Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557068

RESUMO

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Assuntos
Alcaloides , Quinolizidinas , Sophora , Vírus do Mosaico do Tabaco , Antifúngicos , Sophora/química , Alcaloides/química , Antivirais/farmacologia , Antivirais/química , Sementes/química
2.
Aging (Albany NY) ; 16(8): 6921-6936, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38613801

RESUMO

INTRODUCTION: Ulcerative colitis (UC) is a refractory disease with complex pathogenesis, and its pathogenesis is not clear. The present study aimed to investigate the potential target and related mechanism of Compound Sophora Decoction (CSD) in treating UC. METHODS: A network pharmacology approach predicted the components and targets of CSD to treat UC, and cell and animal experiments confirmed the findings of the approach and a new target for CSD treatment of UC. RESULTS: A total of 155 potential targets were identified for CSD treatment of UC, with some related to macrophage polarization, such as nitric oxide synthase (NOS2), also known as inducible nitric oxide synthase (iNOS). GO and KEGG enrichment analysis indicated that oxidative stress response and multiple inflammatory signaling pathways such as TNF-α may play a significant role. In vitro experiments revealed that Interferon-stimulated DNA (ISD) interference can cause polarization imbalances in Raw 264.7 and bone marrow-derived macrophages (BMDMs). Flow cytometry demonstrated that polarization of macrophages in the intestine, spleen, and lymph nodes in vivo was also unbalanced after dextran sulfate sodium (DSS) modeling with pathological intestinal injury. Both in vitro and in vivo studies indicated that after inducing inflammation, the levels of macrophage polarization-related markers (iNOS and Arg1) and inflammation-related factors (CCL17, IL10, TNF-α, and CXCL10) changed, accompanied by increased expression of cGAS. However, CSD treatment based on inflammation can inhibit the expression of cGAS protein and mRNA, lower the level of inflammatory factors, promote the expression of anti-inflammatory factors, and regulate macrophage polarization. CONCLUSION: We concluded that CSD alleviated DSS-induced UC by inhibiting cGAS, thus regulating macrophage polarization.


Assuntos
Colite Ulcerativa , Macrófagos , Farmacologia em Rede , Sophora , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Camundongos , Sophora/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Nucleotidiltransferases/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Phytother Res ; 38(4): 1951-1970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358770

RESUMO

The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.


Assuntos
Alcaloides , Flavanonas , Sophora , Camundongos , Animais , Flavonoides/química , Sophora flavescens , Sophora/química , Flavanonas/farmacologia , Flavanonas/química , Prenilação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas , Quimiocinas
4.
Microbiol Spectr ; 12(2): e0307623, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38236025

RESUMO

Endophytic fungi of medicinal plants are symbiotic with the host and play an important role in determining metabolites. To understand the relationship between the accumulation of Sophora alopecuroides' medicinal bioactive compounds and the ecological succession of endophytic fungi, here we collected samples from S. alopecuroides at four developmental stages (adult, flowering, podding, and mature) and different organs (roots, stems, leaves, and seeds) at the mature stage. We then used high-performance liquid chromatography-mass spectrometry and high-throughput sequencing on the internal transcribed spacer region to identify the medicinal compounds and endophytic fungal communities in each sample. The endophytic fungal community characteristics and accumulation of medicinally bioactive compounds of S. alopecuroides varied with the host's developmental stages and organs, with the highest total alkaloids content of 111.9 mg/g at the mature stage. Membership analysis and network connection analysis showed a total of 15 core endophytic fungi in different developmental stages and 16 core endophytic fungi in different organs at the mature stage. The unclassified Ascomycota, Aspergillus, and Alternaria were significantly and positively correlated with the medicinal compounds of S. alopecuroides at the mature stage (r > 0.6 or r < -0.6; P < 0.05). In this study, we identified key endophytic fungal resources that affect the content of medicinally bioactive compounds in S. alopecuroides. This discovery could lay the foundation for enhancing the yield of medicinally bioactive compounds in S. alopecuroides and the development and application of functional endophytic fungi.IMPORTANCESophora alopecuroides is a traditional Chinese herbal medicine. The major medicinal chemicals are considered to be quinolizidine alkaloids. Quinolizidine alkaloids have been widely used for the treatment of tumors, dysentery, and enteritis. Previous studies have found that endophytic fungi in S. alopecuroides can promote the accumulation of host quinolizidine alkaloids. However, the relationship between the accumulation of S. alopecuroides' medicinal bioactive compounds and the ecological succession of endophytic fungi remains unclear. In this study, we screened the key endophytic fungal resources affecting the content of medicinally bioactive compounds and laid the foundation for subsequent research on the mechanism by which endophytic fungi promote the accumulation of medicinally bioactive compounds in S. alopecuroides.


Assuntos
Alcaloides , Sophora , Alcaloides Quinolizidínicos , Sophora/química , Fungos
5.
J Adv Res ; 57: 197-212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37137428

RESUMO

INTRODUCTION: The continuous emergence and rapid spread of multidrug-resistant bacteria have accelerated the demand for the discovery of alternative antibiotics. Natural plants contain a variety of antibacterial components, which is an important source for the discovery of antimicrobial agents. OBJECTIVE: To explore the antimicrobial activities and related mechanisms of two lavandulylated flavonoids, sophoraflavanone G and kurarinone in Sophora flavescens against methicillin-resistant Staphylococcus aureus. METHODS: The effects of sophoraflavanone G and kurarinone on methicillin-resistant Staphylococcus aureus were comprehensively investigated by a combination of proteomics and metabolomics studies. Bacterial morphology was observed by scanning electron microscopy. Membrane fluidity, membrane potential, and membrane integrity were determined using the fluorescent probes Laurdan, DiSC3(5), and propidium iodide, respectively. Adenosine triphosphate and reactive oxygen species levels were determined using the adenosine triphosphate kit and reactive oxygen species kit, respectively. The affinity activity of sophoraflavanone G to the cell membrane was determined by isothermal titration calorimetry assays. RESULTS: Sophoraflavanone G and kurarinone showed significant antibacterial activity and anti-multidrug resistance properties. Mechanistic studies mainly showed that they could target the bacterial membrane and cause the destruction of the membrane integrity and biosynthesis. They could inhibit cell wall synthesis, induce hydrolysis and prevent bacteria from synthesizing biofilms. In addition, they can interfere with the energy metabolism of methicillin-resistant Staphylococcus aureus and disrupt the normal physiological activities of the bacteria. In vivo studies have shown that they can significantly improve wound infection and promote wound healing. CONCLUSION: Kurarinone and sophoraflavanone G showed promising antimicrobial properties against methicillin-resistant Staphylococcus aureus, suggesting that they may be potential candidates for the development of new antibiotic agents against multidrug-resistant bacteria.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Sophora , Sophora/química , Espécies Reativas de Oxigênio , Flavonoides/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Trifosfato de Adenosina/farmacologia
6.
Phytochemistry ; 218: 113954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104747

RESUMO

A phytochemical investigation on the alkaloid fractions of Sophora alopecuroides L. led to the production of 11 undescribed matrine-type alkaloids, sophaloseedlines I-S (1-11), 12 known analogs (12-23), and an unexpected artificial matrine-derived Al(III) complex (24). The corresponding structures were elucidated by the interpretation of spectroscopic analyses, quantum chemical calculation, and six instances (1-4, 18, and 24), verified by X-ray crystallography. The biological activities screening demonstrated that none of the isolates exhibited cytotoxicity against four human cancer cell lines (HepG2, A549, THP-1, and MCF-7) and respiratory syncytial virus (RSV) at 50 µM, while moderate anti-inflammatory activity with IC50 value from 15.6 to 47.8 µM was observed. The key structure-activity relationships of those matrine-type alkaloids for anti-inflammatory effects have been summarized. In addition, the most potent 7-epi-sophoramine (19) and aluminum sophaloseedline T (24) could effectively inhibit the release of pro-inflammatory factors (TNF-α, IL-6, and IL-1ß), as well as the expression of iNOS and COX-2 proteins.


Assuntos
Sophora , Humanos , Sophora/química , Matrinas , Estrutura Molecular , Relação Estrutura-Atividade , Anti-Inflamatórios/farmacologia , Quinolizinas/farmacologia , Quinolizinas/química
7.
Phytomedicine ; 116: 154909, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37269775

RESUMO

BACKGROUND: Novel compounds and more efficient treatment options are urgently needed for the treatment of non-small cell lung cancer (NSCLC). The decoction of Sophora flavescens has been used to treat NSCLC in the clinic, and matrine-type alkaloids are generally considered to be the key pharmacodynamic material basis. But the previous study showed that common matrine-type alkaloids exhibit significant cytotoxicity only when at concentrations close to the millimolar (mM) level. The key antitumor alkaloids in S. flavescens seem to have not yet been revealed. PURPOSE: The aim of this study was to screen water-soluble matrine alkaloid with novel skeleton and enhanced activity from S. flavescens, and to reveal the pharmacological mechanism of its therapeutic effect on NSCLC. METHODS: Alkaloid was obtained from S. flavescens by chromatographic separation methods. The structure of alkaloid was determined by spectroscopic methods, and single-crystal X-ray diffraction. The mechanism of anti-NSCLC in vitro with cellular models was evaluated by MTT assay, western blotting, cell migration and invasion assay, plate colony-formation assay, tube formation assay, immunohistochemistry assay, hematoxylin and eosin staining. The antitumor efficacy in vivo was test in NSCLC xenograft models. RESULTS: A novel water-soluble matrine-derived alkaloid incorporating 6/8/6/6 tetracyclic ring system, named sophflarine A (SFA), was isolated from the roots of S. flavescens. SFA had significantly enhanced cytotoxicity compared with the common matrine-type alkaloids, having an IC50 value of 11.3 µM in A549 and 11.5 µM in H820 cells at 48 h. Mechanistically, SFA promoted NSCLC cell death by inducing pyroptosis via activating the NLRP3/caspase-1/GSDMD signaling pathway, and inhibited cancer cell proliferation by increasing the ROS production to activate autophagy via blocking the PI3K/AKT/mTOR signaling pathway. Additionally, SFA also inhibited NSCLC cell migration and invasion by suppressing EMT pathway, and inhibited cancer cell colony formation and human umbilical vein endothelial cell angiogenesis. In concordance with the above results, SFA treatment blocked tumor growth in an A549 cell-bearing orthotopic mouse model. CONCLUSION: This study revealed a potential therapeutic mechanism of a novel matrine-derived alkaloid, which not only described a rational explanation for the clinical utilization of S. flavescens, but also provided a potential candidate compound for NSCLC treatment.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sophora , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sophora flavescens , Espécies Reativas de Oxigênio/metabolismo , Matrinas , Piroptose , Apoptose , Fosfatidilinositol 3-Quinases , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Autofagia , Quinolizinas/farmacologia , Quinolizinas/química , Sophora/química , Linhagem Celular Tumoral
8.
J Asian Nat Prod Res ; 25(2): 163-170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35675145

RESUMO

Two new isoflavones (1 and 2), as well as eight known ones were isolated from the roots of Sophora tonkinensis Gagnep. Compound 1 represents an unprecedented polymerization pattern constructed by isoflavone and cytisine. Their structures were elucidated by comprehensive spectroscopic data analysis, combined with ECD calculations. Compound 1 displayed significant anti-tobacco mosaic virus (TMV) activity compared with the positive control ningnanmycin. Moreover, compound 6 exhibited potent α-glucosidase inhibitory activity with IC50 value of 47.4 mg/L.


Assuntos
Alcaloides , Isoflavonas , Sophora , Isoflavonas/farmacologia , Sophora/química , Raízes de Plantas/química , Alcaloides/química , Quinolizinas/análise
9.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080327

RESUMO

The roots of Sophora tonkinensis Gagnep., a traditional Chinese medicine, is known as Shan Dou Gen in the Miao ethnopharmacy. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of lung, stomach, and throat diseases, and the roots of S. tonkinensis have been produced as Chinese patent medicines to treat related diseases. Existing phytochemical works reported more than 300 compounds from different parts and the endophytic fungi of S. tonkinensis. Some of the isolated extracts and monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on. The research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.


Assuntos
Sophora , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Fungos , Medicina Tradicional Chinesa , Compostos Fitoquímicos/análise , Raízes de Plantas/química , Sophora/química
10.
Bioorg Med Chem ; 61: 116723, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35396127

RESUMO

Alopecurosines A and B (CMs 1 and 2, respectively) are two novel cytisine-type alkaloid dimers first isolated from the aerial parts of Sophora alopecuroides L. CMs 1 and 2 are new dimeric alkaloids whose piperidine matrine ring is cleaved and connected via the N'-1 bond. Their chemical structures have been confirmed by IR, UV, HR-ESI-MS, and NMR. Preliminary screening shows that they have topoisomerase I (Topo I)-based anti-tumor activity. Their Topo I inhibitory activities and mechanism have been evaluated by agarose gel electrophoresis assay and a molecular docking study. The results show that the inhibition rate of CM 1 is 82.26% at 1 mM concentration and that it exhibits significantly Topo I inhibitory activity. Further research has illustrated that CMs 1 and 2 exert inhibitory activity by stabilising the Topo I-DNA cleavage complex, implying that they have the potential to be developed as novel Topo I inhibitors.


Assuntos
Alcaloides , Sophora , Alcaloides/química , Azocinas , Simulação de Acoplamento Molecular , Quinolizinas , Sementes/química , Sophora/química
11.
Phytomedicine ; 100: 154054, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35358931

RESUMO

BACKGROUND: Sophora flavescens Aiton (SF), also known as Kushen (Chinese:), has been an important species in Chinese medicine since the Qin and Han dynasties. It is also recognized as a plant resource suitable for the globalization of Chinese medicine. Traditionally, it has been used in various ethnic medical systems in East Asia, especially in China, to kill insects and dispel dampness. Sophora flavescens is commonly used for clearing heat-clearing, killing worms, and diuretic. Nowdays, accumulating studies demonstrated its anticancer and cardioprotection. OBJECTIVE OF THE REVIEW: This paper aims to systematically review information on the genus, pharmacological and toxicological significance, chemical composition and biological activity of Sophora flavescens. To promoting its development and application. To summarize recent findings regarding to the metabolism, pharmacological/toxicological effects of Sophora flavescens. MATERIAL AND METHODS: Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Sophora flavescens Aiton", "Ku shen", "Pharmacology", "Active ingredient", "Toxicology" and combinations to include published studies of Sophora flavescens Aiton primarily from 1970-2021. Several critical previous studies beyond this period were also included and other related terms. CONCLUSION: Sophora flavescens has a broad spectrum of biological activities associated with Sophora flavescens has been considered a valuable resource in both traditional and modern medicine. However, there is a lack of in-depth studies on the medicinal uses of Sophora flavescens. Moreover, further studies on single chemical components should be conducted based on the diversity of chemical structures, significant biological activities and clinical applications. The discovery of its bioactive molecules and multi-component interactions would be of great importance for the clinical application of Sophora flavescens spp. Detailed pharmacological and toxicological studies on the classic prescriptions of Sophora flavescens are also needed. It is more beneficial to the wide application of SF plant and facilitates the worldwide promotion of modern Chinese medicine. However, an increasing number of reports indicate that the administration of Sophora flavescens has serious adverse effects. Its main toxic effects are neurotoxicity and acute toxicity, which have caused widespread concern worldwide. In addition, the alkaloids of Sophora flavescens are distributed in the heart, liver, stomach and large intestine. They are excreted from the body through gluconeogenesis, which is the mode of action of certain therapeutic mechanisms of action such as anticancer. The detailed metabolic study of alkaloids and other components of Sophora flavescens in vivo needs to be further investigated. It is important to improve the pharmacological effects and reduce the toxicity of Sophora flavescens. For this purpose, structural modification of active components of Sophora flavescens or combination with other drugs is very essential.


Assuntos
Alcaloides , Antineoplásicos , Sophora , Alcaloides/farmacologia , Biodiversidade , China , Etnofarmacologia , Medicina Tradicional Chinesa , Compostos Fitoquímicos/farmacologia , Sophora/química
12.
Drug Des Devel Ther ; 16: 191-212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35082485

RESUMO

Sophoridine is a natural quinolizidine alkaloid and a bioactive ingredient that can be isolated and identified from certain herbs, including Sophora flavescens Alt, Sophora alopecuroides L, and Sophora viciifolia Hance. In recent years, this quinolizidine alkaloid has gained widespread attention because of its unique structure and minimal side effects. Modern pharmacological investigations have uncovered sophoridine's multiple wide range biological activities, such as anti-cancer, anti-inflammatory, anti-viral, anti-arrhythmia, and analgesic functions, among others. These pharmacological activities and beneficial effects point to sophoridine as a strong potential therapeutic candidate for the treatment of various diseases, including several cancer types, hepatitis B virus, enterovirus 71, coxsackievirus B3, cerebral edema, cancer pain, heart failure, acute myocardial ischemia, arrhythmia, inflammation, acute lung injury, and osteoporosis. The data showed that sophoridine had adverse reactions, including hepatotoxicity and neurotoxicity. Additionally, analyses of sophoridine's safety, bioavailability, and pharmacokinetic parameters in animal models of research have been limited, especially in the clinic, as have been investigations on its structure-activity relationship. In this article, we comprehensively summarize the biological activities, toxicity, and pharmacokinetic characteristics of sophoridine and its derivatives, as currently reported in publications, as we attempt to provide an overall perspective on sophoridine analogs and the prospects of its application clinically.


Assuntos
Compostos Fitoquímicos/farmacologia , Fitoterapia/métodos , Preparações de Plantas/farmacologia , Sophora/química , Analgésicos , Animais , Antiarrítmicos , Anti-Inflamatórios , Antineoplásicos , Antivirais , Etnobotânica , Etnofarmacologia , Humanos , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/toxicidade , Preparações de Plantas/farmacocinética , Preparações de Plantas/toxicidade , Relação Estrutura-Atividade
13.
Nat Prod Res ; 36(7): 1864-1869, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32962440

RESUMO

A new cytisine-type alkaloid, along with five known alkaloids was obtained from the seeds of Sophora alopecuroides. Their structures were determined to be (-)-N-(2'-hydroxy-3',5'-di-tert-butyl-toluene)-cytisine (1), (-)-lupanine (2), (+)-matrine (3), (+)-sophoramine (4), (+)-lehmannine (5) and (-)-sophocarpine (6). Their structures were established by NMR, ECD and HRESIMS data analyses. Their cytotoxicity effects against five human tumor cell lines were tested by MTT assay. Compound 1 has showed a wide range of cytotoxicity activities against varied tumor cells in vitro.


Assuntos
Alcaloides , Sophora , Alcaloides/química , Humanos , Sementes/química , Sophora/química
14.
Nat Prod Res ; 36(1): 108-113, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32408767

RESUMO

A chemical investigation of Sophora flavescens Ait. identified 6 compounds. On the basis of spectroscopic data, they were determined to be flavonoids and their analogues, among which were two previously undescribed compounds, sophoflavanone G (1) and sophoflavanone H (2). The inhibitory effects of new compounds against five human tumour cell lines were evaluated in vitro by MTT assays, which revealed potential inhibitory effects with IC50 values < 20 mM, in particular, compound 1 has shown significant cytotoxicity for several tumour cells with IC50 values around 20 mM, which was similar to cisplatin and potential to be used as tumour drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Flavonoides , Sophora , Linhagem Celular Tumoral , Flavonoides/farmacologia , Humanos , Sophora/química
15.
Nat Prod Res ; 36(11): 2722-2734, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33974474

RESUMO

Phytochemical investigation of Sophora secundiflora alkaloid fraction led to isolation of one new quinolizidine alkaloid (1) 13-methoxyanagyrine together with six known ones (2-7). The insecticidal activity of 70% methanol extract of leaves of S. secundiflora, S. tomentosa and the isolated alkaloids were assessed against 3rd instar larvae of Culex pipiens (Diptera: Culicidae) using different concentrations and mortality rate was recorded. Sophora tomentosa extract showed highest mortality rate with median lethal concentration LC50 3.11 ppm after 24 h and 0.66 ppm after 48 h and anagyrine (6) exhibited remarkably insecticidal activity with LC50 value of 3.42 ppm after 24 h of exposure. Additionally, cytotoxic activity of alkaloid fraction of S. secundiflora, S. tomentosa and isolated alkaloids was also studied using crystal violet assay against MCF-7 and HEPG-2 cell lines. Anagyrine (6) exhibited IC50 values of 27.3 ± 0.7 and 30.2 ± 0.9 µg/mL against MCF-7 and HEPG-2 cancer cells, respectively.


Assuntos
Alcaloides , Antineoplásicos , Culex , Culicidae , Inseticidas , Quinolizidinas , Sophora , Alcaloides/toxicidade , Animais , Antineoplásicos/farmacologia , Inseticidas/farmacologia , Larva , Extratos Vegetais/farmacologia , Sophora/química
16.
Nat Prod Res ; 36(7): 1781-1788, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32924588

RESUMO

Seventeen quinolizidine alkaloids, including a new matrine-type one, sophcence A (1), were isolated from the roots of Sophora flavescens Alt. The structure of compound 1 was elucidated by means of 1D and 2D NMR, as well as HR-ESI-MS spectroscopic data. The NMR data of (-)-Δ7-dehydrosophoramine (10) and oxy-N-methylcytisine (12) were reported for the first time. In addition, (+)-sophoranol (4) exhibited moderate inhibition on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages with IC50 value of 22.14 µM, while lupanine (17) was found to inhibit the growth of human glioma stem cells GSC-3# at 20 µg/mL.


Assuntos
Alcaloides , Quinolizidinas , Sophora , Alcaloides/química , Humanos , Lipopolissacarídeos/farmacologia , Raízes de Plantas/química , Quinolizidinas/farmacologia , Quinolizinas/química , Sophora/química
17.
J Ethnopharmacol ; 285: 114796, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740771

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora flavescens is a traditional Chinese medicine commonly used in clinical practice, which has the effects of clearing away heat and dampness. Unfortunately, it has been reported that Sophora flavescens and its preparation may cause liver damage to a certain extent, but the exact mechanism is not clear. AIM OF THE STUDY: To assess the safety and risk of Sophora flavescens and to elucidate the relationship between Idiosyncratic drug-induced liver injury (IDILI) and the NOD-like receptor family protein 3 (NLRP3) inflammasome. MATERIALS AND METHODS: Western blot, Caspase-Glo® 1 Inflammasome Assay, ELISA kits, Flow cytometry and FLIPRT Tetra system were used to study the effect of isoxanthohumol (IXN) on the activation of NLRP3 inflammasome and its mechanism. Combined with the lipopolysaccharide-mediated susceptibility IDILI model in mice to evaluate the hepatotoxicity of IXN. RESULTS: IXN facilitates the activation of caspase-1 and secretion of interleukin (IL)-1ß triggered by adenosine triphosphate (ATP), nigericin but not those induced by silicon dioxide and poly (I:C). Furthermore, the activation of NLR-family CARD-containing protein 4 (NLRC4) and the absent in melanoma 2 (AIM2) was not affected by IXN. Mechanistically, IXN promotes NLRP3-dependent apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) oligomerization and the generation of mitochondrial reactive oxygen species (mtROS) triggered by ATP. The in vivo data showed that non-hepatotoxic doses of IXN resulted in increased levels of glutamate-pyruvate transaminase, glutamate-oxaloacetate transaminase, tumor necrosis factor and IL-1ß in the serum and showed increased liver inflammation in the susceptible IDILI model mediated by lipopolysaccharide. CONCLUSIONS: These results show that IXN enhances NLRP3 inflammasome activation by promoting the accumulation of ATP-induced mtROS and ASC oligomerization to cause IDILI, indicating that IXN may be a risk factor for liver injury caused by the clinical use of Sophora flavescens.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sophora/química , Xantonas , Trifosfato de Adenosina/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inflamassomos/metabolismo , Medicina Tradicional Chinesa/métodos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Xantonas/farmacologia , Xantonas/toxicidade
18.
J Ethnopharmacol ; 287: 114691, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-34597654

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Matrine injection is a complex mixture of plant bioactive substances extracted from Sophora flavescens Aiton and Smilax glabra Roxb. Since its approval by the Chinese Food and Drug Administration (CFDA) in 1995, Matrine injection has been clinically used as a complementary and alternative treatment for various cancers; however, the underlying mechanism of pancreatic cancer treatment is yet to be elucidated. AIM OF THE STUDY: The present study explores the potential mechanism of matrine injection on pancreatic cancer through network pharmacology technique and in vitro experimental validation. MATERIALS AND METHODS: Genes differentially expressed in pancreatic cancer were obtained from the Gene Expression Omnibus (GEO) database (GSE101448). The potential active components of matrine injection were selected following a literature search, and target prediction was performed by the SwissTarget Prediction database. Overlapping genes associated with survival were screened by the Gene Expression Profiling Interactive Analysis (GEPIA) database. In vitro experimental validation was performed with cell counting kit-8 (CCK-8) assay, apoptosis detection, cell cycle analysis, immunoblotting, and co-immunoprecipitation of the identified proteins. RESULTS: One thousand seven hundred genes differentially expressed among pancreatic tumor and non-tumor tissues were screened out. Sixteen active components and 226 predicted target genes were identified in matrine injection. A total of 25 potential target genes of matrine injection for the treatment of pancreatic cancer were obtained. Among them, the prognostic target genes carbonic anhydrase 9 (CA9) and carbonic anhydrase 12 (CA12) based on the GEPIA database are differently expressed in tumors compared to adjacent normal tissue. In vitro experiments, the results of CCK-8 assay, apoptosis and cell cycle analysis, immunoblotting, and co-immunoprecipitation showed that matrine injection inhibited Capan-1 and Mia paca-2 proliferation, arrested the cell cycle at the S phase, and induced apoptosis through up-regulated CA12 and down-regulated CA9. CONCLUSIONS: In this study, bioinformatics and network pharmacology were applied to explore the treatment mechanism on pancreatic cancer with matrine injection. This study demonstrated that matrine injection inhibited proliferation, arrested the cell cycle, and induced apoptosis of pancreatic cancer cells. The mechanism may be related to the induction of CA12 over-expression, and CA9 reduced expression. As novel targets for pancreatic cancer treatment, Carbonic anhydrases require further study.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Anidrases Carbônicas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Quinolizinas/farmacologia , Sophora/química , Alcaloides/isolamento & purificação , Antígenos de Neoplasias/genética , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Anidrase Carbônica IX/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Farmacologia em Rede , Neoplasias Pancreáticas/genética , Quinolizinas/isolamento & purificação , Regulação para Cima/efeitos dos fármacos , Matrinas
19.
Drug Chem Toxicol ; 45(6): 2535-2544, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34380357

RESUMO

The leguminosae of Sophora moorcroftiana (Benth.) Benth.ex Baker is a drought-resistant endemic Sophora shrub species from the Qinghai-Tibet Plateau, and its seeds have hepatoprotective effects. To study the effect of S. moorcroftiana seeds on liver injury and the molecular mechanism underlying the beneficial effects, liquid chromatography-mass spectrometry was used to detect the main active components in the ethanol extract of S. moorcroftiana seeds (SM). Male mice were divided into six groups (n = 8): normal control (NC), CCl4, SM (50, 100, 200 mg/kg), and dimethyl diphenyl bicarboxylate (150 mg/kg) groups. Mice were treated as indicated (once/day, orally) for 14 days, and CCl4 (2 mL/kg) was administered intraperitoneally. The serum and liver of mice were used for biochemical assays. To explore the underlying mechanism, HepG2 cells were treated with SM, stimulated with tert-butyl hydroperoxide (t-BHP, 50 µM), and analyzed by Western blotting. The major active compounds of SM were alkaloids including 22 compounds. Serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) decreased in the SM (200 mg/kg) group. SM can activate the expression of pregnane X receptor (PXR) and downstream molecules cytochrome P4503A11 enzyme (CYP3A11), UDP glucuronosyltransferase 1 family polypeptide A 1 (UGT1A1), and inhibit the multidrug resistance protein 2 (MRP2). In addition, SM improved cell viability in t-BHP-induced HepG2 cells (64% to 83%) and decreased the activation of the mitogen-activated protein kinase (MAPK) pathway. The main compounds in SM were alkaloids. SM showed hepatoprotective effects possibly mediated by the suppression of oxidative stress through the MAPK pathway.


Assuntos
Alcaloides , Doença Hepática Induzida por Substâncias e Drogas , Sophora , Animais , Camundongos , Sophora/química , Receptor de Pregnano X , terc-Butil Hidroperóxido/análise , terc-Butil Hidroperóxido/farmacologia , Alanina Transaminase/análise , Fosfatase Alcalina , Sementes/química , Aspartato Aminotransferases/análise , Extratos Vegetais/química , Alcaloides/farmacologia , Fígado , Glucuronosiltransferase , Proteínas Quinases Ativadas por Mitógeno/análise , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Etanol , Citocromos/análise , Citocromos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
20.
Curr Pharm Biotechnol ; 23(7): 998-1008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34080963

RESUMO

BACKGROUND: Topoisomerase I (Topo I) is a key target of many antitumor drugs in vivo. Alkaloids in Sophora alopecuroides L. can reportedly inhibit Topo I activity, but the pharmacodynamic material basis has not yet been determined. OBJECTIVE: This study aimed to rapidly identify active components which inhibit Topo I in S. alopecuroides L. METHODS: Affinity ultrafiltration coupled with ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UF-UPLC-QTOF-MS) screening system based on Topo I protein was established to screen and isolate a total alkaloid fraction in S. alopecuroides L. Topo I inhibitory activity and anti-tumor proliferation activity of the screened components were evaluated, and their molecular mechanisms were studied. RESULTS: Six compounds that bound specifically to Topo I were obtained. Further screening showed that matrine, cytisine, and sophoridine presented higher inhibitory activity on Topo I and were able to inhibit the proliferation of breast cancer MDA-MB-468 cells with IC50 values of 9.40 ± 1.12 mM, 17.4 ± 2.20 mM, and 10.4 ± 1.37 mM, respectively. To the best of our knowledge, their dual molecular mechanisms against Topo I have not discussed to date. In this study, the following dual mechanisms are reviewed for the first time: (1) stabilization of the Topo I-DNA complex and (2) inhibition or blocking of Topo I binding to DNA. CONCLUSION: Matrine, cytisine, and sophoridine from S. alopecuroides L. were defined as the active components possessing Topo I inhibitory activity, and their pharmacological mechanism was confirmed, which provided an important base for further research and development of antitumor components from S. alopecuroides L.


Assuntos
Sophora , DNA Topoisomerases Tipo I , Pesquisa , Sophora/química , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA