Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.631
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Science ; 383(6689): 1374-1379, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513010

RESUMO

Cells connect with their environment through surface receptors and use physical tension in receptor-ligand bonds for various cellular processes. Single-molecule techniques have revealed bond strength by measuring "rupture force," but it has long been recognized that rupture force is dependent on loading rate-how quickly force is ramped up. Thus, the physiological loading rate needs to be measured to reveal the mechanical strength of individual bonds in their functional context. We have developed an overstretching tension sensor (OTS) to allow more accurate force measurement in physiological conditions with single-molecule detection sensitivity even in mechanically active regions. We used serially connected OTSs to show that the integrin loading rate ranged from 0.5 to 4 piconewtons per second and was about three times higher in leukocytes than in epithelial cells.


Assuntos
Técnicas Biossensoriais , Adesão Celular , Integrinas , Mecanotransdução Celular , Adesão Celular/fisiologia , Integrinas/química , Integrinas/metabolismo , Imagem Individual de Molécula , Humanos , Linhagem Celular Tumoral , Resistência à Tração , Sondas de Oligonucleotídeos , Hibridização de Ácido Nucleico
2.
Talanta ; 273: 125856, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442565

RESUMO

Simultaneous detection of multiple tumor biomarkers with a simple and low-cost assay is crucial for early cancer detection and diagnosis. Herein, we presented a low-cost and simple assay for multiplexed detection of tumor biomarkers using a spatially separated electrodes strategy. The sensor is fabricated based on a metal-free thiol-yne click reaction, which is mediated by visible light, on commercially available indium tin oxide (ITO) electrodes. Four biomarkers, including p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA, were used as model analytes, and the corresponding oligonucleotide probes were modified on the desired electrode units sequentially with 530 nm irradiation light in the presence of photosensitizer Eosin Y. By this visible light-mediated coupling reaction, oligonucleotide probe densities of up to 9.2 ± 0.7 × 1010 molecules/cm2 were readily obtained on the ITO electrode surface. The proposed multiplexed E-NA sensor could detect four different nucleic acid targets concurrently without crosstalk among adjacent electrodes and was also successfully applied for detecting targets in a 20% fetal calf serum sample. The detection limits for p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA were 0.72 nM, 0.97 nM, 2.15 nM, and 1.73 nM, respectively. The developed approach not only has a great potential for developing cost-effective biosensors on affordable substrates for nucleic acid target detection, but also be easily extended to detect other targets by modifying the specific oligonucleotide probes anchored on the electrode.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Ácidos Nucleicos , Sondas de Oligonucleotídeos , Compostos de Sulfidrila , Proteína Supressora de Tumor p53/genética , DNA , Eletrodos , Ouro , Biomarcadores Tumorais , Luz , Técnicas Eletroquímicas
3.
Biosens Bioelectron ; 247: 115920, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091896

RESUMO

Recently, microRNA (miRNA) detection in blood has attracted attention as a new early detection technology for cancer. The extraction of target miRNA is a necessary preliminary step for detection; however, currently, most extraction methods extract all RNA from the blood, which limits the detection selectivity. Therefore, a method for the selective extraction and detection of target miRNA from blood is very important. In this study, we utilized photocrosslinkable artificial nucleic acids and the hybridization chain reaction (HCR) in an attempt to improve upon the current standard method RT-qPCR, which is hampered by problems with primer design and enzymatic amplification. By introducing photocrosslinkable artificial nucleic acids to oligonucleotide probes modified with magnetic particles with a sequence complementary to that of the target miRNA and irradiating them with light, covalent bonds were formed between the target miRNA and the oligonucleotide probes. These tight covalent bonds enabled the capture of miRNA in blood, and intensive washing ensured that only the target miRNA were extracted. After extraction, two types of DNA (H1 and H2) modified with fluorescent dyes were added and the fluorescence signals were amplified by the HCR in the presence of the target miRNA bound to the photocrosslinkable artificial nucleic acids, allowing for isothermal and enzyme-free miRNA detection. The novel method is suitable for selective miRNA detection in real blood samples. Because the reaction proceeds isothermally and no specialized equipment is used for washing, this detection technology is simple and selective and suitable for application to point-of-care technology using microfluidic devices.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Ácidos Nucleicos , Sondas de Oligonucleotídeos , Técnicas Biossensoriais/métodos , Hibridização de Ácido Nucleico/métodos , MicroRNAs/genética , Fenômenos Magnéticos
4.
Nat Chem ; 16(2): 229-238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884668

RESUMO

Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe's binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous cis and trans mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods.


Assuntos
Ácidos Nucleicos , Hibridização de Ácido Nucleico/métodos , DNA/genética , Sondas de Oligonucleotídeos , Mutação
5.
Acc Chem Res ; 56(19): 2726-2739, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37733063

RESUMO

The function of cellular RNA is modulated by a host of post-transcriptional chemical modifications installed by dedicated RNA-modifying enzymes. RNA modifications are widespread in biology, occurring in all kingdoms of life and in all classes of RNA molecules. They regulate RNA structure, folding, and protein-RNA interactions, and have important roles in fundamental gene expression processes involving mRNA, tRNA, rRNA, and other types of RNA species. Our understanding of RNA modifications has advanced considerably; however, there are still many outstanding questions regarding the distribution of modifications across all RNA transcripts and their biological function. One of the major challenges in the study of RNA modifications is the lack of sequencing methods for the transcriptome-wide mapping of different RNA-modification structures. Furthermore, we lack general strategies to characterize RNA-modifying enzymes and RNA-modification reader proteins. Therefore, there is a need for new approaches to enable integrated studies of RNA-modification chemistry and biology.In this Account, we describe our development and application of chemoproteomic strategies for the study of RNA-modification-associated proteins. We present two orthogonal methods based on nucleoside and oligonucleotide chemical probes: 1) RNA-mediated activity-based protein profiling (RNABPP), a metabolic labeling strategy based on reactive modified nucleoside probes to profile RNA-modifying enzymes in cells and 2) photo-cross-linkable diazirine-containing synthetic oligonucleotide probes for identifying RNA-modification reader proteins.We use RNABPP with C5-modified cytidine and uridine nucleosides to capture diverse RNA-pyrimidine-modifying enzymes including methyltransferases, dihydrouridine synthases, and RNA dioxygenase enzymes. Metabolic labeling facilitates the mechanism-based cross-linking of RNA-modifying enzymes with their native RNA substrates in cells. Covalent RNA-protein complexes are then isolated by denaturing oligo(dT) pulldown, and cross-linked proteins are identified by quantitative proteomics. Once suitable modified nucleosides have been identified as mechanism-based proteomic probes, they can be further deployed in transcriptome-wide sequencing experiments to profile the substrates of RNA-modifying enzymes at nucleotide resolution. Using 5-fluorouridine-mediated RNA-protein cross-linking and sequencing, we analyzed the substrates of human dihydrouridine synthase DUS3L. 5-Ethynylcytidine-mediated cross-linking enabled the investigation of ALKBH1 substrates. We also characterized the functions of these RNA-modifying enzymes in human cells by using genetic knockouts and protein translation reporters.We profiled RNA readers for N6-methyladenosine (m6A) and N1-methyladenosine (m1A) using a comparative proteomic workflow based on diazirine-containing modified oligonucleotide probes. Our approach enables quantitative proteome-wide analysis of the preference of RNA-binding proteins for modified nucleotides across a range of affinities. Interestingly, we found that YTH-domain proteins YTHDF1/2 can bind to both m6A and m1A to mediate transcript destabilization. Furthermore, m6A also inhibits stress granule proteins from binding to RNA.Taken together, we demonstrate the application of chemical probing strategies, together with proteomic and transcriptomic workflows, to reveal new insights into the biological roles of RNA modifications and their associated proteins.


Assuntos
Adenosina , Nucleosídeos , Humanos , Adenosina/química , Adenosina/metabolismo , Proteômica , Diazometano , Sondas de Oligonucleotídeos , RNA/química , Homólogo AlkB 1 da Histona H2a Dioxigenase
6.
ACS Nano ; 17(17): 16656-16667, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638659

RESUMO

Specific detection of tumor-derived EVs (tEVs) in plasma is complicated by nontumor EVs and non-EV particles. To accurately identify tEVs and profile their surface protein expression at single tEV resolution directly with clinical plasma is still an unmet need. Here, we present a Dynamic Immunoassay for Single tEV surface protein Profiling (DISEP), a kinetic assay based on surface plasmon resonance microscopy (SPRM) for specific single tEV profiling. DISEP adopts a pair of low-affinity oligonucleotide probes to respectively label EV surface proteins and functionalize an SPRM biosensor interface. tEVs labeled with the oligonucleotide probes possess distinctive binding kinetics from nonspecific particles in plasma, which permits accurate digital plasmonic counting of single EVs. We demonstrate DISEP for recognizing target EVs among 350-fold background plasma particles with high sensitivity (4677 EVs per µL). Clinical plasma samples were analyzed to discriminate between pancreatic cancer patients (n = 40) and healthy donors (n = 45). With a panel of biomarker signatures (EpCAM, HER2, and GPC1), DISEP only requires 10 µL primary sample from each donor to classify tumor patients with an area under the curve of 0.98. DISEP provides a highly specific EV detection and surface protein profiling strategy for early cancer diagnosis.


Assuntos
Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Sondas de Oligonucleotídeos , Neoplasias Pancreáticas/diagnóstico por imagem , Microscopia , Proteínas de Membrana
7.
Anal Bioanal Chem ; 415(14): 2763-2774, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37103561

RESUMO

A novel tri-functional probe HEX-OND was developed for detecting Pb(II), cysteine (Cys), and K(I) by fluorescence quenching, recovery, and amplification strategies respectively, based on Pb(II)-induced chair-type G-quadruplex (CGQ) and K(I)-induced parallel G-quadruplex (PGQ). The thermodynamic mechanism was illustrated as that HEX-OND transformed into CGQ by associating equimolar Pb(II) (K1 = 1.10 ± 0.25 × 106 L/mol), forcing (G)2 spontaneously approaching and static-quenching HEX (5'-hexachlorofluorescein phosphoramidite) in the photo-induced electron transfer (PET) way by the van der Waals force and hydrogen bond (K2 = 5.14 ± 1.65 × 107 L/mol); the additional Cys recovered fluorescence in the molecular ratio of 2:1 via Pb(II)-precipitation induced CGQ destruction (K3 = 3.03 ± 0.77 × 109 L/mol); the equimolar K(I) induced HEX-OND transforming into PGQ (K4 = 3.53 ± 0.30 × 104 L/mol) and specifically associating with the equimolar N-methyl mesoporphyrin IX (NMM) by hydrophobic force (K5 = 3.48 ± 1.08 × 105 L/mol), leading to the fluorescence enhancement. Moreover, the practicability results showed that the detection limits reached a nanomolar level for Pb(II) and Cys and micromolar for K(I), with mere disturbances for 6, 10, and 5 kinds of other substances, respectively; no significant deviations of the real sample detection results were found between the well-understood methods with ours in detecting Pb(II) and Cys, and K(I) could be recognized and quantified even in the presence of Na(I) with 5000 and 600 fold respectively. The results demonstrated the triple-function, sensitivity, selectivity, and tremendous application feasibility of the current probe in sensing Pb(II), Cys, and K(I).


Assuntos
Cisteína , Quadruplex G , Sondas de Oligonucleotídeos/química , Chumbo , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química
8.
Methods Mol Biol ; 2576: 133-143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152182

RESUMO

Dysregulation of peroxisome proliferator-activated receptor (PPAR)-γ has been described in a plethora of pathological conditions, such as diabetes, obesity, inflammatory-related diseases, and cancer. Therefore, identifying novel drugs that are able to restore PPAR-γ activity is a current challenge, which is however slowed down by the lack of a rapid and reproducible activity assay. To date, only a few methods are able to characterize PPAR-γ activity and most of them are expensive, time-consuming, and not always quantitative.Herein, we presented a sensitive multi-well colorimetric assay, termed DNA-Protein-Interaction enzyme-linked immunosorbent assay (DPI-ELISA). This method is based on the ELISA principle, except that it allows to detect only activated PPAR-γ because, unlike classical ELISA, PPAR-γ is not captured by an antibody but by a double-stranded oligonucleotide probe containing its peroxisome proliferator response elements (PPRE) consensus sequence. Thus, DPI-ELISA represents a useful assay for PPAR-γ studies, as well as for the identification of novel PPAR-γ ligands for the development of innovative therapeutic approaches to human diseases where PPAR-γ signaling is dysregulated.


Assuntos
PPAR gama , Tiazolidinedionas , DNA , Ensaio de Imunoadsorção Enzimática , Humanos , Sondas de Oligonucleotídeos , PPAR gama/metabolismo , Proliferadores de Peroxissomos
9.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769313

RESUMO

The combination of recombinase polymerase amplification (RPA) and lateral flow test (LFT) is a strong diagnostic tool for rapid pathogen detection in resource-limited conditions. Here, we compared two methods generating labeled RPA amplicons following their detection by LFT: (1) the basic one with primers modified with different tags at the terminals and (2) the nuclease-dependent one with the primers and labeled oligonucleotide probe for nuclease digestion that was recommended for the high specificity of the assay. Using both methods, we developed an RPA-LFT assay for the detection of worldwide distributed phytopathogen-alfalfa mosaic virus (AMV). A forward primer modified with fluorescein and a reverse primer with biotin and fluorescein-labeled oligonucleotide probe were designed and verified by RPA. Both labeling approaches and their related assays were characterized using the in vitro-transcribed mRNA of AMV and reverse transcription reaction. The results demonstrated that the RPA-LFT assay based on primers-labeling detected 103 copies of RNA in reaction during 30 min and had a half-maximal binding concentration 22 times lower than probe-dependent RPA-LFT. The developed RPA-LFT was successfully applied for the detection of AMV-infected plants. The results can be the main reason for choosing simple labeling with primers for RPA-LFT for the detection of other pathogens.


Assuntos
Vírus do Mosaico da Alfafa/isolamento & purificação , Nicotiana/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Sondas de Oligonucleotídeos/química , Doenças das Plantas/virologia , Recombinases/metabolismo , Solanum tuberosum/virologia , Vírus do Mosaico da Alfafa/genética , Bioensaio , Recombinases/genética , Transcrição Reversa , Proteínas Virais/genética
10.
Methods Mol Biol ; 2324: 363-381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34165726

RESUMO

Presence of pseudogenes is a dreadful issue in next generation sequencing (NGS), because their contamination can interfere with the detection of variants in the genuine gene and generate false positive and false negative variants.In this chapter we focus on issues related to the application of NGS strategies for analysis of genes with pseudogenes in a clinical setting. The degree to which a pseudogene impacts the ability to accurately detect and map variants in its parent gene depends on the degree of similarity (homology) with the parent gene itself. Hereby, target enrichment and mapping strategies are crucial factors to avoid "contaminating" pseudogene sequences. For target enrichment, we describe advantages and disadvantages of PCR- and capture-based strategies. For mapping strategies, we discuss crucial parameters that need to be considered to accurately distinguish sequences of functional genes from pseudogenic sequences. Finally, we discuss some examples of genes associated with Mendelian disorders, for which interesting NGS approaches are described to avoid interference with pseudogene sequences.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Diagnóstico Molecular , Pseudogenes , Sequência de Bases , Análise de Dados , Eletroforese Capilar/métodos , Genes BRCA1 , Genes da Neurofibromatose 1 , Humanos , Mutação INDEL , Peptídeos e Proteínas de Sinalização Intercelular/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Sondas de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Canais de Cátion TRPP/genética
11.
Biotechnol Lett ; 43(5): 949-958, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33683511

RESUMO

OBJECTIVE: Chromovert® Technology is presented as a new cell engineering technology to detect and purify living cells based on gene expression. METHODS: The technology utilizes fluorogenic oligonucleotide signaling probes and flow cytometry to detect and isolate individual living cells expressing one or more transfected or endogenously-expressed genes. RESULTS: Results for production of cell lines expressing a diversity of ion channel and membrane proteins are presented, including heteromultimeric epithelial sodium channel (αßγ-ENaC), sodium voltage-gated ion channel 1.7 (NaV1.7-αß1ß2), four unique γ-aminobutyric acid A (GABAA) receptor ion channel subunit combinations α1ß3γ2s, α2ß3γ2s, α3ß3γ2s and α5ß3γ2s, cystic fibrosis conductance regulator (CFTR), CFTR-Δ508 and two G-protein coupled receptors (GPCRs) without reliance on leader sequences and/or chaperones. In addition, three novel plasmid-encoded sequences used to introduce 3' untranslated RNA sequence tags in mRNA expression products and differentially-detectable fluorogenic probes directed to each are described. The tags and corresponding fluorogenic signaling probes streamline the process by enabling the multiplexed detection and isolation of cells expressing one or more genes without the need for gene-specific probes. CONCLUSIONS: Chromovert technology is provided as a research tool for use to enrich and isolate cells engineered to express one or more desired genes.


Assuntos
Engenharia Celular/métodos , Citometria de Fluxo/métodos , Sondas de Oligonucleotídeos , Animais , Linhagem Celular , Fluorescência , Engenharia Genética , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/química , Sondas de Oligonucleotídeos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
12.
ACS Appl Mater Interfaces ; 13(2): 2145-2164, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33417432

RESUMO

Oligonucleotide-based probes offer the highest spatial resolution, force sensitivity, and molecular specificity for cellular tension sensing and have been developed to measure a variety of molecular forces mediated by individual receptors in T cells, platelets, fibroblasts, B-cells, and immortalized cancer cell lines. These fluorophore-oligonucleotide conjugate probes are designed with a stem-loop structure that engages cell receptors and reversibly unfolds due to mechanical strain. With the growth of recent work bridging molecular mechanobiology and biomaterials, there is a need for a detailed spectroscopic analysis of DNA tension probes that are used for cellular imaging. In this manuscript, we conducted an analysis of 19 DNA hairpin-based tension probe variants using molecular dynamics simulations, absorption spectroscopy, and fluorescence imaging (epifluorescence and fluorescence lifetime imaging microscopy). We find that tension probes are highly sensitive to their molecular design, including donor and acceptor proximity and pairing, DNA stem-loop structure, and conjugation chemistry. We demonstrate the impact of these design features using a supported lipid bilayer model of podosome-like adhesions. Finally, we discuss the requirements for tension imaging in various biophysical contexts and offer a series of experimental recommendations, thus providing a guide for the design and application of DNA hairpin-based molecular tension probes.


Assuntos
Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Sondas de Oligonucleotídeos/química , Animais , Fenômenos Biomecânicos , Adesão Celular , Transferência Ressonante de Energia de Fluorescência/métodos , Integrinas/análise , Mecanotransdução Celular , Camundongos , Microscopia de Fluorescência/métodos , Modelos Moleculares , Simulação de Dinâmica Molecular , Células NIH 3T3 , Imagem Óptica/métodos , Resistência à Tração
13.
Methods Mol Biol ; 2175: 65-77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32681484

RESUMO

During the last decade, genome sequence databases of many species have been more and more completed so that it has become possible to further develop a recently established technique of FISH (Fluorescence In Situ Hybridization) called COMBO-FISH (COMBinatorial Oligo FISH). In contrast to standard FISH techniques, COMBO-FISH makes use of a bioinformatic search in sequence databases for probe design, so that it can be done for any species so far sequenced. In the original approach, oligonucleotide stretches of typical lengths of 15-30 nucleotides were selected in such a way that they only co-localize at the given genome target. Typical probe sets of about 20-40 stretches were used to label about 50-250 kb specifically. The probes of different lengths can be composed of purines and pyrimidines, but were often restricted to homo-purine or homo-pyrimidine probe sets because of the experimental advantage of using a protocol omitting denaturation of the target strand and triple strand binding of the probes. This allows for a better conservation of the 3D folding and arrangement of the genome. With an improved, rigorous genome sequence database analysis and sequence search according to statistical frequency and uniqueness, a novel family of probes repetitively binding to characteristic genome features like SINEs (Short Interspersed Nuclear Elements, e.g., ALU elements), LINEs (Long Interspersed Nuclear Elements, e.g., L1), or centromeres has been developed. These probes can be synthesized commercially as DNA or PNA probes with high purity and labeled by fluorescent dye molecules. Here, new protocols are described for purine-pyrimidine probes omitting heat treatment for denaturation of the target so that oligonucleotide labeling can also be combined with immune-staining by specific antibodies. If the dyes linked to the oligonucleotide stretches undergo reversible photo-bleaching (laser-induced slow blinking), the labeled cell nuclei can be further subjected to super-resolution localization microscopy for complex chromatin architecture research.


Assuntos
Elementos Alu/genética , Técnicas de Química Combinatória/métodos , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/genética , Ácidos Nucleicos Peptídicos/genética , Linhagem Celular Tumoral , Cromatina/genética , Bases de Dados de Ácidos Nucleicos , Genoma , Humanos , Processamento de Imagem Assistida por Computador , Nanoestruturas/química , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos
14.
Plant J ; 103(6): 2039-2051, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32537783

RESUMO

Sugarcane (Saccharum spp.) is probably the crop with the most complex genome. Modern cultivars (2n = 100-120) are highly polyploids and aneuploids derived from interspecific hybridization between Saccharum officinarum (2n = 80) and Saccharum spontaneum (2n = 40-128). Chromosome-specific oligonucleotide probes were used in combination with genomic in situ hybridization to analyze the genome architecture of modern cultivars and representatives of their parental species. The results validated a basic chromosome number of x = 10 for S. officinarum. In S. spontaneum, rearrangements occurred from a basic chromosome of x = 10, probably in the Northern part of India, in two steps leading to x = 9 and then x = 8. Each step involved three chromosomes that were rearranged into two. Further polyploidization led to the wide geographical extension of clones with x = 8. We showed that the S. spontaneum contribution to modern cultivars originated from cytotypes with x = 8 and varied in proportion between cultivars (13-20%). Modern cultivars had mainly 12 copies for each of the first four basic chromosomes, and a more variable number for those basic chromosomes whose structure differs between the two parental species. One-four of these copies corresponded to entire S. spontaneum chromosomes or interspecific recombinant chromosomes. In addition, a few inter-chromosome translocations were revealed. The new information and cytogenetic tools described in this study substantially improve our understanding of the extreme level of complexity of modern sugarcane cultivar genomes.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Sondas de Oligonucleotídeos/genética , Saccharum/genética , Aneuploidia , Mapeamento Cromossômico , Hibridização in Situ Fluorescente , Poliploidia
15.
Br J Biomed Sci ; 77(3): 135-141, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32223721

RESUMO

BACKGROUND: MicroRNAs (miRNAs) regulate the translation of mRNA during gene expression and investigations have highlighted their importance in pathophysiology. qRT-PCR is currently the gold standard method for detecting changes in miRNA expression. However, when used on heterogeneous samples, it cannot identify individual cell types harbouring miRNAs. For this, in situ hybridisation (ISH) can be used. ISH methods using locked nucleic acid (LNA) probes give reliable results in formalin fixed paraffin-embedded (FFPE) samples. In this study their use has been directly compared with conventional oligonucleotide probes (COP) for ISH. METHODS: FFPE samples of colorectal adenocarcinoma, squamous carcinoma of lung and cases of invasive breast carcinoma were used to evaluate COP and LNA methods for the demonstration of miR-126 and miR-205. To demonstrate the utility of the COP method demonstration of miR-21 in 19 Gleason stage 7 prostate biopsy FFPE tissues was also undertaken. The demonstration of miR-21 by ISH in high and low expressing prostate cancer cell lines was also compared with qRT-PCR. RESULTS: Similar results were obtained using the COP and LNA ISH methods for the demonstration of miR-126 and miR-205. miR-21 was successfully demonstrated in the prostate cancer samples by COP ISH and expression levels of the miRNA demonstrated in the cell lines corresponded with qRT-PCR. CONCLUSION: This study has shown that simplification of ISH protocols by the use of COPs provides equivalent results to the use of LNA methods and it can be used to precisely identify cells in which miRNAs are expressed.


Assuntos
MicroRNAs/genética , Sondas de Oligonucleotídeos/genética , Oligonucleotídeos/genética , Linhagem Celular Tumoral , Formaldeído/química , Humanos , Hibridização In Situ/métodos , Neoplasias/genética , Células PC-3 , Parafina/química , Inclusão em Parafina/métodos
16.
Methods Mol Biol ; 2118: 251-268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32152985

RESUMO

Nanotechnology provides new tools for gene expression analysis that allow for sensitive and specific characterization of prognostic signatures related to cancer. Cancer is a complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus allows for a more accurate indication into the degree of cancerous activity than either locus alone. Metal nanoparticles have been widely used as labels for in vitro identification and quantification of target sequences.Here we describe the synthesis of nanoparticles with different noble metal compositions in an alloy format that are then functionalized with thiol-modified ssDNA (nanoprobes). We also show how such nanoprobes are used in a non-cross-linking colorimetric method for the direct detection and quantification of specific mRNA targets, without the need for enzymatic amplification or reverse-transcription steps. The different metals in the alloy provide for distinct absorption spectra due to their characteristic plasmon resonance peaks. The color multiplexing allows for simultaneous identification of different mRNA targets involved in cancer development. A comparison of the absorption spectra of the nanoprobe mixtures taken before and after induced aggregation of metal nanoparticles allows to both identify and quantify each mRNA target. We describe the use of gold and gold-silver alloy nanoprobes for the development of the non-cross-linking method to detect a specific BCR-ABL fusion gene (e.g., e1a2 and e14a2) mRNA target associated with chronic myeloid leukemia (CML) using 10 ng/µL of unamplified total human RNA. Additionally, we demonstrate the use of this approach for the direct diagnostics of CML. This simple methodology takes less than 50 min to complete after total RNA extraction with comparable specificity and sensitivity to the more commonly used methods.


Assuntos
DNA de Cadeia Simples/química , Proteínas de Fusão bcr-abl/análise , Ouro/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Sondas de Oligonucleotídeos/química , Ligas/química , Colorimetria , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HL-60 , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Nanopartículas Metálicas , RNA Mensageiro/análise , Sensibilidade e Especificidade
17.
Lab Med ; 51(5): 512-518, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32100015

RESUMO

OBJECTIVE: The detection of gene fusion events is important for the diagnosis and management of malignancies. In this study, we describe the validation of a next-generation sequencing assay for multiplex detection of gene fusions. METHODS: Based on previously described gene fusion events that occur in pediatric oncology, a custom anchored multiplex next-generation sequencing assay was designed to target 93 genes. RESULTS: A total of 24 previously characterized specimens were examined. Twenty specimens had 1 or more previously described fusion events, and 4 specimens were negative for fusion events. The accuracy across specimens was 100% (20 of 20 specimens). The analytical sensitivity and specificity were both 100%. Interday reproducibility for fusion events was 94%; in comparison, intraday reproducibility was 90%. CONCLUSION: This multiple-gene fusion assay demonstrated appropriate sensitivity, specificity, and accuracy for clinical use. We anticipate that this assay will improve the diagnosis and management of patients with pediatric solid tumors.


Assuntos
Neoplasias/química , Fusão Oncogênica , Oncogenes , RNA-Seq/métodos , RNA/análise , Humanos , Neoplasias/genética , Sondas de Oligonucleotídeos
18.
Curr Protoc Nucleic Acid Chem ; 80(1): e104, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32032480

RESUMO

Nucleoside intercalator conjugates (NICs) describe an innovative methodology developed in our research group for preparation of fluorescence turn-on DNA hybridization probes targeting specific mRNA sequences (e.g., breast cancer markers). In this methodology, we conjugate a non-fluorescent intercalator to the base of a nucleic acid (e.g., uracil) via a flexible spacer. This modified monomer can be incorporated into oligonucleotides by solid-phase synthesis and a large fluorescence enhancement is observed when the modified oligonucleotide is hybridized with its complementary strand due to intercalation of the fluorophore between the two strands. 5-(6-p-Methoxybenzylidene imidazolinone-1-hexene)-2'-deoxyuridine (dUMBI ) is a synthetic monomer to which 4-methoxybenzylidene imidazolinone (MBI), the fluorescent chromophore of green fluorescent protein (GFP), has been conjugated via a flexible spacer. The detection of human epidermal growth factor receptor 2 (HER2) mRNA by this probe has already been established by our group. The fluorescent intensity of the single-strand DNA can be considered as negligible due to the free rotation of the fluorophore. Upon hybridization, however, the flexible spacer allows for the intercalation of the fluorophore between the hybridized strands, giving rise to enhanced fluorescence and indicating the presence of target mRNA. 3,5-Difluoro-4-methoxybenzylidene (DFMBI) has enhanced photophysical properties compared to MBI fluorophore. This protocol describes a simple, reliable, efficient, and general method for the synthesis of improved derivative dUDFMBI as a monomer of fluorescent turn-on DNA hybridization probe with application for detection of HER2 mRNA. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Synthesis of 5-[(6)-3,5-difluoro-4-methoxybenzylidene imidazolinone-1-hexene]-2'-deoxyuridine.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Desoxiuridina/síntese química , Imidazolinas/química , Sondas de Oligonucleotídeos/química , Receptor ErbB-2/metabolismo , Desoxiuridina/química , Feminino , Humanos
19.
Org Biomol Chem ; 18(5): 912-919, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31919486

RESUMO

Cytosine 2'-deoxyribonucleoside dCTBdp and its triphosphate (dCTBdpTP) bearing tetramethylated thiophene-bodipy fluorophore attached at position 5 were designed and synthesized. The green fluorescent nucleoside dCTBdp showed a perfect dependence of fluorescence lifetime on the viscosity. The modified triphosphate dCTBdpTP was substrate to several DNA polymerases and was used for in vitro enzymatic synthesis of labeled oligonucleotides (ONs) or DNA by primer extension. The labeled single-stranded ONs showed a significant decrease in mean fluorescence lifetime when hybridized to the complementary strand of DNA or RNA and were also sensitive to mismatches. The labeled dsDNA sensed protein binding (p53), which resulted in the increase of its fluorescence lifetime. The triphosphate dCTBdpTP was transported to live cells where its interactions could be detected by FLIM but it did not show incorporation to genomic DNA in cellulo.


Assuntos
Compostos de Boro/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Hibridização de Ácido Nucleico , Nucleotídeos/química , Sondas de Oligonucleotídeos/metabolismo , Tiofenos/química , Sequência de Bases , Cátions , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Lipídeos/química , Nucleotídeos/síntese química , Ligação Proteica , Solventes/química , Espectrometria de Fluorescência , Temperatura , Viscosidade
20.
Methods ; 184: 70-77, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857188

RESUMO

In recent years, various mass spectrometry-based approaches have been developed to determine global protein-DNA binding specificities using DNA affinity purifications from crude nuclear extracts. However, these assays are semi-quantitative and do not provide information about interaction affinities. We recently developed a technology that we call Protein-nucleic acid Affinity Quantification by MAss spectrometry in Nuclear extracts or PAQMAN, that can be used to determine apparent affinities between multiple nuclear proteins and a nucleic acid sequence of interest in one experiment. In PAQMAN, a series of affinity purifications with increasing bait concentrations and fixed amounts of crude nuclear extracts are combined with isobaric stable isotope labeling and quantitative mass spectrometry to generate Hill-like Kd curves for dozens of proteins in a single experiment. Here, we apply PAQMAN to determine apparent affinities for a genetic variant, rs36115365-C, which regulates TERT expression and is associated with an increased risk to develop various malignancies. Furthermore, we describe a detailed protocol for this method including important quality checks.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatografia de Afinidade/métodos , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Humanos , Marcação por Isótopo , Técnicas de Sonda Molecular , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Sondas de Oligonucleotídeos/química , Sondas de Oligonucleotídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Telomerase/análise , Telomerase/genética , Telomerase/isolamento & purificação , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA