Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.331
Filtrar
1.
Mediators Inflamm ; 2024: 7524314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725539

RESUMO

Objective: Microfold cells (M cells) are specific intestinal epithelial cells for monitoring and transcytosis of antigens, microorganisms, and pathogens in the intestine. However, the mechanism for M-cell development remained elusive. Materials and Methods: Real-time polymerase chain reaction, immunofluorescence, and western blotting were performed to analyze the effect of sorbitol-regulated M-cell differentiation in vivo and in vitro, and luciferase and chromatin Immunoprecipitation were used to reveal the mechanism through which sorbitol-modulated M-cell differentiation. Results: Herein, in comparison to the mannitol group (control group), we found that intestinal M-cell development was inhibited in response to sorbitol treatment as evidenced by impaired enteroids accompanying with decreased early differentiation marker Annexin 5, Marcksl1, Spib, sox8, and mature M-cell marker glycoprotein 2 expression, which was attributed to downregulation of receptor activator of nuclear factor kappa-В ligand (RANKL) expression in vivo and in vitro. Mechanically, in the M-cell model, sorbitol stimulation caused a significant upregulation of phosphodiesterase 4 (PDE4) phosphorylation, leading to decreased protein kinase A (PKA)/cAMP-response element binding protein (CREB) activation, which further resulted in CREB retention in cytosolic and attenuated CREB binds to RANKL promoter to inhibit RANKL expression. Interestingly, endogenous PKA interacted with CREB, and this interaction was destroyed by sorbitol stimulation. Most importantly, inhibition of PDE4 by dipyridamole could rescue the inhibitory effect of sorbitol on intestinal enteroids and M-cell differentiation and mature in vivo and in vitro. Conclusion: These findings suggested that sorbitol suppressed intestinal enteroids and M-cell differentiation and matured through PDE4-mediated RANKL expression; targeting to inhibit PDE4 was sufficient to induce M-cell development.


Assuntos
Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Ligante RANK , Sorbitol , Sorbitol/farmacologia , Ligante RANK/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células M
2.
ACS Chem Neurosci ; 15(7): 1366-1377, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503425

RESUMO

The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.


Assuntos
Doença de Alzheimer , Metilaminas , Proteínas tau , Humanos , Proteínas tau/metabolismo , Betaína , Citrulina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Taurina/farmacologia , Inositol/metabolismo , Sorbitol/metabolismo
3.
ACS Appl Bio Mater ; 7(4): 2240-2253, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38326107

RESUMO

The protein extracted from the discarded eye lenses postcataract surgery, referred to as the cataractous eye protein isolate (CEPI), is employed as a polymer matrix for the construction of solid polymer electrolyte species (SPEs). SPEs are expected to be inexpensive, conductive, and mechanically stable in order to be economically and commercially viable. Environmentally, these materials should be biodegradable and nontoxic. Taking these factors into account, we investigated the possibility of using a discarded protein as a polymer matrix for SPEs. Natural compounds sorbitol and sinapic acid (SA) are used as the plasticizer and cross-linker, respectively, to tune the mechanical as well as electrochemical properties. The specific material formed is demonstrated to have high ionic conductivity ranging from ∼2 × 10-2 to ∼8 × 10-2 S cm-1. Without the addition of any salt, the ionic conductivity of sorbitol-plasticized non-cross-linked CEPI is ∼7.5 × 10-2 S cm-1. Upon the addition of NaCl, the conductivity is enhanced to ∼8 × 10-1 S cm-1. This study shows the possibility of utilizing a discarded protein CEPI as an alternative polymer matrix with further potential for the construction of tunable, flexible, recyclable, biocompatible, and biodegradable SPEs for flexible green electronics and biological devices.


Assuntos
Eletrólitos , Eletrônica , Condutividade Elétrica , Polímeros , Sorbitol
4.
J Water Health ; 22(2): 372-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421631

RESUMO

The study objective was to evaluate human faecal contamination impacts in the Yal-ku lagoon in the Mexican Caribbean and to estimate adenovirus infection and illness risks associated with recreational exposure during water activities. A total of 20 water samples (10 from each site × two sites) (50 L) were collected monthly over a period of 12 months from two selected sampling sites in the swimming area of the Yal-ku lagoon. The occurrence of faecal-associated viruses was explored, and human adenovirus (HAdV) and pepper mild mottle virus (PMMoV) concentrations were quantified. A quantitative microbial risk assessment (QMRA) model was used to estimate exposure and subsequent adenovirus infection and illness risk for 1 h of swimming or snorkelling. Somatic and F + -specific coliphages occurred in 100% of the samples. Both HAdV and PMMoV were detected at a 60% frequency thereby indicating persistent faecal inputs. PMMoV concentrations (44-370 GC/L) were relatively lower than the concentrations of HAdV (64-1,000 GC/L). Estimated mean adenovirus risks were greater for snorkelling than for swimming by roughly one to two orders of magnitude and estimated mean illness risks for snorkelling were >32/1,000. Human faecal contamination is frequent in the Yal-ku lagoon, which is associated with human gastrointestinal illness.


Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , Tobamovirus , Humanos , Região do Caribe , Água , Sorbitol
5.
J Diabetes Complications ; 38(1): 108650, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035640

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is increasing globally, and seeking therapeutic molecule targets is urgent. Several studies have demonstrated that IL-33 plays an important role in the progression of Non-alcoholic steatohepatitis (NASH) with fibrosis and the proliferation of hepatocellular carcinoma (HCC). However, whether the inhibition of IL-33 signaling prevents NAFLD from progressing to NASH and HCC has not been clarified. We investigated the effects of a novel antibody, IL-33RAb, and luseogliflozin, a SGLT2 inhibitor, when administered to a model mouse for NASH and HCC, and their effects were compared to investigate the mechanisms of how IL-33 is involved in the pathogenesis of NASH progression. Compared with the positive control of luseogliflozin, inhibition of IL-33 signaling ameliorated decreasing hepatic fibrosis via decreasingαSMA and MCP-1, and also partially suppressed the progression of the HCC cell line in in vitro experiments. These findings suggest that inhibition of IL-33 possibly prevents progression from NASH to HCC, and their effect may be a newly arrived therapeutic agent.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Inibidores do Transportador 2 de Sódio-Glicose , Sorbitol , Animais , Camundongos , Carcinoma Hepatocelular/prevenção & controle , Diabetes Mellitus/tratamento farmacológico , Modelos Animais de Doenças , Interleucina-33/metabolismo , Interleucina-33/uso terapêutico , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Cirrose Hepática/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Sorbitol/análogos & derivados
6.
Plant Physiol Biochem ; 204: 108092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852068

RESUMO

In this study, we compared sorbitol metabolism, energy metabolism, and CI development in yellow peach fruit at 1 °C (less susceptible to CI) and 8 °C (more susceptible to CI) storage to elucidate potential connections between them. The results indicated that storage at 1 °C effectively maintained the textural quality of yellow peach fruit and delayed the onset of CI by 12 days compared to 8 °C. This positive effect might be attributable to 1 °C storage maintaining higher sorbitol content throughout the storage duration, thus sustaining the higher adenosine triphosphate (ATP) level and energy charge. The regulation of sorbitol accumulation by 1 °C storage was closely linked to the metabolic activity of sorbitol, which stimulated sorbitol synthesis by enhancing sorbitol-6-phosphate dehydrogenase (S6PDH) activity after 12 days while suppressing sorbitol degradation via decreased sorbitol oxidase (SOX) and NAD+-sorbitol dehydrogenase (NAD+-SDH) activities before 24 days. In addition, the notable up-regulation in the NAD+-SDH activity in the late storage period promoted the conversion of sorbitol to fructose and glucose under 1 °C storage, thereby providing ample energy substrate for ATP generation. Moreover, sorbitol acts as a vital signaling molecule, and substantially up-regulated expressions of sorbitol transporters genes (PpeSOT3, PpeSOT5, and PpeSOT7) were observed in fruit stored at 1 °C, which might promote sorbitol transport and improve cold tolerance in peach fruit. Taken together, these findings suggested that 1 °C storage delayed CI by enhancing sorbitol metabolism and transporter activity, promoting sorbitol accumulation, and finally elevating the energy status in yellow peach fruit.


Assuntos
Prunus persica , Prunus persica/metabolismo , NAD/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Frutas/metabolismo , Sorbitol/metabolismo , Temperatura Baixa
7.
J Mol Graph Model ; 125: 108582, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37595383

RESUMO

The thermal stability of a protein is an important concern for its practical application in food processing industries. In this study, we have carried out classical molecular dynamics simulations to systematically investigate the effect of NADES (natural deep eutectic solvent) on the stabilization of the protein ß-Lactoglobulin (BLG) at different temperatures. This study sheds light on the very aspects of NADES composed of betaine and sorbitol on the stability of the protein. NADES provides better stability to the protein up to a temperature of 400 K than in water. It is observed that the protein starts to unfold above temperature 400 K in spite of the presence of NADES which is quiet evident from the root mean square deviation (RMSD) and radius of gyration (Rg) plots. The decreasing average solvent accessible surface area (SASA) values and increasing intra-protein hydrogen bonds indicate better stability of the protein in NADES medium than in water at temperatures 300 K and 400 K. At high temperatures viz. 450 K and 500 K the number and distribution of solvent species (betaine and sorbitol) around the protein surface show an increment that are evident from the calculations of solvation shell, radial and spatial distribution functions. Increased number of betaine molecules that interact with the protein through electrostatic interaction may lead to destabilization of the protein at these temperatures. This study suggests that NADES could be used as an ideal medium for thermal stability of the protein BLG up to a temperature of 400 K. Beyond this temperature, NADES used for this study fails to exert stabilization effect on the protein.


Assuntos
Betaína , Simulação de Dinâmica Molecular , Temperatura , Lactoglobulinas/química , Solventes/química , Água/química , Sorbitol
8.
BMC Res Notes ; 16(1): 129, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400926

RESUMO

This work presents the design of a new protein based on the adenosine triphosphate-binding cassette (ABC) transporter solute binding protein (SBP) derived from Agrobacterium vitis, a gram-negative plant pathogen. The Protein Data Bank in Europe's dictionary of chemical components was utilized to identify sorbitol and D-allitol. Allitol bound to an ABC transporter SBP was identified in the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB). Wizard Pair Fitting and Sculpting tools in PyMOL were used to replace bound allitol with sorbitol. PackMover Python code was used to induce mutations in the ABC transporter SBP's binding pocket, and changes in free energy for each protein-sorbitol complex were identified. The results indicate that adding charged side chains forms polar bonds with sorbitol in the binding pocket, thus increasing its stabilization. In theory, the novel protein can be used as a molecular sponge to remove sorbitol from tissue and therefore treat conditions affected by sorbitol dehydrogenase deficiency.


Assuntos
Proteínas de Bactérias , Sorbitol , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP
9.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446610

RESUMO

Currently, polypropylene (PP) is highlighted using sorbitol-based clarifying agents since these agents are high quality, low cost, and work as a barrier against moisture, which makes PP ideal for packaging food, beverages, and medical products, among others. The use of analytical methods capable of recovering these additives in wastewater streams and then reusing them in the PP clarification stage represents an innovative methodology that makes a substantial contribution to the circular economy of the PP production industry. In this study, a method of extraction and recovery of the Millad NX 8000 was developed. The additive was recovered using GC-MS and extracted with an activated carbon column plus glass fiber, using an injection molded sample, obtaining a recovery rate greater than 96%. TGA, DSC, and FTIR were used to evaluate the recovered additive's glass transitions and purity. The thermal degradation of the recovered additive was found to be between 340 and 420 °C, with a melting temperature of 246 °C, adopting the same behavior as the pure additive. In FTIR, the characteristic absorption peak of Millad NX 8000 was observed at 1073 cm-1, which indicates the purity of the extracted compound. Therefore, this work develops a new additive recovery methodology with high purity to regulate the crystallization behavior and of PP.


Assuntos
Sorbitol , Águas Residuárias , Polipropilenos/química , Polímeros , Embalagem de Produtos
10.
Cancer Lett ; 567: 216262, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307894

RESUMO

Aberrant splicing events are associated with colorectal cancer (CRC) and provide new opportunities for tumor diagnosis and treatment. The expression of the splice variants of NF-YA, the DNA binding subunit of the transcription factor NF-Y, is deregulated in multiple cancer types compared to healthy tissues. NF-YAs and NF-YAl isoforms differ in the transactivation domain, which may result in distinct transcriptional programs. In this study, we demonstrated that the NF-YAl transcript is higher in aggressive mesenchymal CRCs and predicts shorter patients' survival. In 2D and 3D conditions, CRC cells overexpressing NF-YAl (NF-YAlhigh) exhibit reduced cell proliferation, rapid single cell amoeboid-like migration, and form irregular spheroids with poor cell-to-cell adhesion. Compared to NF-YAshigh, NF-YAlhigh cells show changes in the transcription of genes involved in epithelial-mesenchymal transition, extracellular matrix and cell adhesion. NF-YAl and NF-YAs bind similarly to the promoter of the E-cadherin gene, but oppositely regulate its transcription. The increased metastatic potential of NF-YAlhigh cells in vivo was confirmed in zebrafish xenografts. These results suggest that the NF-YAl splice variant could be a new CRC prognostic factor and that splice-switching strategies may reduce metastatic CRC progression.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Peixe-Zebra/genética , Fatores de Transcrição , Neoplasias do Colo/genética , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular , Sorbitol , Movimento Celular/genética , Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
11.
Eur J Drug Metab Pharmacokinet ; 48(4): 443-453, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37198368

RESUMO

BACKGROUND AND OBJECTIVE: Boron neutron capture therapy (BNCT) is a binary cancer treatment that combines boron administration and neutron irradiation. The tumor cells take up the boron compound and the subsequent neutron irradiation results in a nuclear fission reaction caused by the neutron capture reaction of the boron nuclei. This produces highly cytocidal heavy particles, leading to the destruction of tumor cells. p-boronophenylalanine (BPA) is widely used in BNCT but is insoluble in water and requires reducing sugar or sugar alcohol as a dissolvent to create an aqueous solution for administration. The purpose of this study was to investigate the pharmacokinetics of 14C-radiolabeled BPA using sorbitol as a dissolvent, which has not been reported before, and confirm whether neutron irradiation with a sorbitol solution of BPA can produce an antitumor effect of BNCT. MATERIALS AND METHODS: In this study, we evaluated the sugar alcohol, sorbitol, as a novel dissolution aid and examined the consequent stability of the BPA for long-term storage. U-87 MG and SAS tumor cell lines were used for in vitro and in vivo experiments. We examined the pharmacokinetics of 14C-radiolabeled BPA in sorbitol solution, administered either intravenously or subcutaneously to a mouse tumor model. Neutron irradiation was performed in conjunction with the administration of BPA in sorbitol solution using the same tumor cell lines both in vitro and in vivo. RESULTS: We found that BPA in sorbitol solution maintains stability for longer than in fructose solution, and can therefore be stored for a longer period. Pharmacokinetic studies with 14C-radiolabeled BPA confirmed that the sorbitol solution of BPA distributed through tumors in much the same way as BPA in fructose. Neutron irradiation was found to produce dose-dependent antitumor effects, both in vitro and in vivo, after the administration of BPA in sorbitol solution. CONCLUSION: In this report, we demonstrate the efficacy of BPA in sorbitol solution as the boron source in BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Camundongos , Animais , Terapia por Captura de Nêutron de Boro/métodos , Sorbitol , Boro , Resultado do Tratamento , Frutose
12.
Int J Med Microbiol ; 313(3): 151581, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37209590

RESUMO

Fluorine-18-fluorodeoxyglucose ([18F]FDG) positron emission tomography (18F-FDG-PET) is widely used for the detection of inflammatory and infectious diseases. Although this modality has proven to be a useful diagnostic tool, reliable distinction of bacterial infection from sterile inflammation or even from a malignancy remains challenging. Therefore, there is a need for bacteria-specific tracers for PET imaging that facilitate a reliable distinction of bacterial infection from other pathology. The present study was aimed at exploring the potential of 2-[18F]-fluorodeoxysorbitol ([18F]FDS) as a tracer for detection of Enterobacterales infections. Sorbitol is a sugar alcohol that is commonly metabolized by bacteria of the Enterobacterales order, but not by mammalian cells, which makes it an attractive candidate for targeted bacterial imaging. The latter is important in view of the serious clinical implications of infections caused by Enterobacterales. Here we demonstrate that sorbitol-based PET can be applied to detect a broad range of clinical bacterial isolates not only in vitro, but also in blood and ascites samples from patients suffering from Enterobacterales infections. Notably, the possible application of [18F]FDS is not limited to Enterobacterales since Pseudomonas aeruginosa and Corynebacterium jeikeium also showed substantial uptake of this tracer. We conclude that [18F]FDS is a promising tracer for PET-imaging of infections caused by a group of bacteria that can cause serious invasive disease.


Assuntos
Infecções Bacterianas , Fluordesoxiglucose F18 , Animais , Humanos , Tomografia por Emissão de Pósitrons/métodos , Sorbitol , Bactérias , Mamíferos
13.
Cell Death Dis ; 14(1): 65, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707502

RESUMO

NF-Y is a trimeric transcription factor whose binding site -the CCAAT box- is enriched in cancer-promoting genes. The regulatory subunit, the sequence-specificity conferring NF-YA, comes in two major isoforms, NF-YA long (NF-YAl) and short (NF-YAs). Extensive expression analysis in epithelial cancers determined two features: widespread overexpression and changes in NF-YAl/NF-YAs ratios (NF-YAr) in tumours with EMT features. We performed wet and in silico experiments to explore the role of the isoforms in breast -BRCA- and gastric -STAD- cancers. We generated clones of two Claudinlow BRCA lines SUM159PT and BT549 ablated of exon-3, thus shifting expression from NF-YAl to NF-YAs. Edited clones show normal growth but reduced migratory capacities in vitro and ability to metastatize in vivo. Using TCGA, including upon deconvolution of scRNA-seq data, we formalize the clinical importance of high NF-YAr, associated to EMT genes and cell populations. We derive a novel, prognostic 158 genes signature common to BRCA and STAD Claudinlow tumours. Finally, we identify splicing factors associated to high NF-YAr, validating RBFOX2 as promoting expression of NF-YAl. These data bring three relevant results: (i) the definition and clinical implications of NF-YAr and the 158 genes signature in Claudinlow tumours; (ii) genetic evidence of 28 amino acids in NF-YAl with EMT-promoting capacity; (iii) the definition of selected splicing factors associated to NF-YA isoforms.


Assuntos
Fator de Ligação a CCAAT , Neoplasias , Humanos , Fator de Ligação a CCAAT/genética , Neoplasias/genética , Regiões Promotoras Genéticas , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/metabolismo , Sorbitol , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal
14.
J Integr Plant Biol ; 65(5): 1241-1261, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36541724

RESUMO

Sorbitol is an important signaling molecule in fruit trees. Here, we observed that sorbitol increased during flower bud differentiation (FBD) in loquat (Eriobotrya japonica Lindl.). Transcriptomic analysis suggested that bud formation was associated with the expression of the MADS-box transcription factor (TF) family gene, EjCAL. RNA fluorescence in situ hybridization showed that EjCAL was enriched in flower primordia but hardly detected in the shoot apical meristem. Heterologous expression of EjCAL in Nicotiana benthamiana plants resulted in early FBD. Yeast-one-hybrid analysis identified the ERF12 TF as a binding partner of the EjCAL promoter. Chromatin immunoprecipitation-PCR confirmed that EjERF12 binds to the EjCAL promoter, and ß-glucuronidase activity assays indicated that EjERF12 regulates EjCAL expression. Spraying loquat trees with sorbitol promoted flower bud formation and was associated with increased expression of EjERF12 and EjCAL. Furthermore, we identified EjUF3GaT1 as a target gene of EjCAL and its expression was activated by EjCAL. Function characterization via overexpression and RNAi reveals that EjUF3GaT1 is a biosynthetic gene of flavonoid hyperoside. The concentration of the flavonoid hyperoside mirrored that of sorbitol during FBD and exogenous hyperoside treatment also promoted loquat bud formation. We identified a mechanism whereby EjCAL might regulate hyperoside biosynthesis and confirmed the involvement of EjCAL in flower bud formation in planta. Together, these results provide insight into bud formation in loquat and may be used in efforts to increase yield.


Assuntos
Eriobotrya , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Eriobotrya/genética , Eriobotrya/metabolismo , Sorbitol/metabolismo , Hibridização in Situ Fluorescente , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo , Flavonoides/metabolismo
15.
Colloids Surf B Biointerfaces ; 220: 112910, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36240573

RESUMO

The stabilizing effect of some osmolytes including betaine, mannitol, proline, sorbitol, and trehalose (each 0.5 M) was investigated on the ultrasound-irradiated (60 kHz and 138 W, for 240 min) lipase by determination of the enzyme half-life time, evaluation of the enzymatic reaction velocity (Vmax), and hydrolysis of coconut oil for production of lauric acid (the main saturated fatty acid of the oil). The enzyme conformational stability was also assessed by circular dichroism (CD) and fluorescence spectroscopy. The average half-life time of mannitol- and sorbitol-treated lipase under the ultrasound irradiation was 511 ± 3 min and 531 ± 2 min, respectively; 3-fold higher than the unirradiated enzyme. The Vmax value of the ultrasound-treated lipase increased from 100 ± 3 nmol min-1 in the absence of osmolyte to 500 ± 7 nmol min-1 and 500 ± 9 nmol min-1 in the presence of mannitol and sorbitol, respectively. CD and fluorescence spectra indicated that mannitol and sorbitol enhanced the rigidity of the lipase molecular conformational structure, increasing the enzyme stability against the ultrasonic field. The ultrasound-irradiated lipase was then used to hydrolyze coconut oil in the absence or presence of the selected osmolytes, which led to liberate 310 ± 6 mg g-1, 413 ± 7 mg g-1, and 420 ± 4 mg g-1 of lauric acid in the absence or presence of sorbitol and mannitol, respectively. In the absence of an ultrasonic field, the non-osmotically-treated lipase was able to liberate only 211 ± 5 mg g-1 of lauric acid. These promising results indicate that sorbitol and mannitol stabilize the structural conformation of lipase under an ultrasonic field which in turn could improve the enzymatic hydrolysis of coconut oil.


Assuntos
Lipase , Sorbitol , Lipase/química , Hidrólise , Óleo de Coco , Sorbitol/química , Manitol
16.
Sci Rep ; 12(1): 16635, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198853

RESUMO

Cryopreservation of rare plant materials is an important approach for preserving germplasms and is a good added concept to tissue banking. The preservation of embryogenic cell suspensions is even more valuable as the tissues facilitate in producing millions of embryos, plantlets and generates transgenics en masse. Catharanthus roseus is a medicinally important plant that produces a variety of anticancerous phytocompounds and needs conservation of alkaloid producing cell lines. In this study, embryogenic tissue banking has been attempted in C. roseus by the two-step cryopreservation method combining cryoprotection and dehydration. Prior to plunging into liquid nitrogen (LN), the tissues were exposed to osmotic-and cryoprotective agents. Two osmotic agents (sugar and sorbitol) and three cryoprotective compounds, polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and glycerol were used at varying concentrations to protect cells from freezing damages. Both sucrose and sorbitol increased callus biomass post-cryopreservation; the influence of sucrose was however, more prominent. Embryogenic tissue treated in medium with 0.4 M sucrose for 2 days followed by 5% PEG for 2 h showed maximum viability before (83%) and after (55%) cryopreservation, high regrowth percentage (77%) and produced an average 9 cell colonies per Petri dish. Additionally, dehydration (1-5 h) was tested to reduce water content for improving viability and regrowth of cryopreserved embryogenic cells. Among the various tested cryoprotective conditions, the highest (72%) viability was observed following the combination of treatments with 0.4 M sucrose (2 days),10% PEG (2 h) and dehydration (2 h). Maximum regrowth percentage (88%) and 12 colonies/petri dish was noted in combination of 0.4 M sucrose + 5% PEG. The cryopreserved calli differentiated into somatic embryos (52.78-54.33 globular embryos/callus mass) in NAA (0.5 mg/l) and BAP (0.5-1.0 mg/l) added media. Plantlets were successfully regenerated from cryopreserved tissue and the 2C DNA was estimated through flow cytometry. The genome size of cryopreserved regenerant was 1.51 pg/2C, which is similar to field-grown Catharanthus plants. Vinblastine and vincristine levels were nearly the same in mother plant's and frozen (cryopreserved) leaf tissue. The post cryopreservation embryogenesis protocol may be used for continuous production of plants for future applications.


Assuntos
Catharanthus , Crioprotetores , Criopreservação/métodos , Crioprotetores/farmacologia , Desidratação , Dimetil Sulfóxido/farmacologia , Desenvolvimento Embrionário , Tamanho do Genoma , Glicerol , Nitrogênio , Polietilenoglicóis , Sorbitol/farmacologia , Sacarose , Vimblastina/farmacologia , Vincristina/farmacologia , Água
17.
Angew Chem Int Ed Engl ; 61(50): e202209245, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264713

RESUMO

Upregulation of heat shock proteins (HSPs) drastically compromises the treatment effect of mild photothermal therapy (PTT). Herein, we designed a polyporous Cu single atom nanozyme (Cu SAzyme) loaded with licogliflozin (LIK066) for HSP-silencing induced mild PTT. On one hand, LIK066 inhibits glucose uptake by shutting sodium-dependent glucose transporter (SGLT) "valve", effectively blocking the energy source for adenosine triphosphate (ATP) generation. Without sufficient energy, cancer cells cannot synthesize HSPs. On the other hand, Cu SAzyme presents extraordinary multienzyme activities to induce reactive oxygen species (ROS) storm formation, which can damage the existing HSPs in cancer cells. Through a two-pronged strategy of SGLT inhibitor and ROS storm, LIK066-loaded Cu SAzyme shows high efficiency for comprehensive removal of HSPs to realize mild PTT.


Assuntos
Neoplasias , Terapia Fototérmica , Humanos , Espécies Reativas de Oxigênio/metabolismo , Anidridos , Sorbitol , Proteínas de Choque Térmico/metabolismo , Neoplasias/terapia , Linhagem Celular Tumoral
18.
Mol Vis ; 28: 230-244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284671

RESUMO

Background: The mechanism of diabetic macular edema (DME) was explored by comparing the intraocular metabolite profiles of the aqueous humor of patients with DME to those of diabetic patients without DME using untargeted metabolomic analysis. Methods: Aqueous samples from 18 type 2 diabetic patients with DME and 18 type 2 diabetic patients without DME used as controls were analyzed using liquid chromatography-mass spectrometry (LCMS). The two groups of patients were age and gender matched and had no systemic diseases other than diabetes mellitus (DM). The metabolites were analyzed using orthogonal partial least square discriminant analysis. Results: The metabolite profiles in DME patients differed from those in DM controls. This indicates the following metabolic derangements in DME: (a) a higher amount of oxidized fatty acids but a lower amount of endogenous antioxidants (oxidative stress); (b) higher levels of ß-glucose and homocysteine but a lower level of sorbitol (hyperglycemia); (c) a higher amount of prostaglandin metabolites (inflammation); (d) higher amounts of acylcarnitines, odd-numbered fatty acids, and 7,8-diaminononanoate (respiration deterioration); (e) a higher amount of neurotransmitter metabolites and homovanillic acid (neuronal damage); (f) a lower amount of extracellular matrix (ECM) constituents (ECM deterioration); and (g) a higher amount of di-amino peptides (microvascular damage). Conclusions: The change in the metabolic profiles in the aqueous humor of DME patients compared to DM controls without DME indicates that DME patients may have less capability to resist various stresses or damaging pathological conditions, such as oxidative stress, mitochondrial insufficiency, inflammation, and ECM deterioration.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Edema Macular , Humanos , Retinopatia Diabética/metabolismo , Humor Aquoso/metabolismo , Antioxidantes , Ácido Homovanílico/metabolismo , Diabetes Mellitus Tipo 2/complicações , Inflamação/metabolismo , Homocisteína , Sorbitol/análise , Sorbitol/metabolismo , Prostaglandinas/análise , Prostaglandinas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo
19.
Curr Genet ; 68(5-6): 661-674, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36112198

RESUMO

The phospholipase B homolog Plb1 and the cAMP-dependent protein kinase (PKA) pathway are required by fission yeast, also known as to Schizosaccharomyces pombe, to grow under KCl-stress conditions. Here, we report the relative contributions of Plb1 and the cAMP/PKA pathway during the hypertonic stress response. We show that the plb1∆, cyr1∆, and pka1∆ single mutants are sensitive to high concentrations of KCl but insensitive to sorbitol-induced osmotic stress. In contrast, the plb1∆ cyr1∆ and plb1∆ pka1∆ double mutants are hypersensitive to KCl and sorbitol. The cyr1∆ pka1∆ double mutants showed the same phenotype of each single mutant. Growth inhibition due to hypertonic stress in the plb1∆, plb1∆ cyr1∆, and plb1∆ pka1∆ strains was partially rescued by cgs1 deletion-cgs1∆ has constitutively active Pka1-or by the deletion of transcription factor Rst2, which is negatively regulated by Pka1. Pka1-GFP localized in the nucleus and cytoplasm in plb1∆, whereas it is localized only in the cytoplasm in cyr1∆, indicating that Plb1 does not regulate Pka1 localization. Glucose limitation downregulates the PKA pathway, and it was accordingly observed that glucose limitation in plb1∆ further increased the strain's sensitivity to KCl. Growth inhibition by KCl in plb1∆ under glucose-limited conditions was significantly rescued by cgs1∆ and slightly rescued by rst2∆. These findings indicate that, in fission yeast, Plb1 and the glucose-sensing cAMP/PKA pathway play a synergistic role in responding to hypertonic stress.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Pressão Osmótica , Lisofosfolipase/metabolismo , Glucose/metabolismo , Sorbitol/metabolismo , Fatores de Transcrição/metabolismo
20.
J Virol Methods ; 309: 114598, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35940276

RESUMO

Adeno-associated virus (AAV) have long been one of the most common and versatile vectors for in vitro and in vivo gene transfer. AAV production protocols are complex and time consuming, one key concern is the recovery and infectivity of viral vector after purification. The buffer used in the storage of AAV at 4 °C and - 80 °C is a crucial factor and methods to improve it have been thoroughly investigated. Viral core facilities have developed formulas using either 0.001% Pluronic F68 or 5% sorbitol in their storage buffers based on the results of this research. Interestingly, few use formulations that include both a non-ionic surfactant and cryopreservative. In this study, AAV9 stored at 4 °C and at - 80 °C in the standard buffers is compared to a buffer that contains 5% glycerol and 0.001% Pluronic F68. By viral genome quantitation with qPCR, all three formulations show the same extent of viral titer loss at 4 °C, while after several cycles of freeze/thaws at - 80 °C, the viral recovery and infectivity in the preparation with both glycerol and Pluronic F68 was most stable compared to the other buffers.


Assuntos
Dependovirus , Poloxâmero , Dependovirus/genética , Vetores Genéticos , Glicerol , Sorbitol , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA