Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.608
Filtrar
1.
Int J Nanomedicine ; 19: 4103-4120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736658

RESUMO

Introduction: Gold nanoparticles are promising candidates as vehicles for drug delivery systems and could be developed into effective anticancer treatments. However, concerns about their safety need to be identified, addressed, and satisfactorily answered. Although gold nanoparticles are considered biocompatible and nontoxic, most of the toxicology evidence originates from in vitro studies, which may not reflect the responses in complex living organisms. Methods: We used an animal model to study the long-term effects of 20 nm spherical AuNPs coated with bovine serum albumin. Mice received a 1 mg/kg single intravenous dose of nanoparticles, and the biodistribution and accumulation, as well as the organ changes caused by the nanoparticles, were characterized in the liver, spleen, and kidneys during 120 days. Results: The amount of nanoparticles in the organs remained high at 120 days compared with day 1, showing a 39% reduction in the liver, a 53% increase in the spleen, and a 150% increase in the kidneys. The biological effects of chronic nanoparticle exposure were associated with early inflammatory and fibrotic responses in the organs and were more pronounced in the kidneys, despite a negligible amount of nanoparticles found in renal tissues. Conclusion: Our data suggest, that although AuNPs belong to the safest nanomaterial platforms nowadays, due to their slow tissue elimination leading to long-term accumulation in the biological systems, they may induce toxic responses in the vital organs, and so understanding of their long-term biological impact is important to consider their potential therapeutic applications.


Assuntos
Ouro , Rim , Fígado , Nanopartículas Metálicas , Soroalbumina Bovina , Baço , Animais , Ouro/química , Ouro/farmacocinética , Ouro/toxicidade , Ouro/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/administração & dosagem , Baço/efeitos dos fármacos , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Rim/efeitos dos fármacos , Rim/metabolismo , Distribuição Tecidual , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Masculino , Tamanho da Partícula
2.
Anal Methods ; 16(19): 3125-3130, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38700061

RESUMO

A new fluorescence sensing approach has been proposed for the precise determination of the anti-cancer drug oxaliplatin (Oxal-Pt). This method entails synthesizing blue-emitting copper nanoclusters (CuNCs) functionalized with bovine serum albumin (BSA) as the stabilizing agent. Upon excitation at 360 nm, the resultant probe exhibits emission at 460 nm. Notably, the fluorescence response of BSA@CuNCs substantially increases upon incubation with Oxal-Pt due to multiple binding interactions between the drug and the fluorescent probe. These interactions involve hydrogen bonding, hydrophobic interaction, and the high affinity between the SH groups (cysteine residues of BSA) and platinum (in Oxal-Pt). Consequently, this interaction induces aggregation-induced emission enhancement (AIEE) of BSA@CuNCs. The probe demonstrates a broad response range from 0.08 to 140.0 µM, along with a low detection limit of 20.0 nM, determined based on a signal-to-noise ratio of 3. Furthermore, the probe effectively detects Oxal-Pt in injections, human serum, and urine samples, yielding acceptable results. This study represents a significant advancement in the development of a straightforward and efficient sensor for monitoring platinum-containing anti-cancer drugs during chemotherapy.


Assuntos
Antineoplásicos , Cobre , Monitoramento de Medicamentos , Corantes Fluorescentes , Oxaliplatina , Soroalbumina Bovina , Espectrometria de Fluorescência , Oxaliplatina/química , Soroalbumina Bovina/química , Cobre/química , Humanos , Antineoplásicos/química , Monitoramento de Medicamentos/métodos , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Animais , Limite de Detecção , Neoplasias/tratamento farmacológico , Bovinos
3.
Anal Chim Acta ; 1307: 342645, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719410

RESUMO

Electrochemical biosensors with high sensitivity can detect low concentrations of biomarkers, but their practical detection applications in complex biological environments such as human serum and sweat are severely limited by the biofouling. Herein, a conductive hydrogel based on bovine serum albumin (BSA) and conductive carbon black (CCB) was prepared for the construction of an antifouling biosensor. The BSA hydrogel (BSAG) was doped with CCB, and the prepared composite hydrogel exhibited good conductivity originated from the CCB and antifouling capability owing to the BSA hydrogel. An antifouling biosensor for the sensitive detection of cortisol was fabricated by drop-coating the conductive hydrogel onto a poly(3,4-ethylenedioxythiophene) (PEDOT) modified electrode and further immobilizing the cortisol aptamer. The constructed biosensor showed a linear range of 100 pg mL-1 - 10 µg mL-1 and a limit of detection of 26.0 pg mL-1 for the detection of cortisol, and it was capable of assaying cortisol accurately in complex human serum. This strategy of preparing antifouling and conductive hydrogels provides an effective way to develop robust electrochemical biosensors for biomarker detection in complex biological media.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Hidrocortisona , Hidrogéis , Soroalbumina Bovina , Fuligem , Humanos , Técnicas Biossensoriais/métodos , Soroalbumina Bovina/química , Hidrocortisona/sangue , Hidrocortisona/análise , Fuligem/química , Técnicas Eletroquímicas/métodos , Hidrogéis/química , Bovinos , Incrustação Biológica/prevenção & controle , Limite de Detecção , Animais , Eletrodos , Aptâmeros de Nucleotídeos/química , Polímeros , Compostos Bicíclicos Heterocíclicos com Pontes
4.
J Med Chem ; 67(8): 6822-6838, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588468

RESUMO

Weak antigens represented by MUC1 are poorly immunogenic, which greatly constrains the development of relevant vaccines. Herein, we developed a multifunctional lipidated protein as a carrier, in which the TLR1/2 agonist Pam3CSK4 was conjugated to the N-terminus of MUC1-loaded carrier protein BSA through pyridoxal 5'-phosphate-mediated transamination reaction. The resulting Pam3CSK4-BSA-MUC1 conjugate was subsequently incorporated into liposomes, which biomimics the membrane structure of tumor cells. The results indicated that this lipidated protein carrier significantly enhanced antigen uptake by APCs and obviously augmented the retention of the vaccine at the injection site. Compared with the BSA-MUC1 and BSA-MUC1 + Pam3CSK4 groups, Pam3CSK4-BSA-MUC1 evoked 22- and 11-fold increases in MUC1-specific IgG titers. Importantly, Pam3CSK4-BSA-MUC1 elicited robust cellular immunity and significantly inhibited tumor growth. This is the first time that lipidated protein was constructed to enhance antigen immunogenicity, and this universal carrier platform exhibits promise for utilization in various vaccines, holding the potential for further clinical application.


Assuntos
Lipossomos , Mucina-1 , Animais , Mucina-1/imunologia , Mucina-1/química , Camundongos , Humanos , Lipopeptídeos/química , Lipopeptídeos/imunologia , Lipopeptídeos/farmacologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Soroalbumina Bovina/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Feminino , Camundongos Endogâmicos BALB C , Antígenos/imunologia , Linhagem Celular Tumoral
5.
Biomolecules ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672430

RESUMO

Bovine serum albumin (BSA) plays a crucial role in cell culture media, influencing cellular processes such as proliferation and differentiation. Although it is commonly included in chondrogenic differentiation media, its specific function remains unclear. This study explores the effect of different BSA concentrations on the chondrogenic differentiation of human adipose-derived stromal/stem cells (hASCs). hASC pellets from six donors were cultured under chondrogenic conditions with three BSA concentrations. Surprisingly, a lower BSA concentration led to enhanced chondrogenesis. The degree of this effect was donor-dependent, classifying them into two groups: (1) high responders, forming at least 35% larger, differentiated pellets with low BSA in comparison to high BSA; (2) low responders, which benefitted only slightly from low BSA doses with a decrease in pellet size and marginal differentiation, indicative of low intrinsic differentiation potential. In all cases, increased chondrogenesis was accompanied by hypertrophy under low BSA concentrations. To the best of our knowledge, this is the first study showing improved chondrogenicity and the tendency for hypertrophy with low BSA concentration compared to standard levels. Once the tendency for hypertrophy is understood, the determination of BSA concentration might be used to tune hASC chondrogenic or osteogenic differentiation.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Soroalbumina Bovina , Humanos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Soroalbumina Bovina/farmacologia , Soroalbumina Bovina/química , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
6.
J Inorg Biochem ; 256: 112570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685138

RESUMO

This work reports on the synthesis of triphenylphosphine-labelled cationic phthalocyanines (Pc) complexed with bovine serum albumin (BSA) and gold nanoparticles (Au NPs). This nano-complex (Pc-BSA-Au) is studied for its photodynamic therapy (PDT) activity compared to the non-complexed Pc counterpart. The photochemical properties and in vitro PDT efficacies of the Pc and the nano-complex were determined and are compared herein. The singlet oxygen (1O2) yields of the Pcs were determined and are reported in DMF. A singlet oxygen quantum yield of 0.47 was obtained for the Pcs. The PDT efficacies of the complexes were thereafter determined using malignant melanoma A375 cancer cell line in vitro. An increase in the cell toxicity was observed for cells treated with Pc-BSA-Au compared to those treated with the Pc alone. The cell survival percentages were 23.1% for cells treated with Pc-BSA-Au and 48.7% for those treated with Pc alone under PDT treatments.


Assuntos
Ouro , Indóis , Isoindóis , Melanoma , Nanopartículas Metálicas , Compostos Organofosforados , Fotoquimioterapia , Fármacos Fotossensibilizantes , Soroalbumina Bovina , Ouro/química , Ouro/farmacologia , Soroalbumina Bovina/química , Humanos , Nanopartículas Metálicas/química , Fotoquimioterapia/métodos , Indóis/química , Indóis/farmacologia , Linhagem Celular Tumoral , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Bovinos , Oxigênio Singlete/metabolismo
7.
Biomacromolecules ; 25(5): 2852-2862, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38574372

RESUMO

Albumin nanoparticles are widely used in biomedicine due to their safety, low immunogenicity, and prolonged circulation. However, incorporating therapeutic molecules into these carriers faces challenges due to limited binding sites, restricting drug conjugation efficiency. We introduce a universal nanocarrier platform (X-UNP) using polyphenol-based engineering to incorporate phenolic moieties into albumin nanoparticles. Integration of catechol or galloyl groups significantly enhances drug binding and broadens the drug conjugation possibilities. Our study presents a library of X-UNP nanoparticles with improved drug-loading efficiency, achieving up to 96% across 10 clinically used drugs, surpassing conventional methods. Notably, ibuprofen-UNP nanoparticles exhibit a 5-fold increase in half-life compared with free ibuprofen, enhancing in vivo analgesic and anti-inflammatory effectiveness. This research establishes a versatile platform for protein-based nanosized materials accommodating various therapeutic agents in biotechnological applications.


Assuntos
Nanopartículas , Polifenóis , Polifenóis/química , Nanopartículas/química , Animais , Camundongos , Ibuprofeno/química , Portadores de Fármacos/química , Humanos , Albuminas/química , Soroalbumina Bovina/química
8.
Analyst ; 149(10): 3017-3025, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38606503

RESUMO

Tumor necrosis factor-alpha (TNF-α) serves as a crucial biomarker in various diseases, necessitating sensitive detection methodologies. This study introduces an innovative approach utilizing an aptamer-functionalized surface plasmon resonance (SPR) substrate together with an ultrasensitive measure, the Goos-Hänchen (GH) shift, to achieve sensitive detection of TNF-α. The developed GH-aptasensing platform has shown a commendable figure-of-merit of 1.5 × 104 µm per RIU, showcasing a maximum detectable lateral position shift of 184.7 ± 1.2 µm, as characterized by the glycerol measurement. Employing aptamers as the recognition unit, the system exhibits remarkable biomolecule detection capabilities, including the experimentally obtained detection limit of 1 aM for the model protein bovine serum albumin (BSA), spanning wide dynamic ranges. Furthermore, the system successfully detects TNF-α, a small cytokine, with an experimental detection limit of 1 fM, comparable to conventional SPR immunoassays. This achievement represents one of the lowest experimentally derived detection limits for cytokines in aptamer-based SPR sensing. Additionally, the application of the GH shift marks a ground breaking advancement in aptamer-based biosensing, holding significant promise for pushing detection limits further, especially for small cytokine targets.


Assuntos
Aptâmeros de Nucleotídeos , Limite de Detecção , Soroalbumina Bovina , Ressonância de Plasmônio de Superfície , Fator de Necrose Tumoral alfa , Aptâmeros de Nucleotídeos/química , Ressonância de Plasmônio de Superfície/métodos , Fator de Necrose Tumoral alfa/análise , Soroalbumina Bovina/química , Animais , Bovinos , Técnicas Biossensoriais/métodos , Humanos , Ouro/química
9.
Int J Biol Macromol ; 268(Pt 1): 131739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657920

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disease with high prevalence, long duration and poor prognosis. The blood-brain barrier (BBB) is a physiologic barrier in the central nervous system, which hinders the entry of most drugs into the brain from the blood, thus affecting the efficacy of drugs for AD. Natural products are recognized as one of the promising and unique therapeutic approaches to treat AD. To improve the efficiency and therapeutic effect of the drug across the BBB, a natural polyphenolic compound, procyanidin C-1 (C1) was encapsulated in glucose-functionalized bovine serum albumin (BSA) nanoparticles to construct Glu-BSA/C1 NPs in our study. Glu-BSA/C1 NPs exhibited good stability, slow release, biocompatibility and antioxidant properties. In addition, Glu-BSA/C1 NPs penetrated the BBB, accumulated in the brain by targeting Glut1, and maintained the BBB integrity both in vitro and in vivo. Moreover, Glu-BSA/C1 NPs alleviated memory impairment of 5 × FAD mice by reducing Aß deposition and Tau phosphorylation and promoting neurogenesis. Mechanistically, Glu-BSA/C1 NPs significantly activated the PI3K/AKT pathway and inhibited the NLRP3/Caspase-1/IL-1ß pathway thereby suppressing neuroinflammation. Taken together, Glu-BSA/C1 NPs could penetrate the BBB and mitigate neuroinflammation in AD, which provides a new therapeutic approach targeting AD.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Modelos Animais de Doenças , Glucose , Nanopartículas , Soroalbumina Bovina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Animais , Soroalbumina Bovina/química , Camundongos , Glucose/metabolismo , Nanopartículas/química , Proantocianidinas/farmacologia , Proantocianidinas/química , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Biflavonoides/farmacologia , Biflavonoides/química , Catequina/farmacologia , Catequina/química , Catequina/análogos & derivados , Humanos , Masculino
10.
ACS Appl Bio Mater ; 7(5): 3414-3430, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38687465

RESUMO

We have semi-synthesized a natural product 7-acetylhorminone from crude extract of Premna obtusifolia (Indian headache tree), which is active against colorectal cancer after probation through computational screening methods as it passed through the set parameters of pharmacokinetics (most important nonblood-brain barrier permeant) and drug likeliness (e.g., Lipinski's, Ghose's, Veber's rule) which most other phytoconstituents failed to pass combined with docking with EGFR protein which is highly upregulated in the colorectal carcinoma cell. The structure of 7-acetylhorminone was confirmed by single crystal X-ray diffraction studies and 1H NMR, 13C NMR, and COSY studies. To validate the theoretical studies, first, in vitro experiments were carried out against human colorectal carcinoma cell lines (HCT116) which revealed the potent cytotoxic efficacy of 7-acetylhorminone and verified preliminary investigation. Second, the drugability of 7-acetylhorminone interaction with serum albumin proteins (HSA and BSA) is evaluated both theoretically and experimentally via steady-state fluorescence spectroscopic studies, circular dichroism, isothermal titration calorimetry, and molecular docking. In summary, this study reveals the applicability of 7-acetylhorminone as a potent drug candidate or as a combinatorial drug against colorectal cancer.


Assuntos
Neoplasias Colorretais , Soroalbumina Bovina , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/química , Ensaios de Seleção de Medicamentos Antitumorais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Estrutura Molecular , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HCT116 , Proliferação de Células/efeitos dos fármacos , Simulação de Acoplamento Molecular , Sobrevivência Celular/efeitos dos fármacos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo
11.
Int J Biol Macromol ; 268(Pt 1): 131732, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649078

RESUMO

Drug delivery systems based on hydrogel microcarriers have shown enormous achievements in tumor treatment. Current research direction mainly concentrated on the improvement of the structure and function of the microcarriers to effectively deliver drugs for enhanced cancer treatment with decreased general toxicity. Herein, we put forward novel hierarchical mesoporous silicon nanoparticles (MSNs) and bovine serum albumin (BSA) composite microparticles (MPMSNs@DOX/FU) delivering doxorubicin (DOX) and 5-fluorouracil (FU) for effective tumor therapy with good safety. The DOX and FU could be efficiently loaded in the MSNs, which were further encapsulated into methacrylate BSA (BSAMA) microparticles by applying a microfluidic technique. When transported to the tumor area, DOX and FU will be persistently released from the MPMSNs@DOX/FU and kept locally to lessen general toxicity. Based on these advantages, MPMSNs@DOX/FU could observably kill liver cancer cells in vitro, and evidently suppress the tumor development of liver cancer nude mice model in vivo. These results suggest that such hierarchical hydrogel microparticles are perfect candidates for liver cancer treatment, holding promising expectations for impactful cancer therapy.


Assuntos
Doxorrubicina , Portadores de Fármacos , Fluoruracila , Neoplasias Hepáticas , Soroalbumina Bovina , Silício , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Animais , Fluoruracila/farmacologia , Fluoruracila/química , Fluoruracila/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Silício/química , Humanos , Camundongos , Soroalbumina Bovina/química , Porosidade , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Sistemas de Liberação de Medicamentos , Camundongos Nus , Nanopartículas/química , Liberação Controlada de Fármacos , Linhagem Celular Tumoral , Microesferas , Células Hep G2
12.
Chem Biol Interact ; 395: 111008, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38636791

RESUMO

Oxidative protein damage involving carbonylation of respiratory tract proteins typically accompanies exposure to tobacco smoke. Such damage can arise via multiple mechanisms, including direct amino acid oxidation by reactive oxygen species or protein adduction by electrophilic aldehydes. This study investigated the relative importance of these pathways during exposure of a model protein to fresh cigarette emission extracts. Briefly, protein carbonyl adducts were estimated in bovine serum albumin following incubation in buffered solutions with whole cigarette emissions extracts prepared from either a single 1R6F research cigarette or a single "Heat-not-Burn" e-cigarette. Although both extracts caused concentration-dependent protein carbonylation, conventional cigarette extracts produced higher adduct yields than e-cigarette extracts. Superoxide radical generation by conventional and e-cigarette emissions was assessed by monitoring nitro blue tetrazolium reduction and was considerably lower in extracts made from "Heat-Not-Burn" e-cigarettes. The superoxide dismutase/catalase mimic EUK-134 strongly suppressed radical production by whole smoke extracts from conventional cigarettes, however, it did not diminish protein carbonyl adduction when incubating smoke extracts with the model protein. In contrast, edaravone, a neuroprotective drug with strong carbonyl-trapping properties, strongly suppressed protein damage without inhibiting superoxide formation. Although these findings require extension to appropriate cell-based and in vivo systems, they suggest reactive aldehydes in tobacco smoke make greater contributions to oxidative protein damage than smoke phase radicals.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Carbonilação Proteica , Soroalbumina Bovina , Fumaça , Superóxidos , Produtos do Tabaco , Superóxidos/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Fumaça/efeitos adversos , Soroalbumina Bovina/química , Produtos do Tabaco/efeitos adversos , Bovinos , Animais , Nicotiana/química , Temperatura Alta
13.
Sci Rep ; 14(1): 7875, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570564

RESUMO

This study examines the manufacturing, characterization, and biological evaluation of platinum nanoparticles, which were synthesized by Enterobacter cloacae and coated with Bovine Serum Albumin (BSA) and Resveratrol (RSV). The formation of PtNPs was confirmed with the change of color from dark yellow to black, which was due to the bioreduction of platinum chloride by E. cloacae. BSA and RSV functionalization enhanced these nanoparticles' biocompatibility and therapeutic potential. TGA, SEM, XRD, and FTIR were employed for characterization, where PtNPs and drug conjugation-related functional groups were studied by FTIR. XRD confirmed the crystalline nature of PtNPs and Pt-BSA-RSV NPs, while TGA and SEM showed thermal stability and post-drug coating morphological changes. Designed composite was also found to be biocompatible in nature in hemolytic testing, indicating their potential in Biomedical applications. After confirmation of PtNPs based nanocaompsite synthesis, they were examined for anti-bacterial, anti-oxidant, anti-inflammatory, and anti-cancer properties. Pt-BSA-RSV NPs showed higher concentration-dependent DPPH scavenging activity, which measured antioxidant capability. Enzyme inhibition tests demonstrated considerable anti-inflammatory activity against COX-2 and 15-LOX enzymes. In in vitro anticancer studies, Pt-BSA-RSV NPs effectively killed human ovarian cancer cells. This phenomenon was demonstrated to be facilitated by the acidic environment of cancer, as the drug release assay confirmed the release of RSV from the NP formulation in the acidic environment. Finally, Molecular docking also demonstrated that RSV has strong potential as an anti-oxidant, antibacterial, anti-inflammatory, and anticancer agent. Overall, in silico and in vitro investigations in the current study showed good medicinal applications for designed nanocomposites, however, further in-vivo experiments must be conducted to validate our findings.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Soroalbumina Bovina/química , Nanopartículas Metálicas/química , Resveratrol/farmacologia , Platina/farmacologia , Platina/química , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Nanopartículas/química , Anti-Inflamatórios
14.
Free Radic Res ; 58(3): 194-216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38563404

RESUMO

Microwave (MW) radiations are widely used in communications, radar and medical treatment and thus human exposure to MW radiations have increased tremendously, raising health concerns as MW has been implicated in induction of oxidative stress condition in our body. Few metallic nanoparticles (NPs) have been shown to mimic the activity of antioxidant enzymes and hence can be applied for the modulation of adverse effects caused by MW. Present study aimed to assess the biocompatibility of Bovine serum albumin (BSA) conjugated manganese dioxide nanoparticles (MNP*) and to counteract the impact of MW on the haematological system of male Wistar rats. Experiments were conducted in two sets. Set I involved biodistribution and antioxidant activity evaluation of MNP* at different doses. Results showed a dose-dependent increase in antioxidant potential and significant biodistribution in the liver, spleen, kidney, and testis, with no organ damage, indicating its biocompatibility. Experiment set II constituted the study of separate and combined effects of MW and MNP* on haematological parameters, oxidative status, and genotoxic study in the blood of rats. MW exposure significantly altered red blood cell count, hemoglobin, packed cell volume percentage, monocyte percentage, aspartate aminotransferase, Alanine aminotransferase and uric acid. MW also induced significant DNA damage in the blood. A significant increase in lipid peroxidation and a decrease in antioxidant enzyme superoxide dismutase was also observed in MW exposed group. However, these alterations were reduced significantly when MNP* was administered. Thus, MNP* showed biocompatibility and modulatory effects against MW-induced alterations in the haematological system of rats.


Assuntos
Compostos de Manganês , Micro-Ondas , Nanopartículas , Óxidos , Ratos Wistar , Soroalbumina Bovina , Animais , Masculino , Compostos de Manganês/química , Ratos , Soroalbumina Bovina/química , Óxidos/química , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Bovinos , Antioxidantes/farmacologia , Nanopartículas Metálicas/química
15.
Int J Biol Macromol ; 266(Pt 2): 131195, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565363

RESUMO

We fabricated hybrid nanoparticles consisting of organic semiconducting material with peptide sequence to reflect the target protein interaction. A phosphorescent OLED material, platinum octaethylporphyrin (PtOEP) was self-assembled by reprecipitation with the A17 peptide (YCAYYSPRHKTTF) selected as a probe ligand in order to recognize heat shock protein 70 (HSP70). The phosphorescence intensity of the PtOEP-A17 assembly was enhanced by 125 % after treatment with HSP70. The specificity of the protein interaction was confirmed in both solution and solid states of the PtOEP-A17 assembly against to BSA and nucleolin. We figured out that the phosphorescence lifetime of PtOEP-A17 assembly after exposed to HSP70 increased significantly to 153 ns from initial 115 ns. These simultaneous enhancements in phosphorescence and lifetime triggered by the specific protein interaction would open new applications of PtOEP, a representative material of light-emitting device fields.


Assuntos
Peptídeos , Peptídeos/química , Ligação Proteica , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/química , Medições Luminescentes , Porfirinas/química , Platina/química , Soroalbumina Bovina/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Nucleolina , Animais
16.
Food Chem ; 449: 139238, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583401

RESUMO

Bovine serum albumin (BSA) has emerged as a biomarker for mammary gland health and cow quality, being recognized as a significant allergenic protein. In this study, a novel flexible molecular imprinted electrochemical sensor by surface electropolymerization using pyrrole (Py) as functional monomer, which can be better applied to the detection of milk quality marker BSA. Based on computational results, with regard to all polypyrrole (PPy) conformations and amino-acid positions within the protein, the BSA molecule remained firmly embedded into PPy polymers with no biological changes. The molecular imprinted electrochemical sensor displayed a broad linear detection range from 1.0 × 10-4 to 50 ng·mL-1 (R2 = 0.995) with a low detection limit (LOD) of 4.5 × 10-2 pg·mL-1. Additionally, the sensor was highly selective, reproducible, stable and recoverable, suggesting that it might be utilized for the evaluation of milk quality.


Assuntos
Leite , Impressão Molecular , Soroalbumina Bovina , Animais , Leite/química , Bovinos , Soroalbumina Bovina/química , Pirróis/química , Polímeros/química , Biomarcadores/análise , Limite de Detecção , Técnicas Eletroquímicas/instrumentação
17.
Int J Biol Macromol ; 267(Pt 2): 131546, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614172

RESUMO

Chitosan-based nanoparticles inevitably adsorb numerous proteins in the bloodstream, forming a protein corona that significantly influences their functionality. This study employed a pre-coated protein corona using cyclic Arg-Gly-Asp peptide (cRGD)-modified bovine serum albumin (BcR) to confer tumor-targeting capabilities on siVEGF-loaded chitosan-based nanoparticles (CsR/siVEGF NPs) and actively manipulated the serum protein corona composition to enhance their anti-tumor angiogenesis. Consequently, BcR effectively binds to the nanoparticles' surface, generating nanocarriers of appropriate size and stability that enhance the inhibition of endothelial cell proliferation, migration, invasion, and tube formation, as well as suppress tumor proliferation and angiogenesis in tumor-bearing nude mice. Proteomic analysis indicated a significant enrichment of serotransferrin, albumin, and proteasome subunit alpha type-1 in the protein corona of BcR-precoated NPs formed in the serum of tumor-bearing nude mice. Additionally, there was a decrease in proteins associated with complement activation, immunoglobulins, blood coagulation, and acute-phase responses. This modification resulted in an enhanced impact on anti-tumor angiogenesis, along with a reduction in opsonization and inflammatory responses. Therefore, pre-coating of nanoparticles with a functionalized albumin corona to manipulate the composition of serum protein corona emerges as an innovative approach to improve the delivery effectiveness of chitosan-based carriers for siVEGF, targeting the inhibition of tumor angiogenesis.


Assuntos
Quitosana , Nanopartículas , Neovascularização Patológica , Coroa de Proteína , Soroalbumina Bovina , Quitosana/química , Animais , Nanopartículas/química , Camundongos , Humanos , Coroa de Proteína/química , Soroalbumina Bovina/química , Neovascularização Patológica/tratamento farmacológico , Camundongos Nus , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Bovinos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Angiogênese
18.
J Environ Sci (China) ; 143: 213-223, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644018

RESUMO

Chemical modifications of proteins induced by ambient ozone (O3) and nitrogen oxides (NOx) are of public health concerns due to their potential to trigger respiratory diseases. The laboratory and environmental exposure systems have been widely used to investigate their relevant mechanism in the atmosphere. Using bovine serum albumin (BSA) as a model protein, we evaluated the two systems and aimed to reduce the uncertainties of both the reactants and products in the corresponding kinetic study. In the laboratory simulation system, the generated gaseous pollutants showed negligible losses. Ten layers of BSA were coated on the flow tube with protein extraction recovery of 87.4%. For environmental exposure experiment, quartz fiber filter was selected as the upper filter with low gaseous O3 (8.0%) and NO2 (1.7%) losses, and cellulose acetate filter was appropriate for the lower filter with protein extraction efficiency of 95.2%. The protein degradation process was observed without the exposure to atmospheric oxidants and contributed to the loss of protein monomer mass fractions, while environmental factors (e.g., molecular oxygen and ultraviolet) may cause greater protein monomer losses. Based on the evaluation, the study exemplarily applied the two systems to protein modification and both showed that O3 promotes the protein oligomerization and nitration, while increased temperature can accelerate the oligomerization and increased relative humidity can inhibit the nitration in the environmental exposure samples. The developed laboratory and environmental systems are suitable for studying protein modifications formed under different atmospheric conditions. A combination of the two will further reveal the actual mechanism of protein modifications.


Assuntos
Poluentes Atmosféricos , Ozônio , Ozônio/química , Poluentes Atmosféricos/análise , Soroalbumina Bovina/química , Exposição Ambiental , Óxidos de Nitrogênio/análise , Proteínas/química
19.
Biochim Biophys Acta Gen Subj ; 1868(6): 130613, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593934

RESUMO

BACKGROUND: Serum albumin is the most abundant protein in the Mammalia blood plasma at where plays a decisive role in the transport wide variety of hydrophobic ligands. BSA undergoes oxidative modifications like the carbonylation by the reactive carbonyl species (RCSs) 4-hydroxy-2-nonenal (HNE), 4 hydroxy-2-hexenal (HHE), malondialdehyde (MDA) and 4-oxo-2-nonenal (ONE), among others. The structural and functional changes induced by protein carbonylation have been associated with the advancement of neurodegenerative, cardiovascular, metabolic and cancer diseases. METHODS: To elucidate structural effects of protein carbonylation with RCSs on BSA, parameters for six new non-standard amino acids were designated and molecular dynamics simulations of its mono­carbonylated-BSA systems were conducted in the AMBER force field. Trajectories were evaluated by RMSD, RMSF, PCA, RoG and SASA analysis. RESULTS: An increase in the conformational instability for all proteins modified with local changes were observed, without significant changes on the BSA global three-dimensional folding. A more relaxed compaction level and major solvent accessible surface area for modified systems was found. Four regions of high molecular fluctuation were identified in all modified systems, being the subdomains IA and IIIB those with the most remarkable local conformational changes. Regarding essential modes of domain movements, it was evidenced that the most representatives were those related to IA subdomain, while IIIB subdomain presented discrete changes. CONCLUSIONS: RCSs induces local structural changes on mono­carbonylated BSA. Also, this study extends our knowledge on how carbonylation by RCSs induce structural effects on proteins.


Assuntos
Aldeídos , Peroxidação de Lipídeos , Simulação de Dinâmica Molecular , Carbonilação Proteica , Soroalbumina Bovina , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Animais , Aldeídos/química , Aldeídos/metabolismo , Bovinos , Malondialdeído/metabolismo , Malondialdeído/química , Conformação Proteica
20.
J Inorg Biochem ; 255: 112541, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554578

RESUMO

Our prior studies have illustrated that the uracil ruthenium(II) diimino complex, [Ru(H3ucp)Cl(PPh3)] (1) (H4ucp = 2,6-bis-((6-amino-1,3-dimethyluracilimino)methylene)pyridine) displayed high hypoglycemic effects in diet-induced diabetic rats. To rationalize the anti-diabetic effects of 1, three new derivatives have been prepared, cis-[Ru(bpy)2(urdp)]Cl2 (2) (urdp = 2,6-bis-((uracilimino)methylene)pyridine), trans-[RuCl2(PPh3)(urdp)] (3), and cis-[Ru(bpy)2(H4ucp)](PF6)2 (4). Various physicochemical techniques were utilized to characterize the structures of the novel ruthenium compounds. Prior to biomolecular interactions or in vitro studies, the stabilities of 1-4 were monitored in anhydrous DMSO, aqueous phosphate buffer containing 2% DMSO, and dichloromethane (DCM) via UV-Vis spectrophotometry. Time-dependent stability studies showed ligand exchange between DMSO nucleophiles and chloride co-ligands of 1 and 3, which was suppressed in the presence of an excess amount of chloride ions. In addition, the metal complexes 1 and 3 are stable in both DCM and an aqueous phosphate buffer containing 2% DMSO. In the case of compounds 2 and 4 with no chloride co-ligands within their coordination spheres, high stability in aqueous phosphate buffer containing 2% DMSO was observed. Fluorescence emission titrations of the individual ruthenium compounds with bovine serum albumin (BSA) showed that the metal compounds interact non-discriminately within the protein's hydrophobic cavities as moderate to strong binders. The metal complexes were capable of disintegrating mature amylin amyloid fibrils. In vivo glucose metabolism studies in liver (Chang) cell lines confirmed enhanced glucose metabolism as evidenced by the increased glucose utilization and glycogen synthesis in liver cell lines in the presence of complexes 2-4.


Assuntos
Antineoplásicos , Complexos de Coordenação , Diabetes Mellitus Experimental , Rutênio , Ratos , Animais , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Soroalbumina Bovina/química , Rutênio/química , Dimetil Sulfóxido , Hipoglicemiantes/farmacologia , Cloretos , Diabetes Mellitus Experimental/tratamento farmacológico , Piridinas/química , Peptídeos , Compostos de Rutênio , Glucose , Fosfatos , Antineoplásicos/farmacologia , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA