Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Chemosphere ; 355: 141806, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548087

RESUMO

Environmental challenges arising from organic pollutants pose a significant problem for modern societies. Efficient microbial resources for the degradation of these pollutants are highly valuable. In this study, the bacterial community structure of sludge samples from Taozi Lake (polluted by urban sewage) was studied using 16S rRNA sequencing. The bacterial phyla Proteobacteria, Bacteroidetes, and Chloroflexi, which are potentially important in organic matter degradation by previous studies, were identified as the predominant phyla in our samples, with relative abundances of 48.5%, 8.3%, and 6.6%, respectively. Additionally, the FAPROTAX and co-occurrence network analysis suggested that the core microbial populations in the samples may be closely associated with organic matter metabolism. Subsequently, sludge samples from Taozi Lake were subjected to enrichment cultivation to isolate organic pollutant-degrading microorganisms. The strain Sphingobacterium sp. GEMB-CSS-01, tolerant to sulfanilamide, was successfully isolated. Subsequent investigations demonstrated that Sphingobacterium sp. GEMB-CSS-01 efficiently degraded the endocrine-disrupting compound 17ß-Estradiol (E2). It achieved degradation efficiencies of 80.0% and 53.5% for E2 concentrations of 10 mg/L and 20 mg/L, respectively, within 10 days. Notably, despite a reduction in degradation efficiency, Sphingobacterium sp. GEMB-CSS-01 retained its ability to degrade E2 even in the presence of sulfanilamide concentrations ranging from 50 to 200 mg/L. The findings of this research identify potential microbial resources for environmental bioremediation, and concurrently provide valuable information about the microbial community structure and patterns within Taozi Lake.


Assuntos
Poluentes Ambientais , Sphingobacterium , Esgotos/microbiologia , Sphingobacterium/genética , Sphingobacterium/metabolismo , Lagos/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Estradiol/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Sulfanilamidas
3.
Gene ; 855: 147118, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521669

RESUMO

Sphingobacterium is a class of Gram-negative, non-fermentative bacilli that have received widespread attention due to their broad ecological distribution and oil degradation ability, but are rarely involved in infections. In this manuscript, a novel Sphingobacterium strain isolated from wildfire-infected tobacco leaves was named Sphingobacterium sp. CZ-2. NGS and TGS sequencing results showed a whole genome of 3.92 Mb with 40.68 mol% GC content and containing 3,462 protein-coding genes, 9 rRNA-coding genes and 50 tRNA-coding genes. Phylogenetic analysis, ANI and dDDH calculations all supported that Sphingobacterium sp. CZ-2 represented a novel species of the genus Sphingobacterium. Analysis of the specific genes of Sphingobacterium sp. CZ-2 by comparative genomics revealed that metal transport proteins encoded by the troD and cusA genes could maintain the balance of heavy metal ion concentrations in the internal environment of bacteria and avoid heavy metal toxicity while meeting the needs of growth and reproduction, and transport proteins encoded by the malG gene could keep nutrients required for the survival of bacteria. Synteny and genome evolutionary analyses of Sphingobacterium strains implicated that the gene family contraction as a major process in genome evolution, with insertional sequences leading to mutations, deletions and reversals of genes that help bacteria to withstand complex environmental changes. Complete genome sequencing and systematic comparative genomic analysis will contribute new insights into the adaptive evolution of this novel species and the genus Sphingobacterium.


Assuntos
Ácidos Graxos , Sphingobacterium , Filogenia , Sphingobacterium/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Genômica
4.
Microbiol Spectr ; 10(6): e0142221, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314920

RESUMO

Sphingobacterium sp. is a yellowish Gram-negative bacterium that is usually characterized by high concentrations of sphingophospholipids as lipid components. As microbial enzymes have been in high demand in industrial fields in the past few decades, this study hopes to provide significant information on lipase activities of Sphingobacterium sp., since limited studies have been conducted on the Sphingobacterium sp. lipase. A microbe from one collected Artic soil sample, ARC4, was identified as psychrotolerant Sphingobacterium sp., and it could grow in temperatures ranging from 0°C to 24°C. The expression of Sphingobacterium sp. lipase was successfully performed through an efficient approach of utilizing mutated group 3 late embryogenesis abundant (G3LEA) proteins developed from Polypedilum vanderplanki. Purified enzyme was characterized using a few parameters, such as temperature, pH, metal ion cofactors, organic solvents, and detergents. The expressed enzyme is reported to be cold adapted and has the capability to work efficiently under neutral pH (pH 5.0 to 7.0), cofactors like Na+ ion, and the water-like solvent methanol. Addition of nonionic detergents greatly enhanced the activity of purified enzyme. IMPORTANCE The mechanism of action of LEA proteins has remained unknown to many; in this study we reveal their presence and improved protein expression due to the molecular shielding effect reported by others. This paper should be regarded as a useful example of using such proteins to influence an existing expression system to produce difficult-to-express proteins.


Assuntos
Lipase , Sphingobacterium , Lipase/genética , Lipase/química , Lipase/metabolismo , Sphingobacterium/metabolismo , Detergentes/metabolismo , Temperatura , Solventes/metabolismo , Peptídeos/metabolismo , Concentração de Íons de Hidrogênio , Filogenia
5.
Nature ; 608(7924): 803-807, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859168

RESUMO

Stimulator of interferon genes (STING) is an antiviral signalling protein that is broadly conserved in both innate immunity in animals and phage defence in prokaryotes1-4. Activation of STING requires its assembly into an oligomeric filament structure through binding of a cyclic dinucleotide4-13, but the molecular basis of STING filament assembly and extension remains unknown. Here we use cryogenic electron microscopy to determine the structure of the active Toll/interleukin-1 receptor (TIR)-STING filament complex from a Sphingobacterium faecium cyclic-oligonucleotide-based antiphage signalling system (CBASS) defence operon. Bacterial TIR-STING filament formation is driven by STING interfaces that become exposed on high-affinity recognition of the cognate cyclic dinucleotide signal c-di-GMP. Repeating dimeric STING units stack laterally head-to-head through surface interfaces, which are also essential for human STING tetramer formation and downstream immune signalling in mammals5. The active bacterial TIR-STING structure reveals further cross-filament contacts that brace the assembly and coordinate packing of the associated TIR NADase effector domains at the base of the filament to drive NAD+ hydrolysis. STING interface and cross-filament contacts are essential for cell growth arrest in vivo and reveal a stepwise mechanism of activation whereby STING filament assembly is required for subsequent effector activation. Our results define the structural basis of STING filament formation in prokaryotic antiviral signalling.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Proteínas de Membrana , Receptores de Interleucina-1 , Sphingobacterium , Receptores Toll-Like , Animais , Antivirais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Bacteriófagos/imunologia , Fosfatos de Dinucleosídeos/metabolismo , Humanos , Imunidade Inata , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Óperon/genética , Receptores de Interleucina-1/química , Receptores de Interleucina-1/imunologia , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/ultraestrutura , Sphingobacterium/química , Sphingobacterium/genética , Sphingobacterium/ultraestrutura , Sphingobacterium/virologia , Receptores Toll-Like/química , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Receptores Toll-Like/ultraestrutura
6.
J Infect Chemother ; 28(10): 1419-1423, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35718261

RESUMO

INTRODUCTION: Sphingobacterium is an aerobic, glucose non-fermenting, Gram-negative rod bacterium that has been isolated from soil, plants, food, and water sources, including in hospitals. Reports of systemic infections caused by Sphingobacterium multivorum (S. multivorum) are rare, and their clinical and microbiological characteristics remain unclear. Moreover, conventional microbiological methods have limited ability to identify S. multivorum. We report the first case of obstructive cholangitis with bacteremia caused by S. multivorum in a patient with gastric cancer. CASE REPORT: A 68-year-old woman with advanced gastric cancer, hypertension, and hyperlipidemia was admitted with obstructive jaundice, and subsequently developed obstructive cholangitis during the hospital stay. S. multivorum were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S ribosomal RNA sequencing of the patient's blood samples. Based on the antibiotic susceptibility results of the isolates, cefepime was administered intravenously for 14 days, with good therapeutic outcomes. CONCLUSIONS: S. multivorum infection is rare, and its microbiology and pathogenicity in humans is mostly unknown. Therefore, multiple diagnostic approaches should be used to identify S. multivorum, and antimicrobial therapy should be selected based on the in vitro susceptibility. This report provides clinicians with novel information on the clinical manifestations and diagnostic methods for an accurate diagnosis of S. multivorum.


Assuntos
Bacteriemia , Colangite , Sphingobacterium , Neoplasias Gástricas , Acinetobacter , Idoso , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Colangite/complicações , Colangite/tratamento farmacológico , Feminino , Humanos , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sphingobacterium/genética , Neoplasias Gástricas/complicações
7.
Curr Microbiol ; 79(3): 92, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35129696

RESUMO

A novel bacterium designated WQ 366 T was isolated from the faeces of Bos taurus, foraging on the slopes of the Baima Snow Mountain in Yunnan, China. The isolate grew optimally at 30 â„ƒ and pH 7.0-8.0 without NaCl. The cells were Gram-stain-negative, aerobic, rod-shaped, non-gliding, catalase-positive, and produced yellow color colonies on Columbia Agar. A polyphasic study was applied to clarify its taxonomic position through 16S rRNA gene and genome sequence analysis, and other extensive biological typing. Phylogenetic analysis revealed that the isolate was affiliated to the genus Sphingobacterium and its 16S rRNA gene sequence was closely related to Sphingobacterium bovisgrunnientis YK2 T (97.3%), Sphingobacterium composti T5-12 T (96.4%), and Sphingobacterium cavernae 5.0403-2 T (96.4%). The calculated whole genome average nucleotide identity (ANI) and the digital DNA-DNA hybridization values between strain WQ 366 T and the three related strains were 78.3, 78.6, 73.9 and 21.2, 21.2, 21.0%, respectively. The predominant fatty acids (>10%) were iso-C15:0, iso-C17:0 3-OH, Summed Feature 3 (C16:1 ω7c and/or C16:1 ω6c), and Summed feature 9 (iso-C17:1 ω9c and 10-methyl C16:0). The main polar lipids were PE, GPL, GL, and PL. MK-7 was the major menaquinone. The genome size and the G + C content of WQ 366 T was 4.1 Mb and 34.6%, respectively. All these results indicated that strain WQ 366 T represents a novel species of the Sphingobacterium genus. Therefore, the name Sphingobacterium bovistauri sp. nov. is proposed, and the type strain is WQ 366 T (= CCTCC AA 2020029 T = KCTC 82395 T).


Assuntos
Sphingobacterium , Animais , Técnicas de Tipagem Bacteriana , Bovinos , China , DNA Bacteriano/genética , Ácidos Graxos , Fezes , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/genética , Vitamina K 2
8.
Artigo em Inglês | MEDLINE | ID: mdl-35100101

RESUMO

An investigation of the diversity of 1-aminocyclopropane-1-carboxylate deaminase producing bacteria associated with camel faeces revealed the presence of a novel bacterial strain designated C459-1T. It was Gram-stain-negative, short-rod-shaped and non-motile. Strain C459-1T was observed to grow optimally at 35 °C, at pH 7.0 and in the presence of 0 % NaCl on Luria-Bertani agar medium. The cells were found to be positive for catalase and oxidase activities. The major fatty acids (>10 %) were identified as iso-C15 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and iso-C17 : 0 3-OH. The predominant menaquinone was MK-7. The major polar lipids consisted of phosphatidylethanolamine, one sphingophospholipid, two unknown aminophospholipids, three unknown glycolipids and five unknown lipids. The genomic DNA G+C content was 40.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain C459-1T was affiliated with the genus Sphingobacterium and had the highest sequence similarity to Sphingobacterium tabacisoli h337T (97.0 %) and Sphingobacterium paucimobilis HER1398T (95.6 %). The average nucleotide identity and digital DNA-DNA hybridization values between strain C459-1T and S. tabacisoli h337T were 83.8 and 33.8 %, respectively. Phenotypic characteristics including enzyme activities and carbon source utilization differentiated strain C459-1T from other Sphingobacterium species. Based on its phenotypic, chemotaxonomic and phylogenetic properties, strain C459-1T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium faecale sp. nov. is proposed, with strain is C459-1T (CGMCC 1.18716T=KCTC 82381T) as the type strain.


Assuntos
Camelus/microbiologia , Filogenia , Sphingobacterium , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Carbono-Carbono Liases , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes/microbiologia , Glicolipídeos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/classificação , Sphingobacterium/enzimologia , Sphingobacterium/isolamento & purificação
9.
Sheng Wu Gong Cheng Xue Bao ; 38(12): 4669-4680, 2022 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-36593201

RESUMO

Polyphosphate kinase plays an important role in the catalytic synthesis of ATP in vitro. In order to find a polyphosphate kinase that can efficiently synthesize ATP using short-chain polyphosphate (polyP) as substrate, the polyphosphate kinase 2 (PPK2) from Sphingobacterium siyangensis was cloned and expressed in Escherichia coli BL21(DE3). As an enzyme for ATP regeneration, PPK2 was used in combination with l-amino acid ligase (YwfE) to produce l-alanyl-l-glutamine (Ala-Gln). The length of ppk2 of S. siyangensis is 810 bp, encoding 270 amino acids. The SDS-PAGE showed that PPK2 was expressed correctly and its molecular weight was 29.7 kDa as expected. The reaction conditions of PPK2 were optimized. PPK2 could maintain good activity in the range of 22-42 ℃ and pH 7-10. The highest enzyme activity was observed at 37 ℃, pH 7, 30 mmol/L magnesium ion (Mg2+), 5 mmol/L ADP and 10 mmol/L sodium hexametaphosphate, and the yield of ATP reached 60% of the theoretical value in 0.5 hours at this condition. When used in combination with YwfE to produce Ala-Gln, the PPK2 showed a good applicability as an ATP regeneration system, and the effect was similar to that of direct addition of ATP. The PPK2 from S. siyangensis shows good performance in a wide range of temperature and pH, synthesizes ATP with cheap and readily available short chain polyP as substrate. The PPK2 thus provides a new enzyme source for ATP dependent catalytic reaction system.


Assuntos
Sphingobacterium , Sphingobacterium/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Aminoácidos , Trifosfato de Adenosina , Regeneração , Polifosfatos/metabolismo
10.
Environ Microbiol ; 24(2): 762-771, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33998126

RESUMO

Organoarsenicals enter the environment from biogenic and anthropogenic sources. Trivalent inorganic arsenite (As(III)) is microbially methylated to more toxic methylarsenite (MAs(III)) and dimethylarsenite (DMAs(III)) that oxidize in air to MAs(V) and DMAs(V). Sources include the herbicide monosodium methylarsenate (MSMA or MAs(V)), which is microbially reduced to MAs(III), and the aromatic arsenical roxarsone (3-nitro-4-hydroxybenzenearsonic acid or Rox), an antimicrobial growth promoter for poultry and swine. Here we show that Sphingobacterium wenxiniae LQY-18T , isolated from activated sludge, is resistant to trivalent MAs(III) and Rox(III). Sphingobacterium wenxiniae detoxifies MAs(III) and Rox(III) by oxidation to MAs(V) and Rox(V). Sphingobacterium wenxiniae has a novel chromosomal gene, termed arsU1. Expressed in Escherichia coli arsU1 confers resistance to MAs(III) and Rox(III) but not As(III) or pentavalent organoarsenicals. Purified ArsU1 catalyses oxidation of trivalent methylarsenite and roxarsone. ArsU1 has six conserved cysteine residues. The DNA sequence for the three C-terminal cysteines was deleted, and the other three were mutated to serines. Only C45S and C122S lost activity, suggesting that Cys45 and Cys122 play a role in ArsU1 function. ArsU1 requires neither FMN nor FAD for activity. These results demonstrate that ArsU1 is a novel MAs(III) oxidase that contributes to S. wenxiniae tolerance to organoarsenicals.


Assuntos
Arsênio , Arsenicais , Roxarsona , Sphingobacterium , Animais , Roxarsona/química , Esgotos , Sphingobacterium/genética , Suínos
11.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34779757

RESUMO

Two novel bacterial strains, designated as DN00404T and DN04309T, were isolated from aquaculture water and characterized by using a polyphasic taxonomic approach. Cells of strains DN00404T and DN04309T were Gram-stain-negative, aerobic, non-motile, oxidase-positive and catalase-positive. Cells of DN00404T were short rod-shaped and those of DN04309T were long rod-shaped. Strain DN00404T was found to grow at 15-37 °C (optimum, 25-30 °C), at pH 6.0-11.0 (optimum, pH 7.5) and in 0-2.0 % (w/v) NaCl (optimum, 1.0 %). Strain DN04309T was found to grow at 15-45 °C (optimum, 20-37 °C), at pH 5.5-11.0 (optimum, 7.5) and in 0-4.0 % (w/v) NaCl (optimum, 0.5 %). Phylogenetic analyses based on 16S rRNA gene and genome sequences revealed that the two strains belonged to the genus Sphingobacterium and were distinct from all known species of this genus. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains and between each of the two strains and related type strains of this genus were well below the recognized thresholds of 95.0-96.0 % ANI and 70.0 % dDDH for species delineation. The genomic DNA G+C contents of strains DN00404T and DN04309T were 41.6 and 36.0 mol%, respectively. The respiratory quinone in both strains was identified as MK-7, and their major fatty acids were iso-C15 : 0 and summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), which were similar to those of other species of this genus. The two major fatty acids C16 : 0 and iso-C17 : 0 3-OH were also found in strain DN00404T. Based on genotypic and phenotypic characteristics, two novel species of the genus Sphingobacterium are proposed: Sphingobacterium micropteri sp. nov. with DN00404T (=GDMCC 1.1865T=KACC 21924T) as the type strain and Sphingobacterium litopenaei sp. nov. with DN04309T (=GDMCC 1.1984T=KCTC 82348T) as the type strain.


Assuntos
Aquicultura , Filogenia , Sphingobacterium , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/classificação , Sphingobacterium/isolamento & purificação , Água
12.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34779758

RESUMO

A Gram-reaction-negative bacterial strain, designated Kb22T, was isolated from agricultural soil and characterized using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, the strain shows highest similarity (94.39 %) to Sphingobacterium nematocida M-SX103T. The highest average nucleotide identity value (71.83 %) was found with Sphingobacterium composti T5-12T, and the highest amino acid identity value (66.65 %) was found with Sphingobacterium olei HAL-9T. Cells are aerobic, non-motile rods. The isolate was found to be positive for catalase and oxidase tests. The assembled genome of strain Kb22T has a total length of 4,06 Mb, the DNA G+C content is 38.1 mol%. The only isoprenoid quinone is menaquinone 7 (MK-7). The major fatty acids are iso-C15:0 (28.4%), summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH) (25.7 %) and iso-C17:0 3-OH (19.7 %). Based on phenotypic characteristics and phylogenetic results, it is concluded that strain Kb22T is a member of the genus Sphingobacterium and represents a novel species for which the name Sphingobacterium hungaricum sp. nov. is proposed. The type strain of the species is strain Kb22T (=LMG 31574T=NCAIM B.02638T).


Assuntos
Filogenia , Microbiologia do Solo , Sphingobacterium , Agricultura , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/classificação , Sphingobacterium/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Antonie Van Leeuwenhoek ; 114(10): 1575-1584, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363180

RESUMO

A Gram-reaction-negative halotolerant bacterial strain, designated Ka21T, was isolated from agricultural soil and characterised using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, highest similarity was found with Sphingobacterium alkalisoli Y3L14T (96.72%). Cells were observed to be aerobic, non-motile rods. The isolate was found to be able to grow between 0 and 10% of NaCl concentration. The assembled genome of strain Ka21T has a total length of 5.2 Mb with a G + C content of 41.0 mol%. According to the genome analysis, Ka21T encodes several glycoside hydrolases that may play a role in the degradation of accumulated plant biomass in the soil. Based on phenotypic characteristics and phylogenetic analysis, it is concluded that strain Ka21T represents a novel species in the Sphingobacterium genus for which the name Sphingobacterium pedocola sp. nov. is proposed. The type strain of the species is strain Ka21T (= LMG 31575T = NCAIM B.02636T).


Assuntos
Sphingobacterium , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Sphingobacterium/genética
14.
Arch Microbiol ; 203(7): 4629-4634, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34165622

RESUMO

A novel bacterium, WQ 047T, was isolated from the faeces of Rhinopithecus bieti, a highly endangered primate endemic to China. The cells were aerobic, oval/rod-shaped, Gram-stain-negative, non-motile, catalase positive, and produced yellow pigmented colonies on Columbia Agar. The taxonomic position of WQ 047T was clarified by applying a polyphasic study based on 16S rRNA gene sequence phylogenetic analysis, extensive biological typing, and whole genome sequencing. Phylogenetic analysis indicated that stain WQ 047T belonged to the genus Sphingobacterium and its 16S rRNA gene sequence exhibited 96.47% pairwise similarity with that of the closest relatives Sphingobacterium nematocida M-SX103T. The calculated whole genome average nucleotide identity (ANI) value between strain WQ 047T and strain M-SX103 was 72.3%. The digital DNA-DNA hybridization value of strain WQ 047T and M-SX103T was 15.73%, which was obtained by calculating the genome-to-genome distance. The major fatty acids were C15:0 iso, C17:0 iso 3-OH, Summed Feature 3 (C16:1 ω7c/C16:1 ω6c) and Summed feature 9 (iso-C17:1ω9c and/or 10-methyl C16:0). The predominant polar lipids were PE, PL and APL. MK-7 was the predominant menaquinone. The G + C content of WQ 047T was 34.89 mol% according to genome analysis. All these characteristics were consistent with those of the genus of Sphingobacterium. Therefore, based on these results, we propose a novel species for which the name Sphingobacterium rhinopitheci sp. Nov. is proposed, with the type strain WQ 047T (= CCTCC AA 2020026T = KCTC82393T).


Assuntos
Presbytini , Sphingobacterium , Animais , China , Ácidos Graxos/análise , Fezes/microbiologia , Filogenia , Presbytini/microbiologia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Sphingobacterium/classificação , Sphingobacterium/genética
15.
Rev. chil. infectol ; 38(3): 452-454, jun. 2021.
Artigo em Espanhol | LILACS | ID: biblio-1388253

RESUMO

Resumen Sphingobacterium multivorum es un bacilo gramnegativo no fermentador, que infrecuentemente causa enfermedad en humanos. En la literatura médica existen escasos reportes de infecciones causadas por este microorganismo, en general, en hospederos con alguna comorbilidad. Presentamos el primer caso reportado, según nuestro conocimiento, de una infección de piel y tejidos blandos por Sphingobacterium multivorum en un paciente pediátrico gran quemado.


Abstract Sphingobacterium multivorum is a non-fermentative gram-negative bacillus that rarely causes human infections. In the medical literature, the few reported cases of infections resulting from S. multivorum usually occurred in patients with an associated comorbidity. We present the first case report, according our knowledge, of a skin and soft tissue infection by S. multivorum infection in a pediatric patient after a burn injury.


Assuntos
Humanos , Masculino , Criança , Queimaduras , Infecções por Bactérias Gram-Negativas , Sphingobacterium
16.
Artigo em Inglês | MEDLINE | ID: mdl-33956595

RESUMO

A Gram-stain-negative, rod-shaped, non-motile, non-spore-forming, aerobic bacterium, designated type strain SSI9T, was isolated from sand fly (Phlebotomus papatasi Scopoli; Diptera: Psychodidae) rearing substrate and subjected to polyphasic taxonomic analysis. Strain SSI9T contained phosphatidylethanolamine as a major polar lipid, MK-7 as the predominant quinone, and C16 : 1ω6c/C16 : 1ω7c, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 0 as the major cellular fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that SSI9T represents a member of the genus Sphingobacterium, of the family Sphingobacteriaceae sharing 96.5-88.0 % sequence similarity with other species of the genus Sphingobacterium. The results of multilocus sequence analysis using the concatenated sequences of the housekeeping genes recA, rplC and groL indicated that SSI9T formed a separate branch in the genus Sphingobacterium. The genome of SSI9T is 5 197 142 bp with a DNA G+C content of 41.8 mol% and encodes 4395 predicted coding sequences, 49 tRNAs, and three complete rRNAs and two partial rRNAs. SSI9T could be distinguished from other species of the genus Sphingobacterium with validly published names by several phenotypic, chemotaxonomic and genomic characteristics. On the basis of the results of this polyphasic taxonomic analysis, the bacterial isolate represents a novel species within the genus Sphingobacterium, for which the name Sphingobacterium phlebotomi sp. nov. is proposed. The type strain is SSI9T (=ATCC TSD-210T=LMG 31664T=NRRL B-65603T).


Assuntos
Phlebotomus/microbiologia , Sphingobacterium/classificação , Sphingobacterium/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Fosfatidiletanolaminas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/genética , Sphingobacterium/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-34047689

RESUMO

A novel Gram-stain-negative, rod-shaped, non-motile, yellowish bacterium, designated strain 1.3611T, was isolated from the wormcast of Eisenia foetida. The strain grew optimally at 30-37 ℃, at pH 7.0 and with 0-1.0 % (w/v) NaCl. Based on the results of 16S rRNA gene sequence and phylogenetic analyses, strain 1.3611T showed the highest degree of 16S rRNA gene sequence similarity to Sphingobacterium olei HAL-9T (97.0 %), followed by Sphingobacterium alkalisoli Y3L14T (95.8 %). The respiratory quinone of strain 1.3611T was menaquinone-7 (MK-7) and its major cellular fatty acids were iso-C15 : 0 (41.3 %), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c, 22.1 %) and iso-C17 : 0 3-OH (16.2 %). The major polar lipids were sphingophospholipid, phosphatidylethanolamine, four unidentified glycolipids, two unidentified phospholipids and five unidentified polar lipids. The genomic DNA G+C content was 39.0 mol%. The digital DNA-DNA hybridization and average nucleotide identity values between the genomes of strain 1.3611T and S. olei HAL-9T were 37.9 and 88.9 %, respectively. According to the phenotypic and chemotaxonomic phylogenetic results, strain 1.3611T should represent a novel species of the genus Sphingobacterium, for which the name Sphingobacterium lumbrici sp. nov. is proposed, with strain 1.3611T (=KCTC 62980T=CCTCC AB 2018349T) as the type strain.


Assuntos
Oligoquetos/microbiologia , Filogenia , Sphingobacterium/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Folia Microbiol (Praha) ; 66(3): 317-330, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33471292

RESUMO

In the present study, potentiality of endophytic microorganisms such as Rigidiporus vinctus AAU EF, Trichoderma reesei UH EF, and Sphingobacterium tabacisoli UH EB in the management of panama wilt and growth promotion of banana was assessed through artificial inoculation. During the study, a total of 220 bacterial and 110 fungal endophytes were isolated from root, pseudostem, and leaf samples of banana, and they were evaluated against Fusarium oxysporum f. sp cubense causing panama wilt. Out of total 330 bacterial and fungal endophytes, only five endophytes exhibited antagonism against Fusarium oxysporum f. sp cubense, out of which only three isolates, namely Trichoderma reesei UH EF, Rigidiporus vinctus AAU EF, and Sphingobacterium tabacisoli UH EB, produced indole acetic acid, siderophore, and hydrogen cyanide, except one bacterial strain Sphingobacterium tabacisoli UH EB which does not produce hydrogen cyanide. Furthermore, these three endophytes were identified through cultural and morphological characteristics as well as by the sequencing internal transcribed spacer (ITS) and 16S rRNA gene sequences analysis for bacteria, respectively. The response of host plant to endophyte inoculation was assessed by measuring the change in four growth parameters; plant height, pseudo stem girth (diameter), number of roots, and total number of leaves. The application of endophytes, irrespective of isolate and treatment type promoted the overall growth of the plant growth when compared with diseased plants with significant higher values recorded for all parameters assessed. The endophytes reported as growth promoters were found to have significant inhibition effect on Foc which can evidenced with lowest AUDPC values and epidemic rate at 99.09 units2 and 0.02 unit/day, respectively.


Assuntos
Endófitos , Fusarium , Musa , Doenças das Plantas , Endófitos/fisiologia , Fusarium/fisiologia , Hypocreales/fisiologia , Interações Microbianas/fisiologia , Musa/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Polyporales/fisiologia , RNA Ribossômico 16S/genética , Sphingobacterium/fisiologia
19.
Eur J Ophthalmol ; 31(1): NP9-NP12, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31552771

RESUMO

PURPOSE: To describe the first case of endophthalmitis caused by Sphingobacterium spiritivorum, a glucose non-fermenting Gram-negative rod, in a patient previously implanted with a Xen® gel stent. CASE REPORT DESCRIPTION: An 83-year-old patient, affected by open-angle glaucoma and with a previous surgery of combined cataract extraction and Xen gel stent implantation, developed endophthalmitis 1 month after bleb needle revision with 5-fluorouracil injection. At presentation, best corrected visual acuity was hand movement, hypopyon was evident into the anterior chamber and a flat bleb with no sign of leakage was present over the Xen gel implant. OUTCOME: Immediate pars plana vitrectomy was performed, with intravitreal antibiotic administration and silicon oil tamponade. S. spiritivorum was isolated from vitreous bacterial culture. According to the antibiogram, patient was treated with topical fortified ceftazidime eyedrops and appropriate systemic antibiotics (intravenous meropenem, 500 mg every 8 h for 7 days, followed by oral cotrimoxazole, 160 + 800 mg, twice a day for 10 days). After 2 weeks of treatment, ocular inflammation was resolved, best corrected visual acuity was 0.1 (Snellen chart) and intraocular pressure was 18 mm Hg without topical hypotensive therapy. CONCLUSION: S. spiritivorum was isolated for the first time as a causative agent of endophthalmitis in humans. Bleb needle revision in patients with Xen gel implant is not free of complications, and an attentive follow-up is required.


Assuntos
Endoftalmite/microbiologia , Infecções Oculares Bacterianas/microbiologia , Implantes para Drenagem de Glaucoma , Glaucoma de Ângulo Aberto/cirurgia , Infecções por Bactérias Gram-Negativas/microbiologia , Complicações Pós-Operatórias , Sphingobacterium/isolamento & purificação , Administração Oftálmica , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Extração de Catarata , Ceftazidima/uso terapêutico , Endoftalmite/diagnóstico , Endoftalmite/tratamento farmacológico , Infecções Oculares Bacterianas/diagnóstico , Infecções Oculares Bacterianas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Infusões Intravenosas , Pressão Intraocular/fisiologia , Injeções Intravítreas , Masculino , Meropeném/uso terapêutico , Reoperação , Stents , Tonometria Ocular , Acuidade Visual/fisiologia , Vitrectomia , Corpo Vítreo/microbiologia
20.
J Gen Appl Microbiol ; 67(1): 1-8, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32981922

RESUMO

The phospholipase pl-S.t gene of Sphingobacterium thalpophilum 2015 was cloned and the gene sequence was submitted to NCBI with Accession Number KX674735.1. The phylogenetic analysis showed that this PL-S.t was clustered to phospholipase D (PLD). As far as we know, the PL-S.t with a molecular mass of 22.5 kDa is the lowest of the currently purified bacterial PLDs, which belongs to a non-HKD PLD enzyme. This PL-S.t was resistant to a wide range of alkali pHs (7.5-9.0) after 1 h incubation, retaining more than 90% of its maximum activity. The PL-S.t activity can be enhanced by Ni2+, Co2+ and Mn2+. This PL-S.t has only one cysteine residue and fewer negatively-charged amino acids (AAs). The hydrogen bonds network was found around the cystein108, which may be beneficial to the stability and activity of PL-S.t in Ni2+ solution. This study has laid the foundation for further research on the molecular mechanism of the catalytic characteristics of low molecular weight alkalic PLD from S. thalpophilum 2015.


Assuntos
Álcalis/metabolismo , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Fosfolipase D/metabolismo , Sphingobacterium/genética , Sphingobacterium/metabolismo , Sequência de Aminoácidos , Cobalto , Genes Bacterianos , Concentração de Íons de Hidrogênio , Manganês , Níquel , Filogenia , Sphingobacterium/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA