Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
1.
Sci Rep ; 14(1): 13525, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866945

RESUMO

The traditional nomenclature of enteroendocrine cells (EECs), established in 1977, applied the "one cell - one hormone" dogma, which distinguishes subpopulations based on the secretion of a specific hormone. These hormone-specific subpopulations included S cells for secretin (SCT), K cells for glucose-dependent insulinotropic polypeptide (GIP), N cells producing neurotensin (NTS), I cells producing cholecystokinin (CCK), D cells producing somatostatin (SST), and others. In the past 15 years, reinvestigations into murine and human organoid-derived EECs, however, strongly questioned this dogma and established that certain EECs coexpress multiple hormones. Using the Gut Cell Atlas, the largest available single-cell transcriptome dataset of human intestinal cells, this study consolidates that the original dogma is outdated not only for murine and human organoid-derived EECs, but also for primary human EECs, showing that the expression of certain hormones is not restricted to their designated cell type. Moreover, specific analyses into SCT-expressing cells reject the presence of any cell population that exhibits significantly elevated secretin expression compared to other cell populations, previously referred to as S cells. Instead, this investigation indicates that secretin production is realized jointly by other enteroendocrine subpopulations, validating corresponding observations in murine EECs also for human EECs. Furthermore, our findings corroborate that SCT expression peaks in mature EECs, in contrast, progenitor EECs exhibit markedly lower expression levels, supporting the hypothesis that SCT expression is a hallmark of EEC maturation.


Assuntos
Células Enteroendócrinas , Perfilação da Expressão Gênica , Secretina , Análise de Célula Única , Humanos , Células Enteroendócrinas/metabolismo , Secretina/metabolismo , Secretina/genética , Análise de Célula Única/métodos , Camundongos , Animais , Transcriptoma , Diferenciação Celular , Organoides/metabolismo , Organoides/citologia , Colecistocinina/metabolismo , Colecistocinina/genética , Somatostatina/metabolismo , Somatostatina/genética , Análise da Expressão Gênica de Célula Única
2.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37254876

RESUMO

RAS/MAPK gene dysfunction underlies various cancers and neurocognitive disorders. Although the roles of RAS/MAPK genes have been well studied in cancer, less is known about their function during neurodevelopment. There are many genes that work in concert to regulate RAS/MAPK signaling, suggesting that if common brain phenotypes could be discovered they could have a broad impact on the many other disorders caused by distinct RAS/MAPK genes. We assessed the cellular and molecular consequences of hyperactivating the RAS/MAPK pathway using two distinct genes in a cell type previously implicated in RAS/MAPK-mediated cognitive changes, cortical GABAergic interneurons. We uncovered some GABAergic core programs that are commonly altered in each of the mutants. Notably, hyperactive RAS/MAPK mutants bias developing cortical interneurons towards those that are somatostatin positive. The increase in somatostatin-positive interneurons could also be prevented by pharmacological inhibition of the core RAS/MAPK signaling pathway. Overall, these findings present new insights into how different RAS/MAPK mutations can converge on GABAergic interneurons, which may be important for other RAS/MAPK genes and related disorders.


Assuntos
Transdução de Sinais , Somatostatina , Alelos , Somatostatina/genética , Somatostatina/metabolismo , Transdução de Sinais/genética , Sistema de Sinalização das MAP Quinases/genética , Interneurônios/metabolismo , Neurônios GABAérgicos/metabolismo
3.
Signal Transduct Target Ther ; 8(1): 186, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193687

RESUMO

Seizures due to cortical dysplasia are notorious for their poor prognosis even with medications and surgery, likely due to the widespread seizure network. Previous studies have primarily focused on the disruption of dysplastic lesions, rather than remote regions such as the hippocampus. Here, we first quantified the epileptogenicity of the hippocampus in patients with late-stage cortical dysplasia. We further investigated the cellular substrates leading to the epileptic hippocampus, using multiscale tools including calcium imaging, optogenetics, immunohistochemistry and electrophysiology. For the first time, we revealed the role of hippocampal somatostatin-positive interneurons in cortical dysplasia-related seizures. Somatostatin-positive were recruited during cortical dysplasia-related seizures. Interestingly, optogenetic studies suggested that somatostatin-positive interneurons paradoxically facilitated seizure generalization. By contrast, parvalbumin-positive interneurons retained an inhibitory role as in controls. Electrophysiological recordings and immunohistochemical studies revealed glutamate-mediated excitatory transmission from somatostatin-positive interneurons in the dentate gyrus. Taken together, our study reveals a novel role of excitatory somatostatin-positive neurons in the seizure network and brings new insights into the cellular basis of cortical dysplasia.


Assuntos
Interneurônios , Convulsões , Humanos , Interneurônios/metabolismo , Hipocampo , Somatostatina/genética , Somatostatina/metabolismo , Giro Denteado/metabolismo
4.
Neurotox Res ; 40(6): 1824-1837, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36378411

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by loss of neurons and synapses. The aim of this study was to investigate the effect of somatostatin analogue Vapreotide in an in vitro Alzheimer's model and its effects based on the relationship between somatostatinergic transmission and neurodegenerative functions. In this study, tau transfection was performed using the MAPT gene cloned into the pcDNA3.1 vector and transfection reagent into the SH-SY5Y cell line. In viability experiments using 10 µM Memantine as a positive control, it was observed that Vapreotide at 50 µM (p < 0.0001) and 100 µM (p < 0.05) had a protective effect on cell viability, 100 µM CYN154806 was found to decrease (p < 0.05) cell viability. It was determined that Vapreotide, decreased the expression levels (50 µM-p < 0.001; 100 µM-p < 0.001; 200 µM-p < 0.0001) and phosphorylation of Tau and p-Tau proteins by western blots. With the qRT-PCR method, it was found that Vapreotide, decreased the BAX/BCL2 (50 µM-p < 0.001; 100 µM-p < 0.01; 200 µM-p < 0.001) expression level and decreased the expression level (50 µM-p < 0.01; 100 µM-p < 0.01; 200 µM-p < 0.001) of the APOE4 gene, which constitutes a genetic risk for AD. This study demonstrates a potential therapeutic role for a somatostatin analogue Vapreotide in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Somatostatina/uso terapêutico , Transfecção , Fosforilação
5.
Sci Rep ; 12(1): 16885, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207478

RESUMO

Somatostatin, a growth hormone-release inhibiting peptide, exerts antiproliferative and antiangiogenic effects on tumor cells. However, the short half-life of somatostatin limits its application in human therapy, and long-acting somatostatin fusion protein is also limited by its severe terminal degradation. Therefore, oncolytic virus delivery system was introduced to express somatostatin fusion protein and the anti-tumor effects of both somatostatin and oncolytic virus were combined to destroy tumor tissues. Here, a vaccinia VG9/(SST-14)2-HSA recombinant was constructed by replacing somatostatin fusion gene into TK locus of attenuated VG9 strain via homologous recombination. Results showed that vaccinia VG9/(SST-14)2-HSA possessed a combined anti-tumor effect on sstr-positive tumor cells in vitro. In the tumor burden models, BALB/c mice with complete immunity are most suitable for evaluating tumor regression and immune activation. Complete tumor regression was observed in 3 out of 10 mice treated with vaccinia VG9/TK- or VG9/(SST-14)2-HSA, and the survival of all mice in both groups was significantly prolonged. Besides, vaccinia VG9/(SST-14)2-HSA is more effective in prolonging survival than VG9/TK-. Vaccinia VG9/(SST-14)2-HSA exerts a combined anti-tumor efficacy including the oncolytic ability provided by the virus and the anti-tumor effect contributed by (SST-14)2-HSA, which is expected to become a potent therapeutic agent for cancer treatment.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vacínia , Animais , Hormônio do Crescimento/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Vaccinia virus
6.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955787

RESUMO

Acromegaly is a chronic and systemic disease due to excessive growth hormone and insulin-like growth factor type I caused, in the vast majority of cases, by a GH-secreting pituitary adenoma. About 40% of these tumors have somatic mutations in the stimulatory G protein alpha-subunit 1 gene. The pathogenesis of the remaining tumors, however, is still not fully comprehended. Surgery is the first-line therapy for these tumors, and first-generation somatostatin receptor ligands (fg-SRL) are the most prescribed medications in patients who are not cured by surgery. MicroRNAs are small, non-coding RNAs that control the translation of many mRNAs, and are involved in the post-transcriptional regulation of gene expression. Differentially expressed miRNAs can explain differences in the pathogenesis of acromegaly and tumor resistance. In this review, we focus on the most validated miRNAs, which are mainly involved in acromegaly's tumorigenesis and fg-SRL resistance, as well as in circulating miRNAs in acromegaly.


Assuntos
Acromegalia , Adenoma , Hormônio do Crescimento Humano , MicroRNAs , Acromegalia/genética , Adenoma/metabolismo , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/genética , MicroRNAs/uso terapêutico , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/uso terapêutico
7.
J Comp Neurol ; 530(17): 2977-2993, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35844047

RESUMO

The olfactory placode (OP) of vertebrates generates several classes of migrating cells, including hypothalamic gonadotropin-releasing hormone (GnRH)-producing neurons, which play essential roles in the reproduction system. Previous studies using OP cell labeling have demonstrated that OP-derived non-GnRH cells enter the developing forebrain; however, their final fates and phenotypes are less well understood. In chick embryos, a subpopulation of migratory cells from the OP that is distinct from GnRH neurons transiently expresses somatostatin (SS). We postulated that these cells are destined to develop into brain neurons. In this study, we examined the expression pattern of SS mRNA in the olfactory-forebrain region during development, as well as the destination of OP-derived migratory cells, including SS mRNA-expressing cells. Utilizing the Tol2 genomic integration system to induce long-term fluorescent protein expression in OP cells, we found that OP-derived migratory cells labeled at embryonic day (E) 3 resided in the olfactory nerve and medial forebrain at E17-19. A subpopulation of green fluorescent protein (GFP)-labeled GnRH neurons that remained in the olfactory nerve was considered to comprise terminal nerve neurons. In the forebrain, GFP-labeled cells showed a distribution pattern similar to that of GnRH neurons. A large proportion of GFP-labeled cells expressed the mature neuronal marker NeuN. Among the GFP-labeled cells, the percentage of GnRH neurons was low, while the remaining GnRH-negative neurons either expressed SS mRNA, neuropeptide Y, or calbindin D-28k or did not express any of them. These results indicate that a diverse population of OP-derived neuronal cells, other than GnRH neurons, integrates into the chick medial forebrain.


Assuntos
Hormônio Liberador de Gonadotropina , Neuropeptídeo Y , Animais , Calbindinas/metabolismo , Movimento Celular/fisiologia , Embrião de Galinha , Galinhas/metabolismo , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Prosencéfalo/metabolismo , RNA Mensageiro/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
8.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35383850

RESUMO

Somatostatin and its related peptides (SSRPs) form an important family of hormones with diverse physiological roles. The ubiquitous presence of SSRPs in vertebrates and several invertebrate deuterostomes suggests an ancient origin of the SSRP signaling system. However, the existence of SSRP genes outside of deuterostomes has not been established, and the evolutionary history of this signaling system remains poorly understood. Our recent discovery of SSRP-like toxins (consomatins) in venomous marine cone snails (Conus) suggested the presence of a related signaling system in mollusks and potentially other protostomes. Here, we identify the molluscan SSRP-like signaling gene that gave rise to the consomatin family. Following recruitment into venom, consomatin genes experienced strong positive selection and repeated gene duplications resulting in the formation of a hyperdiverse family of venom peptides. Intriguingly, the largest number of consomatins was found in worm-hunting species (>400 sequences), indicating a homologous system in annelids, another large protostome phylum. Consistent with this, comprehensive sequence mining enabled the identification of SSRP-like sequences (and their corresponding orphan receptor) in annelids and several other protostome phyla. These results established the existence of SSRP-like peptides in many major branches of bilaterians and challenge the prevailing hypothesis that deuterostome SSRPs and protostome allatostatin-C are orthologous peptide families. Finally, having a large set of predator-prey SSRP sequences available, we show that although the cone snail's signaling SSRP-like genes are under purifying selection, the venom consomatin genes experience rapid directional selection to target receptors in a changing mix of prey.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Conotoxinas/genética , Caramujo Conus/genética , Neuropeptídeos , Peptídeos/genética , Somatostatina/genética , Peçonhas
9.
Dis Markers ; 2022: 4570290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242243

RESUMO

BACKGROUND: DNA methylation is an important epigenetic modification in tumorigenesis, and similar epigenetic regulation mechanisms have been found in the gastrointestinal tract (GIT) cancers. Somatostatin (SST) has been confirmed to be expressed throughout the GIT. This study aimed to simultaneously explore the relationships between the SST methylation and the risks of three GIT cancers (esophageal cancer (EC), gastric cancer (GC), and colorectal cancer (CRC)) and to evaluate its diagnostic value. METHODS: Differentially methylated regions (DMRs) of the SST gene, including TSS200, 1stExon, and the gene body, were identified in GIT cancers by The Cancer Genome Atlas (TCGA) database analysis. Further analyses were conducted in tissue samples of EC (n = 50), GC (n = 99), and CRC (n = 80). The SST methylation was detected by bisulfite-sequencing PCR (BSP), and the SST expression was detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS: In GIT cancers, DMR-related CpG islands were mainly located in the 1stExon. The methylation status of the SST 1stExon in the tumor tissues was significantly higher than that in the adjacent noncancerous tissues, and the methylation rates of the specific CpG sites were correlated with clinical phenotypes. The average methylation rate (AMR) of the SST 1stExon was negatively correlated with the SST gene expression in GC and CRC (both P < 0.001). For the diagnosis of GIT cancers, the combined detection of methylation at CpG sites +18 and +129 showed the highest area under the curve (AUC 0.698), with a sensitivity of 59.3% and a specificity of 72.8%. CONCLUSIONS: The site-specific hypermethylation of the SST 1stExon increases the risk of GIT cancers and might be a potential predictive marker for pan-GIT cancers.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Epigênese Genética , Neoplasias Gastrointestinais/genética , Medição de Risco , Somatostatina/genética , Ilhas de CpG/genética , Neoplasias Esofágicas/genética , Feminino , Humanos , Masculino , Análise de Sequência de DNA , Neoplasias Gástricas/genética , Transcriptoma
10.
J Reprod Dev ; 68(3): 190-197, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35249910

RESUMO

Reproductive function is suppressed during lactation owing to the suckling-induced suppression of the kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and subsequent suppression of luteinizing hormone (LH) release. Our previous study revealed that somatostatin (SST) neurons mediate suckling-induced suppression of LH release via SST receptor 2 (SSTR2) in ovariectomized lactating rats during early lactation. This study examined whether central SST-SSTR2 signaling mediates the inhibition of ARC Kiss1 expression and LH release in lactating rats during late lactation and whether the inhibition of glutamatergic neurons, stimulators of LH release, is involved in the suppression of LH release mediated by central SST-SSTR2 signaling in lactating rats. A central injection of the SSTR2 antagonist CYN154806 (CYN) significantly increased ARC Kiss1 expression in lactating rats on day 16 of lactation. Dual in situ hybridization revealed that few ARC Kiss1-positive cells co-expressed Sstr2, and some of the ARC Slc17a6 (a glutamatergic neuronal marker)-positive cells co-expressed Sstr2. Furthermore, almost all ARC Kiss1-positive cells co-expressed Grin1, a subunit of N-methyl-D-aspartate (NMDA) receptors. The numbers of Slc17a6/Sstr2 double-labeled and Slc17a6 single-labeled cells were significantly lower in lactating dams than in non-lactating rats whose pups had been removed after parturition. A central injection of an NMDA antagonist reversed the CYN-induced increase in LH release in lactating rats. Overall, these results suggest that central SST-SSTR2 signaling, at least partly, mediates the suppression of ARC Kiss1 expression and LH release by inhibiting ARC glutamatergic interneurons in lactating rats.


Assuntos
Interneurônios , Kisspeptinas , Lactação , Hormônio Luteinizante , Receptores de Somatostatina , Somatostatina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Interneurônios/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Lactação/metabolismo , Hormônio Luteinizante/metabolismo , N-Metilaspartato/metabolismo , Oligopeptídeos/farmacologia , Ratos , Receptores de Somatostatina/antagonistas & inibidores , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
11.
Int J Cancer ; 150(3): 440-449, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558659

RESUMO

Methylation of host-cell deoxyribonucleic acid (DNA) has been proposed as a promising biomarker for triage of high-risk (hr) human papillomavirus (HPV) positive women at screening. Our study aims to validate recently identified host-cell DNA methylation markers for triage in an hrHPV-positive cohort derived from primary HPV-based cervical screening in The Netherlands. Methylation markers ASCL1, LHX8, ST6GALNAC5, GHSR, ZIC1 and SST were evaluated relative to the ACTB reference gene by multiplex quantitative methylation-specific PCR (qMSP) in clinician-collected cervical samples (n = 715) from hrHPV-positive women (age 29-60 years), who were enrolled in the Dutch IMPROVE screening trial (NTR5078). Primary clinical end-point was cervical intraepithelial neoplasia grade 3 (CIN3) or cancer (CIN3+). The single-marker and bi-marker methylation classifiers developed for CIN3 detection in a previous series of hrHPV-positive clinician-collected cervical samples were applied. The diagnostic accuracy was visualised using receiver operating characteristic (ROC) curves and assessed through area under the ROC curve (AUC). The performance of the methylation markers to detect CIN3+ was determined using the predefined threshold calibrated at 70% clinical specificity. Individual methylation makers showed good performance for CIN3+ detection, with highest AUC for ASCL1 (0.844) and LHX8 (0.830). Combined as a bi-marker panel with predefined threshold, ASCL1/LHX8 yielded a CIN3+ sensitivity of 76.9% (70/91; 95% CI 68.3-85.6%) at a specificity of 74.5% (465/624; 95% CI 71.1-77.9%). In conclusion, our study shows that the individual host-cell DNA methylation classifiers and the bi-marker panel ASCL1/LHX8 have clinical utility for the detection of CIN3+ in hrHPV-positive women invited for routine screening.


Assuntos
Metilação de DNA , Papillomaviridae/isolamento & purificação , Triagem , Displasia do Colo do Útero/genética , Neoplasias do Colo do Útero/genética , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Coortes , Feminino , Humanos , Proteínas com Homeodomínio LIM/genética , Pessoa de Meia-Idade , Receptores de Grelina/genética , Sialiltransferases/genética , Somatostatina/genética , Fatores de Transcrição/genética , Neoplasias do Colo do Útero/virologia , Displasia do Colo do Útero/virologia
12.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599984

RESUMO

Gaba-ergic neurons are a diverse cell class with extensive influence over cortical processing, but their role in experience-dependent plasticity is not completely understood. Here we addressed the role of cortical somatostatin- (SOM-INs) and vasoactive intestinal polypeptide- (VIP-INs) containing interneurons in a Pavlovian conditioning where stimulation of the vibrissae is used as a conditioned stimulus and tail shock as unconditioned one. This procedure induces a plastic change observed as an enlargement of the cortical functional representation of vibrissae activated during conditioning. Using layer-targeted, cell-selective DREADD transductions, we examined the involvement of SOM-INs and VIP-INs activity in learning-related plastic changes. Under optical recordings, we injected DREADD-expressing vectors into layer IV (L4) barrels or layer II/III (L2/3) areas corresponding to the activated vibrissae. The activity of the interneurons was modulated during all conditioning sessions, and functional 2-deoxyglucose (2DG) maps were obtained 24 h after the last session. In mice with L4 but not L2/3 SOM-INs suppressed during conditioning, the plastic change of whisker representation was absent. The behavioral effect of conditioning was disturbed. Both L4 SOM-INs excitation and L2/3 VIP-INs inhibition during conditioning did not affect the plasticity or the conditioned response. We found the activity of L4 SOM-INs is indispensable in the formation of learning-induced plastic change. We propose that L4 SOM-INs may provide disinhibition by blocking L4 parvalbumin interneurons, allowing a flow of information into upper cortical layers during learning.


Assuntos
Interneurônios/fisiologia , Aprendizagem , Inibição Neural , Plasticidade Neuronal , Córtex Somatossensorial/fisiologia , Animais , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Camundongos , Córtex Somatossensorial/citologia , Somatostatina/genética , Somatostatina/metabolismo , Vibrissas/inervação , Vibrissas/fisiologia
13.
Cell Rep ; 37(3): 109837, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686328

RESUMO

The selection of goal-directed behaviors is supported by neural circuits located within the frontal cortex. Frontal cortical afferents arise from multiple brain areas, yet the cell-type-specific targeting of these inputs is unclear. Here, we use monosynaptic retrograde rabies mapping to examine the distribution of afferent neurons targeting distinct classes of local inhibitory interneurons and excitatory projection neurons in mouse infralimbic frontal cortex. Interneurons expressing parvalbumin, somatostatin, or vasoactive intestinal peptide receive a large proportion of inputs from the hippocampus, while interneurons expressing neuron-derived neurotrophic factor receive a large proportion of inputs from thalamic regions. A similar dichotomy is present among the four different excitatory projection neurons. These results show a prominent bias among long-range hippocampal and thalamic afferent systems in their targeting to specific sets of frontal cortical neurons. Moreover, they suggest the presence of two distinct local microcircuits that control how different inputs govern frontal cortical information processing.


Assuntos
Lobo Frontal/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Comportamento Animal , Lobo Frontal/citologia , Lobo Frontal/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Inibição Neural , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Parvalbuminas/genética , Parvalbuminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Sinapses/metabolismo , Tálamo/citologia , Tálamo/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
14.
Epigenomics ; 13(15): 1205-1219, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34318683

RESUMO

Aim: Our study aimed at investigating how LINC01133 functions in gastric cancer (GC) progression. Materials & methods: Gain-of-function and loss-of-function approaches were applied to analyze the effects of LINC01133, microRNA-576-5p (miR-576-5p) and somatostatin (SST) on the biological behaviors of GC cells and in tumor-bearing nude mice. Results: GC tissues and cells showed low expression of LINC01133, and LINC01133 overexpression decreased malignant phenotypes of GC cells. Moreover, LINC01133 upregulated SST through binding to miR-576-5p. Overexpressing miR-576-5p or suppressing SST reversed the functions of LINC01133 in biological potentials of GC cells and tumor growth. Conclusion: LINC01133 overexpression may inhibit GC development by downregulation of miR-576-5p and upregulation of SST, which suggests new therapeutic targets for GC.


Assuntos
MicroRNAs/genética , Interferência de RNA , RNA Longo não Codificante/genética , Somatostatina/biossíntese , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Somatostatina/genética , Neoplasias Gástricas/patologia , Transcriptoma
15.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070785

RESUMO

Somatostatin is widely diffused in the central nervous system, where it participates to control the efficiency of synaptic transmission. This peptide mainly colocalizes with GABA, in inhibitory, GABA-containing interneurons from which it is actively released in a Ca2+ dependent manner upon application of depolarizing stimuli. Once released in the synaptic cleft, somatostatin acts locally, or it diffuses in the extracellular space through "volume diffusion", a mechanism(s) of distribution which mainly operates in the cerebrospinal fluid and that assures the progression of neuronal signalling from signal-secreting sender structures towards receptor-expressing targeted neurons located extrasynaptically, in a non-synaptic, inter-neuronal form of communication. Somatostatin controls the efficiency of central glutamate transmission by either modulating presynaptically the glutamate exocytosis or by metamodulating the activity of glutamate receptors colocalized and functionally coupled with somatostatin receptors in selected subpopulations of nerve terminals. Deciphering the role of somatostatin in the mechanisms of "volume diffusion" and in the "receptor-receptor interaction" unveils new perspectives in the central role of this fine tuner of synaptic strength, paving the road to new therapeutic approaches for the cure of central disorders.


Assuntos
Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Neurônios/metabolismo , Receptores de Somatostatina/genética , Somatostatina/genética , Sinapses/metabolismo , Animais , Cálcio/metabolismo , Sistema Nervoso Central/citologia , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Humanos , Interneurônios/citologia , Neurônios/citologia , Potássio/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Transmissão Sináptica
16.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799501

RESUMO

The growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is involved in metabolic control. Malnutrition reduces IGF-I and modifies the thermogenic capacity of brown adipose tissue (BAT). Leptin has effects on the GH/IGF-I axis and the function of BAT, but its interaction with IGF-I and the mechanisms involved in the regulation of thermogenesis remains unknown. We studied the GH/IGF-I axis and activation of IGF-I-related signaling and metabolism related to BAT thermogenesis in chronic central leptin infused (L), pair-fed (PF), and control rats. Hypothalamic somatostatin mRNA levels were increased in PF and decreased in L, while pituitary GH mRNA was reduced in PF. Serum GH and IGF-I concentrations were decreased only in PF. In BAT, the association between suppressor of cytokine signaling 3 and the IGF-I receptor was reduced, and phosphorylation of the IGF-I receptor increased in the L group. Phosphorylation of Akt and cyclic AMP response element binding protein and glucose transporter 4 mRNA levels were increased in L and mRNA levels of uncoupling protein-1 (UCP-1) and enzymes involved in lipid anabolism reduced in PF. These results suggest that modifications in UCP-1 in BAT and changes in the GH/IGF-I axis induced by negative energy balance are dependent upon leptin levels.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética , Leptina/farmacologia , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Hormônio do Crescimento/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
17.
Medicine (Baltimore) ; 100(4): e24435, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33530245

RESUMO

ABSTRACT: Obstructive sleep apnea (OSA) is a common chronic disease and increases the risk of cardiovascular disease, metabolic and neuropsychiatric disorders, resulting in a considerable socioeconomic burden. This study aimed to identify potential key genes influence the mechanisms and consequences of OSA.Gene expression profiles related to OSA were obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in subcutaneous adipose tissues from OSA compared with normal tissues were screened using R software, followed by gene ontology (GO) and pathway enrichment analyses. Subsequently, a protein-protein interaction (PPI) network for these DEGs was constructed by STRING, and key hub genes were extracted from the network with plugins in Cytoscape. The hub genes were further validated in another GEO dataset and assessed by receiver operating characteristic (ROC) analysis and Pearson correlation analysis.There were 373 DEGs in OSA samples in relative to normal controls, which were mainly associated with olfactory receptor activity and olfactory transduction. Upon analyses of the PPI network, GDNF, SLC2A2, PRL, and SST were identified as key hub genes. Decreased expression of the hub genes was association with OSA occurrence, and exhibited good performance in distinguishing OSA from normal samples based on ROC analysis. Besides, the Pearson method revealed a strong correlation between hub genes, which indicates that they may act in synergy, contributing to OSA and related disorders.This bioinformatics research identified 4 hub genes, including GDNF, SLC2A2, PRL, and SST which may be new potential biomarkers for OSA and related disorders.


Assuntos
Programas de Rastreamento/métodos , Análise em Microsséries/métodos , Apneia Obstrutiva do Sono/genética , Biomarcadores/análise , Biologia Computacional , Bases de Dados Genéticas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Transportador de Glucose Tipo 2/genética , Humanos , Prolactina/genética , Mapas de Interação de Proteínas , Curva ROC , Somatostatina/genética , Transcriptoma
18.
Surgery ; 169(1): 155-161, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611516

RESUMO

BACKGROUND: Patients with pancreatic neuroendocrine tumors often present with metastases, which reduce survival. Molecular features associated with pancreatic neuroendocrine tumor tumorigenesis have been reported, but mechanisms of metastasis remain incompletely understood. METHODS: RNA sequencing was performed on primary and metastatic pancreatic neuroendocrine tumors from 43 patients. Differentially expressed genes were identified, and quantitative polymerase chain reaction used to confirm expression differences. BON cells were transfected with short interfering RNAs and short hairpin RNAs to create knockdowns. Expression changes were confirmed by quantitative polymerase chain reaction, cell viability assessed, and protein levels evaluated by Western blot and immunofluorescence. RESULTS: Nodal and hepatic metastases had decreased expression of somatostatin compared with primary tumors (P = .003). Quantitative polymerase chain reaction in a validation cohort confirmed 5.3-fold lower somatostatin expression in hepatic metastases (P = .043) with no difference in somatostatin receptor, synaptophysin, or chromogranin A expression. Somatostatin knockdown in BON cells increased cell metabolic activity, viability, and growth. Somatostatin-knockdown cells had significantly higher levels of phosphorylated Akt protein and higher mTOR compared with controls. CONCLUSION: Pancreatic neuroendocrine tumor metastases have lower expression of somatostatin than primary tumors, and somatostatin knockdown increased growth in pancreatic neuroendocrine tumor cell lines. This was associated with increased activation of Akt, identifying this pathway as a potential mechanism by which loss of somatostatin expression promotes the metastatic phenotype.


Assuntos
Neoplasias Hepáticas/genética , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Somatostatina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/secundário , Tumores Neuroendócrinos/cirurgia , Pâncreas/patologia , Pâncreas/cirurgia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , RNA-Seq , Transdução de Sinais/genética
19.
Commun Biol ; 3(1): 754, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303963

RESUMO

GABA released from heterogeneous types of interneurons acts in a complex spatio-temporal manner on postsynaptic targets in the networks. In addition to GABA, a large fraction of GABAergic cells also express neuromodulator peptides. Somatostatin (SOM) containing interneurons, in particular, have been recognized as key players in several brain circuits, however, the action of SOM and its downstream network effects remain largely unknown. Here, we used optogenetics, electrophysiologic, anatomical and behavioral experiments to reveal that the dendrite-targeting, SOM+ GABAergic interneurons demonstrate a unique layer-specific action in the medial entorhinal cortex (MEC) both in terms of GABAergic and SOM-related properties. We show that GABAergic and somatostatinergic neurotransmission originating from SOM+ local interneurons preferentially inhibit layerIII-V pyramidal cells, known to be involved in memory formation. We propose that this dendritic GABA-SOM dual inhibitory network motif within the MEC serves to selectively modulate working-memory formation without affecting the retrieval of already learned spatial navigation tasks.


Assuntos
Córtex Entorrinal/metabolismo , Neurônios GABAérgicos/metabolismo , Expressão Gênica , Interneurônios/metabolismo , Células Piramidais/metabolismo , Somatostatina/genética , Animais , Biomarcadores , Comunicação Celular , Fenômenos Eletrofisiológicos , Feminino , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Knockout , Vias Neurais , Neurotransmissores/biossíntese , Peptídeos/metabolismo , Somatostatina/metabolismo , Transmissão Sináptica
20.
Open Biol ; 10(9): 200172, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898470

RESUMO

Somatostatin (SS) and allatostatin-C (ASTC) are structurally and evolutionarily related neuropeptides that act as inhibitory regulators of physiological processes in mammals and insects, respectively. Here, we report the first molecular and functional characterization of SS/ASTC-type signalling in a deuterostome invertebrate-the starfish Asterias rubens (phylum Echinodermata). Two SS/ASTC-type precursors were identified in A. rubens (ArSSP1 and ArSSP2) and the structures of neuropeptides derived from these proteins (ArSS1 and ArSS2) were analysed using mass spectrometry. Pharmacological characterization of three cloned A. rubens SS/ASTC-type receptors (ArSSR1-3) revealed that ArSS2, but not ArSS1, acts as a ligand for all three receptors. Analysis of ArSS2 expression in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed stained cells/fibres in the central nervous system, the digestive system (e.g. cardiac stomach) and the body wall and its appendages (e.g. tube feet). Furthermore, in vitro pharmacological tests revealed that ArSS2 causes dose-dependent relaxation of tube foot and cardiac stomach preparations, while injection of ArSS2 in vivo causes partial eversion of the cardiac stomach. Our findings provide new insights into the molecular evolution of SS/ASTC-type signalling in the animal kingdom and reveal an ancient role of SS-type neuropeptides as inhibitory regulators of muscle contractility.


Assuntos
Equinodermos/metabolismo , Transdução de Sinais , Somatostatina/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Equinodermos/classificação , Equinodermos/genética , Evolução Molecular , Expressão Gênica , Ordem dos Genes , Imuno-Histoquímica , Hibridização In Situ , Relaxamento Muscular/efeitos dos fármacos , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Filogenia , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Somatostatina/química , Somatostatina/genética , Estrelas-do-Mar/classificação , Estrelas-do-Mar/genética , Estrelas-do-Mar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA