Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0252743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108267

RESUMO

The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates characteristic of Sphagnum-rich peatlands ("bogs") are not fully understood, despite decades of research on this topic. Soluble phenolic compounds have been invoked as potentially significant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism and cell growth. Despite this potentially significant role, the effects of soluble phenolic compounds on bog peat C mineralization remain unclear. We analyzed this effect by manipulating the concentration of free soluble phenolics in anaerobic bog and fen peat incubations using water-soluble polyvinylpyrrolidone ("PVP"), a compound that binds with and inactivates phenolics, preventing phenolic-enzyme interactions. CO2 and CH4 production rates (end-products of anaerobic C mineralization) generally correlated positively with PVP concentration following Michaelis-Menten (M.M.) saturation functions. Using M.M. parameters, we estimated that the extent to which phenolics inhibit anaerobic CO2 production was significantly higher in the bog-62 ± 16%-than the fen-14 ± 4%. This difference was found to be more substantial with regards to methane production-wherein phenolic inhibition for the bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Consistent with this habitat difference, we observed significantly higher soluble phenolic content in bog vs. fen pore-water. Together, these findings suggest that soluble phenolics could contribute to bogs' extraordinary recalcitrance and high (relative to other peatland habitats) CO2:CH4 production ratios.


Assuntos
Carbono/metabolismo , Fenóis/química , Sphagnopsida/metabolismo , Anaerobiose , Carbono/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Cinética , Metano/química , Metano/metabolismo , Pergelissolo , Povidona/química , Sphagnopsida/química
2.
Photochem Photobiol Sci ; 20(3): 379-389, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33721276

RESUMO

Bryophytes, including Sphagnum, are common species in alpine and boreal regions especially on mires, where full sunlight exposes the plants to the damaging effects of UV radiation. Sphagnum species containing UV-protecting compounds might offer a biomass source for nature-based sunscreens to replace the synthetic ones. In this study, potential compounds and those linked in cell wall structures were obtained by using methanol and alkali extractions and the UV absorption of these extracts from three common Sphagnum moss species Sphagnum magellanicum, Sphagnum fuscum and Sphagnum fallax collected in spring and autumn from western Finland are described. Absorption spectrum screening (200-900 nm) and luminescent biosensor (Escherichia coli DPD2794) methodology were used to examine and compare the protection against UV radiation. Additionally, the antioxidant potential was evaluated using hydrogen peroxide scavenging (SCAV), oxygen radical absorbance capacity (ORAC) and ferric reducing absorbance capacity (FRAP). Total phenolic content was also determined using the Folin-Ciocalteu method. The results showed that methanol extractable compounds gave higher UV absorption with the used methods. Sphagnum fallax appeared to give the highest absorption in UV-B and UV-A wavelengths. In all assays except the SCAV test, the methanol extracts of Sphagnum samples collected in autumn indicated the highest antioxidant capacity and polyphenol content. Sphagnum fuscum implied the highest antioxidant capacity and phenolic content. There was low antioxidant and UV absorption provided by the alkali extracts of these three species.


Assuntos
Extratos Vegetais/química , Sphagnopsida/química , Raios Ultravioleta , Antioxidantes/química , Técnicas Biossensoriais , Dano ao DNA/efeitos da radiação , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/química , Extratos Vegetais/análise , Polifenóis/análise , Polifenóis/química , Estações do Ano , Espectrofotometria , Sphagnopsida/metabolismo
3.
RNA Biol ; 9(10): 1239-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22922796

RESUMO

It is a prevalent concept that, in line with the Wobble Hypothesis, those tRNAs having an adenosine in the first position of the anticodon become modified to an inosine at this position. Sequencing the cDNA derived from the gene coding for cytoplasmic tRNA (Arg) ACG from several higher plants as well as mass spectrometric analysis of the isoacceptor has revealed that for this kingdom an unmodified A in the wobble position of the anticodon is the rule rather than the exception. In vitro translation shows that in the plant system the absence of inosine in the wobble position of tRNA (Arg) does not prevent decoding. This isoacceptor belongs to the class of tRNA that is imported from the cytoplasm into the mitochondria of higher plants. Previous studies on the mitochondrial tRNA pool have demonstrated the existence of tRNA (Arg) ICG in this organelle. In moss the mitochondrial encoded distinct tRNA (Arg) ACG isoacceptor possesses the I34 modification. The implication is that for mitochondrial protein biosynthesis A-to-I editing is necessary and occurs by a mitochondrion-specific deaminase after import of the unmodified nuclear encoded tRNA (Arg) ACG.


Assuntos
Adenosina/metabolismo , Anticódon/metabolismo , Glycine max/genética , Inosina/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Arginina/metabolismo , Triticum/genética , Adenosina/genética , Adenosina Desaminase/metabolismo , Anticódon/química , Anticódon/genética , Pareamento de Bases , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Sistema Livre de Células , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Código Genético , Inosina/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Transferência de Arginina/química , RNA de Transferência de Arginina/genética , Glycine max/metabolismo , Sphagnopsida/genética , Sphagnopsida/metabolismo , Triticum/metabolismo
4.
Environ Monit Assess ; 184(7): 4097-103, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21845367

RESUMO

Physiological and biochemical responses, metal bioaccumulation and tolerance potential of Sphagnum squarrosum Crome Samml. to Cu and Cd were studied to determine its bioindication and bioremediation potential. Results suggest that glutathione treatment increases the metal accumulation potential and plays a definite role in heavy metal scavenging. High abundance of Sphagnum in metal-rich sites strongly suggests its high metal tolerance capabilities. This experiment demonstrates that S. squarrosum is able to accumulate and tolerate a high amount of metals and feasibility of its application as bioindicator and remediator test species of metal-contaminated environment.


Assuntos
Cádmio/metabolismo , Cobre/metabolismo , Glutationa/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Sphagnopsida/metabolismo , Biodegradação Ambiental , Cádmio/toxicidade , Cobre/toxicidade , Inativação Metabólica , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Sphagnopsida/efeitos dos fármacos , Sphagnopsida/fisiologia , Estresse Fisiológico
5.
Chemosphere ; 77(8): 1076-83, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19765798

RESUMO

An evaluation of peat moss plus crude soybean oil (PMSO) for mitigation of explosive contamination of soil at military facilities was performed using large soil lysimeters under field conditions. Actual range soils were used, and two PMSO preparations with different ratios of peat moss:soybean oil (1:1, PO1; 1:2, PO2) were compared to a control lysimeter that received no PMSO. PMSO was applied as a 10 cm layer on top of the soil, and Composition B detonation residues from a 55-mm mortar round were applied at the surface of each of the lysimeters. Dissolution of the residues occurred during natural precipitation events over the course of 18 months. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) emanating from the Composition B residues were significantly reduced by the PO2 PMSO material compared to the untreated control. Soil pore water RDX concentrations and RDX fluxes were reduced over 100-fold compared to the control plots at comparable depths. Residual RDX in the soil profile was also significantly lower in the PMSO treated plots. PO1 PMSO resulted in lower reductions in RDX transport than the PO2 PMSO. The transport of the RDX breakdown product hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) was also greatly reduced by the PMSO materials. Results were in general agreement with a previously developed fate and transport model describing PMSO effectiveness. These results demonstrate the potential effectiveness of the inexpensive and environmentally benign PMSO technology for reducing the subsurface loading of explosives at training ranges and other military facilities.


Assuntos
Substâncias Explosivas/análise , Ciência Militar/métodos , Poluentes do Solo/análise , Poluentes do Solo/química , Óleo de Soja/metabolismo , Sphagnopsida/metabolismo , Poluição da Água/prevenção & controle , Biodegradação Ambiental , Substâncias Explosivas/química , Órgãos Governamentais , Modelos Biológicos , Estados Unidos , Água/química
6.
Sci Total Environ ; 377(2-3): 439-43, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17382372

RESUMO

Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.


Assuntos
Flavonoides/análise , Nitrogênio/análise , Fenóis/análise , Solo/análise , Sphagnopsida/metabolismo , Polifenóis
7.
Can J Microbiol ; 50(10): 793-802, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15644893

RESUMO

Increased decomposition rates in boreal peatlands with global warming might increase the release of atmospheric greenhouse gases, thereby producing a positive feedback to global warming. How temperature influences microbial decomposers is unclear. We measured in vitro rates of decomposition of senesced sedge leaves and rhizomes (Carex aquatilis), from a fen, and peat moss (Sphagnum fuscum), from a bog, at 14 and 20 degrees C by the three most frequently isolated fungi and bacteria from these materials. Decomposition rates of the bog litter decreased (5- to 17-fold) with elevated temperatures, and decomposition of the sedge litters was either enhanced (2- to 30-fold) or remained unaffected by elevated temperatures. The increased temperature regime always favoured fungal over bacterial decomposition rates (2- to 3-fold). Different physiological characteristics of these microbes suggest that fungi using polyphenolic polymers as a carbon source cause greater mass losses of these litters. Litter quality exerted a stronger influence on decomposition at elevated temperatures, as litter rich in nutrients decomposed more quickly than litter poorer in nutrients at higher temperatures (8.0%-25.7% for the sedge litters vs. 0.2% for the bryophyte litter). We conclude that not all peatlands may provide a positive feedback to global warming. Cautious extrapolation of our data to the ecosystem level suggests that decomposition rates in fens may increase and those in bogs may decrease under a global warming scenario.


Assuntos
Microbiologia Ambiental , Fluoretos Tópicos/metabolismo , Sphagnopsida/metabolismo , Sphagnopsida/microbiologia , Bactérias/metabolismo , Biodegradação Ambiental , Biomassa , Ecossistema , Fungos/metabolismo , Efeito Estufa , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA