommended disinfection and cleaning time of 4h, with or without the presence of organic soil. No regrowth of organisms was found after 14days in the neutralized solution. In the biofilm studies the system resulted in at least a 7 log10 reduction in viability of bacteria. For Acanthamoeba, >3 log10 kill of trophozoites and 1.1-2.8 log10 kill for the cyst stage was obtained. CONCLUSIONS: The PI system effective against a variety of pathogenic microorganisms under a range of test conditions. Strict compliance to recommended CL hygiene procedures is essential for safe CL wear. The use of care systems such as PI, with broad spectrum antimicrobial activity, may aid in the prevention of potentially sight threatening microbial keratitis.


Assuntos
Bactérias/isolamento & purificação , Soluções para Lentes de Contato/farmacologia , Lentes de Contato , Desinfecção/métodos , Infecções Oculares Bacterianas/prevenção & controle , Ceratite/prevenção & controle , Povidona-Iodo/farmacologia , Anti-Infecciosos Locais/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes , Infecções Oculares Bacterianas/microbiologia , Humanos , Ceratite/microbiologia
17.
Exp Parasitol ; 183: 187-193, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28919333

RESUMO

The aim of this study was (i) to assess the antimicrobial effects of contact lens disinfecting solutions marketed in Malaysia against common bacterial eye pathogens and as well as eye parasite, Acanthamoeba castellanii, and (ii) to determine whether targeting cyst wall would improve the efficacy of contact lens disinfectants. Using ISO 14729 Stand-Alone Test for disinfecting solutions, bactericidal and amoebicidal assays of six different contact lens solutions including Oxysept®, AO SEPT PLUS, OPTI-FREE® pure moist®, Renu® fresh™, FreshKon® CLEAR and COMPLETE RevitaLens™ were performed using Manufacturers Minimum recommended disinfection time (MRDT). The efficacy of contact lens solutions was determined against keratitis-causing microbes, namely: Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, and Acanthamoeba castellanii. In addition, using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, we determined whether combination of both agents can enhance efficacy of marketed contact lens disinfectants against A. castellanii trophozoites and cysts, in vitro. The results revealed that all contact lens disinfectants tested showed potent bactericidal effects exhibiting 100% kill against all bacterial species tested. In contrast, none of the contact lens disinfectants had potent effects against Acanthamoeba cysts viability. When tested against trophozoites, two disinfectants, Oxysept Multipurpose and AO-sept Multipurpose showed partial amoebicidal effects. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents in contact lens disinfectants abolished viability of A. castellanii cysts and trophozoites. Given the inefficacy of contact lens disinfectants tested in this study, these findings present a significant concern to public health. These findings revealed that targeting cyst wall by using cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy against this devastating eye infection.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Anti-Infecciosos Locais/farmacologia , Celulase/farmacologia , Clorexidina/farmacologia , Soluções para Lentes de Contato/farmacologia , Ceratite/prevenção & controle , Ceratite por Acanthamoeba/parasitologia , Ceratite por Acanthamoeba/prevenção & controle , Acanthamoeba castellanii/fisiologia , Soluções para Lentes de Contato/química , Humanos , Ceratite/microbiologia , Ceratite/parasitologia , Malásia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos , Trichoderma/enzimologia
18.
Optom Vis Sci ; 94(11): 1022-1028, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28902008

RESUMO

SIGNIFICANCE: Hydrogen peroxide (H2O2) disinfection systems are contact-lens-patient problem solvers. The current one-step, criterion-standard version has been widely used since the mid-1980s, without any significant improvement. This work identifies a potential next-generation, one-step H2O2, not based on the solution formulation but rather on a case-based peroxide catalyst. PURPOSE: One-step H2O2 systems are widely used for contact lens disinfection. However, antimicrobial efficacy can be limited because of the rapid neutralization of the peroxide from the catalytic component of the systems. We studied whether the addition of an iron-containing catalyst bound to a nonfunctional propylene:polyacryonitrile fabric matrix could enhance the antimicrobial efficacy of these one-step H2O2 systems. METHODS: Bausch + Lomb PeroxiClear and AOSept Plus (both based on 3% H2O2 with a platinum-neutralizing disc) were the test systems. These were tested with and without the presence of the catalyst fabric using Acanthamoeba cysts as the challenge organism. After 6 hours' disinfection, the number of viable cysts was determined. In other studies, the experiments were also conducted with biofilm formed by Stenotrophomonas maltophilia and Elizabethkingia meningoseptica bacteria. RESULTS: Both control systems gave approximately 1-log10 kill of Acanthamoeba cysts compared with 3.0-log10 kill in the presence of the catalyst (P < .001). In the biofilm studies, no viable bacteria were recovered following disinfection in the presence of the catalyst compared with ≥3.0-log10 kill when it was omitted. In 30 rounds' recurrent usage, the experiments, in which the AOSept Plus system was subjected to 30 rounds of H2O2 neutralization with or without the presence of catalytic fabric, showed no loss in enhanced biocidal efficacy of the material. The catalytic fabric was also shown to not retard or increase the rate of H2O2 neutralization. CONCLUSIONS: We have demonstrated the catalyst significantly increases the efficacy of one-step H2O2 disinfection systems using highly resistant Acanthamoeba cysts and bacterial biofilm. Incorporating the catalyst into the design of these one-step H2O2 disinfection systems could improve the antimicrobial efficacy and provide a greater margin of safety for contact lens users.


Assuntos
Ceratite por Acanthamoeba/prevenção & controle , Acanthamoeba/isolamento & purificação , Anti-Infecciosos/farmacologia , Soluções para Lentes de Contato/farmacologia , Desinfecção/métodos , Infecções Oculares Parasitárias/prevenção & controle , Peróxido de Hidrogênio/farmacologia , Acanthamoeba/efeitos dos fármacos , Ceratite por Acanthamoeba/microbiologia , Infecções Oculares Parasitárias/parasitologia , Humanos
19.
Biocontrol Sci ; 22(3): 153-161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28954958

RESUMO

 Acanthamoeba is found in seawater, fresh water, and soil and is an opportunistic pathogen that causes a potentially blinding corneal infection known as Acanthamoeba keratitis. The anti-amoeba activity of 9 fatty acid salts (potassium butyrate (C4K), caproate (C6K), caprylate (C8K), caprate (C10K), laurate (C12K), myristate (C14K), oleate (C18:1K), linoleate (C18:2K), and linolenate (C18:3K)) was tested on Acanthamoeba castellanii ATCC 30010 (trophozoites and cysts). Fatty acid salts (350 mM and pH 10.5) were prepared by mixing fatty acids with the appropriate amount of KOH. C8K, C10K, and C12K showed growth reduction of 4 log-units (99.99% suppression) in A. castellanii upon 180 min incubation at 175 mM, whereas the pH-adjusted control solution showed no effect. After the amoeba suspension was mixed with C10K or C12K, cell membrane destruction was observed. The minimum inhibitory concentration of C10K and C12K was also determined to be 2.7 mM. Confirmation tests were conducted using contact lenses to evaluate the effectiveness of C10K and C12K as multi-purpose solutions. Experiments using increasing concentrations showed reduced numbers of living cells in C10K (5.5 mM, 10.9 mM) and in C12K (5.5 mM, 10.9 mM). These results demonstrate the inhibitory activity of C10K and C12K against A. castellanii and indicate their potential as anti-amoeba agents.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Soluções para Lentes de Contato/farmacologia , Lentes de Contato/parasitologia , Ácidos Graxos/farmacologia , Ceratite por Acanthamoeba , Acanthamoeba castellanii , Animais , Soluções para Lentes de Contato/química , Sais
20.
Eye Contact Lens ; 43(2): 110-115, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26974534

RESUMO

OBJECTIVES: Contact lens-acquired bacterial infections are a serious problem. Of the reported cases, inadequate cleaning of the lens case was the most common cause of lens contamination. Organoselenium has been shown to inhibit bacterial attachment to different polymer materials. This study evaluates the ability of an organoselenium monomer, incorporated into the polymer of a polypropylene contact lens case coupon, to block the formation of biofilms in a lens case. METHODS: The bacteria tested were Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia, and Serratia marcescens. For this study, the bacteria were allowed to grow overnight, in trypticase soy broth media, in the presence of the selenium-containing polymer or the same polymer without organoselenium. The material was studied by both colony-forming unit determination and by confocal laser scanning microscopy. RESULTS: The results showed that the organoselenium polymer versus the control polymer resulted in the following effect on biofilm formation: (1) a reduction in P. aeruginosa of 7.3 logs (100%); (2) a reduction in S. aureus of 7.3 logs (100%); (3) a reduction in S. maltophilia of 7.5 logs (100%); and (4) a reduction in S. marcescens reduction of 3.3 logs (99.9%). To test the stability of the organoselenium polypropylene contact lens coupon, the coupon was soaked in PBS for eight weeks at room temperature. It was found that when these soaked coupons were tested against S. aureus, complete inhibition (8.1 logs) was obtained. Because organoselenium cannot leach from the polymer, this would imply that the organoselenium polypropylene contact lens case coupon would be inhibitory toward bacterial biofilm for the life of the case. CONCLUSION: The organoselenium polypropylene contact lens case coupon shows the ability to inhibit biofilm formation. The use of organoselenium copolymer should play an important role in protecting against contact lens case-acquired infection.


Assuntos
Biofilmes/efeitos dos fármacos , Lentes de Contato/microbiologia , Contaminação de Equipamentos/prevenção & controle , Compostos Organosselênicos/farmacologia , Soluções para Lentes de Contato/farmacologia , Infecções Oculares Bacterianas/prevenção & controle , Humanos , Compostos Organosselênicos/química , Polipropilenos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Serratia marcescens/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Stenotrophomonas maltophilia/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA