Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
J Agric Food Chem ; 72(21): 12003-12013, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748811

RESUMO

Insect gustatory receptors (GRs) aid in the precise identification of deterrent or stimulant compounds associated with food, mating, and egg-laying. Thus, they are promising targets for developing efficient insecticides. Here, 61 GRs in the chemosensory organs of Spodoptera litura larvae and adults were identified. Among them, SlitGR206 exhibited larval labium (LL)-specific expression characteristics. To explore the role of SlitGR206, a bacterial expression system was established to produce high-quality double-stranded RNA (dsRNA) and suppress SlitGR206 expression in LL. Subsequent behavioral assessments revealed that SlitGR206 silencing influenced larval feeding preferences and absorption. Moreover, it was found to reduce the ability of larvae to forage the five crucial host odorants. These findings demonstrate that SlitGR206 likely plays an indirect regulatory role in host recognition, consequently affecting foraging behavior. This provides a crucial foundation for the analysis of functional diversity among insect GRs and the precise development of nucleic acid pesticides in the future.


Assuntos
Comportamento Alimentar , Proteínas de Insetos , Larva , Spodoptera , Animais , Spodoptera/metabolismo , Spodoptera/fisiologia , Spodoptera/genética , Spodoptera/crescimento & desenvolvimento , Larva/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética
2.
Insect Biochem Mol Biol ; 166: 104073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215915

RESUMO

The peritrophic matrix (or peritrophic membrane, PM) is present in most insects where it acts as a barrier to mechanical insults and pathogens, as well as a facilitator of digestive processes. The PM is formed by the binding of structural PM proteins, referred to as peritrophins, to chitin fibrils and spans the entire midgut in lepidopterans. To investigate the role of peritrophins in a highly polyphagous lepidopteran pest, namely the cotton leafworm (Spodoptera littoralis), we generated Insect Intestinal Mucin (IIM-) and non-mucin Peritrophin (PER-) mutant strains via CRISPR/Cas9 mutagenesis. Both strains exhibited deformed PMs and retarded developmental rates. Bioassays conducted with Bacillus thuringiensis (Bt) and nucleopolyhedrovirus (SpliNPV) formulations showed that both the IIM- and PER- mutant larvae were more susceptible to these bioinsecticides compared to the wild-type (WT) larvae with intact PM. Interestingly, the provision of chitin-binding agent Calcofluor (CF) in the diet lowered the toxicity of Bt formulations in both WT and IIM- larvae and the protective effect of CF was significantly lower in PER- larvae. This suggested that the interaction of CF with PER is responsible for Bt resistance mediated by CF. In contrast, the provision of CF caused increased susceptibility to SpliNPV in both mutants and WT larvae. The study showed the importance of peritrophins in the defense against pathogens in S. littoralis and revealed novel insights into CF-mediated resistance to Cry toxin.


Assuntos
Bacillus thuringiensis , Mariposas , Nucleopoliedrovírus , Animais , Bacillus thuringiensis/metabolismo , Spodoptera/metabolismo , Nucleopoliedrovírus/metabolismo , Mariposas/metabolismo , Larva/metabolismo , Endotoxinas/farmacologia , Quitina/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas Hemolisinas/farmacologia
3.
J Biotechnol ; 379: 53-64, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38070779

RESUMO

The baculovirus-insect cell expression system allows addition of O-fucose to EGF-like domains of glycoproteins, following the action of the protein O-fucosyltransferase 1 named POFUT1. In this study, recombinant Spodoptera frugiperda POFUT1 from baculovirus-infected Sf9 cells was compared to recombinant Mus musculus POFUT1 produced by CHO cells. Contrary to recombinant murine POFUT1 carrying two hybrid and/or complex type N-glycans, Spodoptera frugiperda POFUT1 exhibited paucimannose N-glycans, at least on its highly evolutionary conserved across Metazoa NRT site. The abilities of both recombinant enzymes to add in vitro O -fucose to EGF-like domains of three different recombinant mammalian glycoproteins were then explored. In vitro POFUT1-mediated O-fucosylation experiments, followed by click chemistry and blot analyses, showed that Spodoptera frugiperda POFUT1 was able to add O-fucose to mouse NOTCH1 EGF-like 26 and WIF1 EGF-like 3 domains, similarly to the murine counterpart. As proved by mass spectrometry, full-length human WNT Inhibitor Factor 1 expressed by Sf9 cells was also modified with O-fucose. However, Spodoptera frugiperda POFUT1 was unable to modify the single EGF-like domain of mouse PAMR1 with O-fucose, contrary to murine POFUT1. Absence of orthologous proteins such as PAMR1 in insects may explain the enzyme's difficulty in adding O-fucose to a domain that it never encounters naturally.


Assuntos
Fucosiltransferases , Proteínas Recombinantes , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Spodoptera/enzimologia , Spodoptera/genética , Spodoptera/metabolismo , Fucosiltransferases/química , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Humanos , Animais , Camundongos , Células CHO , Cricetulus , Células Sf9 , Glicosilação , Sequência Consenso , Fucose/metabolismo , Domínios Proteicos
4.
Insect Biochem Mol Biol ; 163: 104042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030045

RESUMO

Insect cytochrome P450s play important roles in the detoxification of xenobiotics and the metabolic resistance to insecticides. However, the approach for in vivo validation of the contribution of specific candidate P450s to resistance is still limited in most non-model insect species. Previous studies with heterologous expression and in vitro functional assays have confirmed that a natural substitution (F116V) in the substrate recognition site 1 (SRS1) of the CYP9A186 of Spodoptera exigua is a gain-of-function mutation, which results in detoxification capability of and thus high-level resistance to both emamectin benzoate (EB) and abamectin. In this study, we established an effective piggyBac-based transformation system in the serious agricultural pest Helicoverpa armigera and overexpressed in vivo a resistance P450 allele, CYP9A186-F116V, from another lepidopteran pest Spodoptera exigua. Bioassays showed that transgenic H. armigera larvae expressing CYP9A186-F116V obtained 358-fold and 38.6-fold resistance to EB and abamectin, respectively. In contrast, a transgenic line of Drosophila melanogaster overexpressing this P450 variant only confers ∼20-fold resistance to the two insecticides. This bias towards the resistance level revealed that closely related species might provide a more appropriate cellular environment for gene expression and subsequent toxicokinetics of insecticides. These results not only present an alternative method for in vivo functional characterization of P450s in H. armigera and other phylogenetically close species but also provide a valuable genetic engineering toolkit for the genetic manipulation of H. armigera.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Helicoverpa armigera , Mariposas/genética , Mariposas/metabolismo , Alelos , Drosophila melanogaster/metabolismo , Resistência a Inseticidas/genética , Larva/genética , Larva/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , Animais Geneticamente Modificados/metabolismo
5.
Pestic Biochem Physiol ; 196: 105592, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945225

RESUMO

Spodoptera litura, a polyphagous lepidopteran pest, demonstrates a remarkable capacity to adapt to varying host plants by efficiently detoxifying phytochemicals. However, the underlying mechanism for this adaptation is not well understood. Herein, twenty eplison glutathione S-transferase genes (GSTes) were characterized and their roles in phytochemical tolerance were analyzed in S. litura. Most of the GSTe genes were mainly expressed in the larval midgut and fat body. Exposure to the phytochemicals, especially xanthotoxin, induced the expression of most GSTe genes. Molecular docking analysis revealed that xanthotoxin could form stable bonds with six xanthotoxin-responsive GSTes, with binding free energies ranging from -36.44 to -68.83 kcal mol-1. Knockdown of these six GSTe genes increased the larval susceptibility to xanthotoxin. Furthermore, xanthotoxin exposure significantly upregulated the expression of two transcription factor genes CncC and MafK. Silencing of either CncC or MafK reduced the expression of GSTe16, which exhibited the largest change in response to xanthotoxin. Additionally, analysis of the promoter sequence of GSTe16 revealed the presence of seven CncC/Maf binding sites. Luciferase reporter assays showed that CncC and MafK enhanced the expression of GSTe16, leading to the increased xanthotoxin tolerance in S. litura. These findings provide insight into the functions and transcriptional regulatory mechanisms of GSTes, thereby enhancing our understanding of the role of GSTs in the adaptation of lepidopteran pests to phytochemicals.


Assuntos
Inseticidas , Metoxaleno , Animais , Spodoptera/metabolismo , Metoxaleno/farmacologia , Simulação de Acoplamento Molecular , Glutationa/metabolismo , Transferases/metabolismo , Larva/metabolismo , Inseticidas/farmacologia
6.
Pestic Biochem Physiol ; 196: 105619, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945255

RESUMO

The insect olfaction plays crucial roles in many important behaviors, in which ORs are key determinants for signal transduction and the olfactory specificity. Spodoptera litura is a typical polyphagous pest, possessing a large repertoire of ORs tuning to broad range of plant odorants. However, the specific functions of those ORs remain mostly unknown. In this study, we functionally characterized one S. litura OR (OR51) that was highly expressed in the adult antennae. First, by using Xenopus oocyte expression and two-electrode voltage clamp recording system (XOE-TEVC), OR51 was found to be strongly and specifically responsive to vanillin (a volatile of S. litura host plants) among 77 tested odorants. Second, electroantennogram (EAG) and Y-tube behavioral experiment showed that vanillin elicited significant EAG response and attraction behavior especially of female adults. This female attraction was further confirmed by the oviposition experiment, in which the soybean plants treated with vanillin were significantly preferred by females for egg-laying. Third, 3D structural modelling and molecular docking were conducted to explore the interaction between OR51 and vanillin, which showed a high affinity (-4.46 kcal/mol) and three residues (Gln163, Phe164 and Ala305) forming hydrogen bonds with vanillin, supporting the specific binding of OR51 to vanillin. In addition, OR51 and its homologs from other seven noctuid species shared high amino acid identities (78-97%) and the same three hydrogen bond forming residues, suggesting a conserved function of the OR in these insects. Taken together, our study provides some new insights into the olfactory mechanisms of host plant finding and suggests potential applications of vanillin in S. litura control.


Assuntos
Receptores Odorantes , Animais , Feminino , Spodoptera/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Simulação de Acoplamento Molecular , Plantas/química , Proteínas de Insetos/metabolismo
7.
J Agric Food Chem ; 71(40): 14517-14526, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773746

RESUMO

Cytochrome P450 plays vital roles in detoxifying xenobiotics. In this study, SlCYP340A and SlCYP340L expression in the Spodoptera litura fat body and SlCYP332A1, SlCYP6AB12, SlCYP6AB58, SlCYP6AB59, and SlCYP6AN4 expression in the Malpighian tubules were significantly upregulated after cyantraniliprole exposure, and SlCYP6AB58 and SlCYP6AB59 expression levels were simultaneously increased in the Malpighian tubules after gossypol treatment. Drosophila ectopically expressing candidate P450 genes showed that SlCYP332A1, SlCYP6AB12, SlCYP6AB59, SlCYP6AN4, and SlCYP340A conferred cyantraniliprole tolerance. The overexpression of SlCYP6AB58 and SlCYP6AB59 in Drosophila increased the number of eggs laid under the gossypol treatment. Moreover, the knockdown of SlCYP332A1, SlCYP6AB12, SlCYP6AB59, SlCYP6AN4, and SlCYP340A increased S. litura mortality under the cyantraniliprole treatment. Homology modeling and molecular docking results suggested that candidate P450 has the potential to bind with cyantraniliprole. These results indicate that the CYP3 and CYP4 genes participate in cyantraniliprole detoxification and that SlCYP6AB59 may be simultaneously involved in the gossypol tolerance of S. litura.


Assuntos
Gossipol , Inseticidas , Animais , Spodoptera/genética , Spodoptera/metabolismo , Túbulos de Malpighi/metabolismo , Corpo Adiposo/metabolismo , Simulação de Acoplamento Molecular , Xenobióticos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila/metabolismo , Larva/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo
8.
Sci Rep ; 13(1): 12151, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500666

RESUMO

Nicotine is a highly addictive alkaloid and a neurostimulator found in tobacco that causes addiction in humans and makes tobacco a high-demand commercial product. It is popularly used for recreational purposes and is a harmful substance (Oral LD50 value for rat is 50 mg/kg) and causes addiction. The metabolites of nicotine such as the Tobacco-specific Nitrosamines (TSNAs) are hazardous substances whose metabolites are highly electrophilic and form DNA adducts, which will initiate the process of carcinogenesis. TSNAs are formed during curing, storage and fermentation due to the nitrosation of nicotine and other tobacco alkaloids. TSNAs are used as biomarkers for cancer risk assessment in humans exposed to tobacco and its products. To determine the occasional formation of TSNAs in tobacco-feeding insects, 5th instar larvae of Spodoptera litura and their faeces were analyzed for the presence of N'-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) along with the stored tobacco leaves (PT-76) using an Agilent 6470B LC-MS/MS system following ISO/DIS 19290:2015 protocol. The larvae are extracted in a buffered acetonitrile-water extraction and the amount of TSNAs are quantified in multiple reaction monitoring (MRM) mode. 20 [Formula: see text]l of each extracted and cleaned up sample was injected into the LC-MS/MS system for quantification. The Limit of Detection (LOD) and Limit of Quantification (LOQ) were 0.001 mg/kg and 0.005 mg/kg for all the tested nitrosamines. NNN was found to be 0.361 mg/kg, 0.340 mg/kg, and 5.66 mg/kg in insect whole-body samples, faeces, and tobacco leaves, respectively. NNK was found to be 0.060 mg/kg, 0.035 mg/kg and 0.93 mg/kg in insect whole body samples, faeces and tobacco leaves, respectively. However, NNAL was not detected in both the insect's whole body and faeces. Recoveries ranged between 95 and 98% for all compounds when spiked at LOD and LOQ. The presence of TSNAs is a biomarker for cancer risk and their presence in insects would point to cancer risk assessment in tobacco feeding insects and any possible TSNA-detoxifying pathways in insects that might prevent mutagenesis caused these compounds.


Assuntos
Alcaloides , Nitrosaminas , Humanos , Animais , Ratos , Nicotina/metabolismo , Spodoptera/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Nitrosaminas/análise , Carcinogênese , Alcaloides/metabolismo , Biomarcadores/metabolismo , Carcinógenos/análise
9.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108345

RESUMO

Soybean is a worldwide crop that offers valuable proteins, fatty acids, and phytonutrients to humans but is always damaged by insect pests or pathogens. Plants have captured sophisticated defense mechanisms in resisting the attack of insects and pathogens. How to protect soybean in an environment- or human-friendly way or how to develop plant-based pest control is a hotpot. Herbivore-induced plant volatiles that are released by multiple plant species have been assessed in multi-systems against various insects, of which (E)-ß-ocimene has been reported to show anti-insect function in a variety of plants, including soybean. However, the responsible gene in soybean is unknown, and its mechanism of synthesis and anti-insect properties lacks comprehensive assessment. In this study, (E)-ß-ocimene was confirmed to be induced by Spodoptera litura treatment. A plastidic localized monoterpene synthase gene, designated as GmOCS, was identified to be responsible for the biosynthesis of (E)-ß-ocimene through genome-wide gene family screening and in vitro and in vivo assays. Results from transgenic soybean and tobacco confirmed that (E)-ß-ocimene catalyzed by GmOCS had pivotal roles in repelling a S. litura attack. This study advances the understanding of (E)-ß-ocimene synthesis and its function in crops, as well as provides a good candidate for further anti-insect soybean improvement.


Assuntos
Alcenos , Insetos , Animais , Humanos , Spodoptera/genética , Spodoptera/metabolismo , Monoterpenos Acíclicos , Alcenos/metabolismo , Insetos/metabolismo , Plantas/metabolismo
10.
Int J Biol Macromol ; 235: 123915, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36871694

RESUMO

The oriental armyworm Mythimna separata is a polyphagous, migratory corn pest in China and other Asian countries. Transgenic Bacillus thuringiensis (Bt) corn may effectively control this insect pest. Several reports have suggested that ATP-binding cassette (ABC) transporter proteins may act as receptors that bind Bt toxins. However, our knowledge about ABC transporter proteins in M. separata is limited. We identified 43 ABC transporter genes in the M. separata genome by bioinformatics prediction. Evolutionary tree analysis grouped these 43 genes into 8 subfamilies, ABCA to ABCH. Among the 13 ABCC subfamily genes, the transcript levels of MsABCC2 and MsABCC3 were upregulated. In addition, RT-qPCR analyses of these two potentials showed that both were predominantly expressed in the midgut tissue. Knock-down of MsABCC2, but not MsABCC3, decreased Cry1Ac susceptibility as indicated by increased larval weight and reduced larval mortality. This suggested that MsABCC2 might play a more important role in Cry1Ac toxicity and that it is a putative Cry1Ac receptor in M. separata. Together, these findings provide unique and valuable information for future elucidating of the role of ABC transporter genes in M. separata, which is highly valuable and important for the long-term application of Bt insecticidal protein.


Assuntos
Bacillus thuringiensis , Mariposas , Platelmintos , Animais , Spodoptera/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Mariposas/genética , Mariposas/metabolismo , Larva/genética , Larva/metabolismo , Insetos/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo
11.
Pestic Biochem Physiol ; 191: 105348, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963930

RESUMO

A precise chemosensory system can help insects complete various important behavioral responses by accurately identifying different external odorants. Therefore, deeply understanding the mechanism of insect recognition of important odorants will help us develop efficient and environmentally-friendly behavioral inhibitors. Spodoptera frugiperda is a polyphagous pest that feeds on >350 different host plants worldwide and also harms maize production in China. However, the molecular mechanism of the first step for males to use odorant-binding proteins (OBPs) to recognize sex pheromones remains unclear. Here, we obtained 50 OBPs from the S. frugiperda genome, and the expression level of SfruGOBP1 in females was significantly higher than that in males, whereas SfruGOBP2 displayed male-biased expression. Fluorescence competitive binding assays showed that only SfruGOBP2 showed binding affinities for the four sex pheromones of female S. frugiperda. Subsequently, we identified some key amino acid residues that can participate in the interaction between SfruGOBP2 and sex pheromones using molecular docking and site-directed mutagenesis methods. These findings will help us explore the interaction mechanism between GOBPs and sex pheromones in moths, and provide important target genes for developing new mating inhibitors of S. frugiperda in the future.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Feminino , Masculino , Atrativos Sexuais/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , Odorantes , Simulação de Acoplamento Molecular , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Feromônios/metabolismo
12.
Genomics ; 115(2): 110571, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746219

RESUMO

BACKGROUND: The beet armyworm Spodoptera exigua is a polyphagous caterpillar that causes serious damage to many species of crops and vegetables. To gain insight into how this polyphagous insect differs from less harmful oligophagous species, we generated a chromosome-level assembly and compared it to closely related species with the same or different feeding habits. RESULTS: Based on Illumina and Pacific Biosciences data and Hi-C technology, 425.6 Mb of genome sequences were anchored and oriented into 31 linkage groups, with an N50 length of 14.8 Mb. A total of 24,649 gene models were predicted, of which 97.4% were identified in the genome assembly. Chemosensory genes are vital for locating food: of the four main families, odorant-binding proteins, chemosensory proteins and olfactory receptors showed little difference, whereas gustatory receptors are greatly expanded in S. exigua. Examination of other polyphagous insects confirmed this difference from oligophagous congeners and further identified the bitter receptor subfamily as being particularly affected. CONCLUSION: Our high-quality genome sequence for beet armyworm identified a key expansion of the bitter gustatory receptor subfamily in this and other pests that differs crucially from more benign relatives and offers insight into the biology and possible future means of control for these economically important insects.


Assuntos
Beta vulgaris , Humanos , Animais , Spodoptera/genética , Spodoptera/metabolismo , Beta vulgaris/genética , Cromossomos
13.
Arch Insect Biochem Physiol ; 112(2): e21970, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36200410

RESUMO

Microplitis bicoloratus parasitism can induce apoptosis of hemocytes in the M. bicolortus host, Spodoptera litura. However, it is unclear how M. bicolortus parasitism regulates host signaling pathways to induce apoptosis. Expression of cyclophilin D (CypD) and p53 was significantly upregulated in S. litura hemocytes at 6 days postparasitization. In the parasitized hemocytes, there was mitochondrial membrane potential (△Ψm ) loss, cytochrome c (Cyt C) release from mitochondria, and caspase-3 activation. These occurred while hemocytes were undergoing upregulation of CypD and p53. Parasitism also promoted the interaction between CypD and p53. CypD silencing could rescue the apoptotic phenotypes induced by parasitism, but had no effect on apoptosis in unparasitized S. litura. These findings suggest that the CypD-p53 pathway may be an important component of the parasitism-induced immunosuppressive response and establish a basis for further studies of parasitoid/host interactions.


Assuntos
Polydnaviridae , Vespas , Animais , Spodoptera/metabolismo , Vespas/metabolismo , Larva/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Hemócitos/metabolismo , Polydnaviridae/metabolismo , Apoptose/fisiologia
14.
Parasite ; 29: 53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350195

RESUMO

Microplitis pallidipes Szépligeti (Hymenoptera: Braconidae) is an important parasitic wasp of second and third-instar noctuid larvae such as the insect pests Spodoptera exigua, Spodoptera litura, and Spodoptera frugiperda. As in other insects, M. pallidipes has a chemosensory recognition system that is critical to foraging, mating, oviposition, and other behaviors. Odorant-binding proteins (OBPs) are important to the system, but those of M. pallidipes have not been determined. This study used PacBio long-read sequencing to identify 170,980 M. pallidipes unigenes and predicted 129,381 proteins. Following retrieval of possible OBP sequences, we removed those that were redundant or non-full-length and eventually cloned five OBP sequences: MpOBP2, MpOBP3, MpOBP8, MpOBP10, and MpPBP 429, 429, 459, 420, and 429 bp in size, respectively. Each M. pallidipes OBP had six conserved cysteine residues. Phylogenetic analysis revealed that the five OBPs were located at different branches of the phylogenetic tree. Additionally, tissue expression profiles indicated that MpOBP2 and MpPBP were mainly expressed in the antennae of male wasps, while MpOBP3, MpOBP8, and MpOBP10 were mainly expressed in the antennae of female wasps. MpOBP3 was also highly expressed in the legs of female wasps. Temporal profiles revealed that the expression of each M. pallidipes OBP peaked at different days after emergence to adulthood. In conclusion, we identified five novel odorant-binding proteins of M. pallidipes and demonstrated biologically relevant differences in expression patterns.


Title: Identification et profil d'expression des protéines de liaison aux odeurs chez la guêpe parasite Microplitis pallidipes à l'aide du séquençage à lecture longue PacBio. Abstract: Microplitis pallidipes Szépligeti (Hymenoptera : Braconidae) est une importante guêpe parasite des larves de noctuelles de deuxième et troisième stades telles que les insectes ravageurs Spodoptera exigua, Spodoptera litura et Spodoptera frugiperda. Comme d'autres insectes, M. pallidipes possède un système de reconnaissance chimiosensoriel, essentiel à la recherche de nourriture, à l'accouplement, à la ponte et à d'autres comportements. Les protéines de liaison aux odeurs (PLO) sont importantes pour le système, mais celles de M. pallidipes n'ont pas été déterminées. Cette étude a utilisé le séquençage à lecture longue PacBio pour identifier 170 980 unigènes de M. pallidipes et prédit 129 381 protéines. Après la récupération des séquences de PLO possibles, nous avons supprimé celles qui étaient redondantes ou pas de pleine longueur et avons finalement cloné cinq séquences de PLO, MpOBP2, MpOBP3, MpOBP8, MpOBP10 et MpPBP, respectivement de taille 429, 429, 459, 420 et 429 pb. Chaque PLO de M. pallidipes avait six résidus de cystéine conservés. L'analyse phylogénétique a révélé que les cinq PLO étaient situés à différentes branches de l'arbre phylogénétique. De plus, les profils d'expression tissulaire ont indiqué que MpOBP2 et MpPBP étaient principalement exprimés dans les antennes des guêpes mâles, tandis que MpOBP3, MpOBP8 et MpOBP10 étaient principalement exprimés dans les antennes des guêpes femelles. MpOBP3 était également fortement exprimé dans les pattes des guêpes femelles. Les profils temporels ont révélé que l'expression de chaque PLO de M. pallidipes culminait à différents jours après l'émergence à l'âge adulte. En conclusion, nous avons identifié cinq nouvelles protéines de liaison aux odeurs de M. pallidipes et démontré des différences biologiquement pertinentes dans les profils d'expression.


Assuntos
Vespas , Animais , Feminino , Vespas/genética , Filogenia , Odorantes , Spodoptera/metabolismo , Spodoptera/parasitologia , Larva/genética , Larva/parasitologia , Proteínas de Insetos/genética , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Transcriptoma
15.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233286

RESUMO

The fall armyworm Spodoptera frugiperda is a highly polyphagous invasive pest. The strong reproductive capacity is an important factor in the rapid colonization and expansion of S. frugiperda. Vitellogenin (Vg) and vitellogenin receptor (VgR) play important roles in insect reproduction. As the precursor of vitellin (Vn), Vg provides essential nutrition for embryonic development, and VgR mediates the uptake of Vg by oocytes. In this context, we cloned and characterized these two genes of S. frugiperda (SfVg and SfVgR) and evaluated their expression profiles in different developmental stages and tissues. The RNA interference experiment was used to investigate their function in vitellogenesis. The ORF values of SfVg and SfVgR were 5250 and 5445 bp, encoding 1749 and 1815 amino acid residues, respectively. The qRT-PCR results revealed that both SfVg and SfVgR were highly expressed in female adults; SfVg was specifically expressed in the fat body, whereas SfVgR was highly expressed in the ovary. In addition, the depletion of either SfVg or SfVgR hindered oocyte maturation and ovarian development, leading to a significant decrease in fecundity. The present study reveals the importance of SfVg and SfVgR in the vitellogenesis of S. frugiperda, laying a theoretical foundation for the development of pollution-free pest control strategies with SfVg and SfVgR as new targets.


Assuntos
Vitelogênese , Vitelogeninas , Aminoácidos , Animais , Feminino , Spodoptera/genética , Spodoptera/metabolismo , Vitelinas , Vitelogênese/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo
16.
Toxins (Basel) ; 14(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36287946

RESUMO

Furanocoumarins, the secondary metabolites of plants, are considered to be natural insecticides and fungicides because they prevent the invasion of plant pathogenic microorganisms and the predation of herbivorous insects. In this study, novel 2-arylfuranocoumarin derivatives were designed to synthesize by condensation, esterification, bromination, and Wittig reaction. The results showed an excellent photosensitive activity of 2-thiophenylfuranocoumarin (I34). Cell Counting Kit-8 detected that I34 could inhibit the proliferation of Spodoptera frugiperda (Sf9) cells in a time- and concentration-dependent manner under ultraviolet A (UV-A) light for 3 min. The inverted microscope revealed that cells treated with I34 swelled, the membrane was ruptured, and apoptotic bodies appeared. The flow cytometry detected that I34 could induce apoptosis of Sf9 cells, increase the level of intracellular reactive oxygen species (ROS), decrease the mitochondrial membrane potential, and block cell cycle arrest in the G2/M phase. Transmission electron microscopy detected cell mitochondrial cristae damage, matrix degradation, and mitochondrial vacuolation. Further enzyme activity detection revealed that the enzyme activities of apoptosis-related proteins caspase-3 and caspase-9 increased significantly (p < 0.05). Finally, Western blotting analysis detected that the phosphorylation level of Akt and Bad and the expression of the apoptosis inhibitor protein Bcl-XL were inhibited, cleaved-PARP and P53 were increased, and cytochrome C was released from the mitochondria into the cytoplasm. Moreover, under UV-A irradiation, I34 promoted the increase in ROS in Sf9 cells, activated the mitochondrial apoptotic signal transduction pathway, and finally, inhibited cell proliferation. Thus, novel furanocoumarins exhibit a potential application prospect as a biochemical pesticide.


Assuntos
Fungicidas Industriais , Furocumarinas , Inseticidas , Praguicidas , Animais , Caspase 9/metabolismo , Caspase 9/farmacologia , Spodoptera/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Caspase 3/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Fungicidas Industriais/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Mitocôndrias , Potencial da Membrana Mitocondrial , Apoptose , Proliferação de Células , Furocumarinas/farmacologia
17.
Insect Biochem Mol Biol ; 151: 103830, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36064128

RESUMO

The insect steroid hormone ecdysone plays a critical role in insect development. Several recent studies have shown that ecdysone enters cells through Organic Anion Transporting Polypeptides (OATPs) in insects such as flies and mosquitoes. However, the conservation of this mechanism across other arthropods and the role of this transporter in canonical ecdysone pathways are less well studied. Herein we functionally characterized the putative ecdysone importer (EcI) from two major agricultural moth pests: Helicoverpa armigera (cotton bollworm) and Spodoptera frugiperda (fall armyworm). Phylogenetic analysis of OATP transporters across the superphylum Ecdysozoa revealed that EcI likely appeared only at the root of the arthropod lineage. Partial disruption of EcI in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential for development in vivo. Depletion and re-expression of EcI in the lepidoptera cell line RP-HzGUT-AW1(MG) demonstrated this protein's ability to control ecdysone mediated signaling in gene regulation, its role in ecdysone mediated cell death, and its sensitivity to rifampicin, a well-known organic anion transporter inhibitor. Overall, this work sheds light on ecdysone uptake mechanisms across insect species and broadens our knowledge of the physiological roles of OATPs in the transportation of endogenous substrates.


Assuntos
Mariposas , Transportadores de Ânions Orgânicos , Animais , Ecdisona/metabolismo , Filogenia , Larva , Spodoptera/genética , Spodoptera/metabolismo , Transportadores de Ânions Orgânicos/genética , Insetos/metabolismo
18.
Toxicon ; 219: 106930, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36167142

RESUMO

Use of secondary metabolites as an alternative to organic pesticides is an eco-friendly and safe strategy in pest management. ß-caryophyllene [(1R,4E,9S)-4,11,11-trimethyl-8-methylene bicyclo [7.2.0]undec-4-ene], a natural sesquiterpene is found as an essential oil in many plants like Syzygium aromaticum, Piper nigrum, Cannabis sativa. The present study aims at exploring the insecticidal, genotoxic and cytotoxic potential of ß-caryophyllene against common cutworm Spodoptera litura (Fab.), a major polyphagous pest. S. litura larvae were fed on different concentrations (5, 25, 125, 625 and 3125 ppm) of ß-caryophyllene. Results revealed delay in larval and pupal period with increase in concentration. Larval mortality increased and adult emergence declined significantly with increase in concentration. Higher concentrations of ß-caryophyllene caused pupal and adult deformities. A negative impact of ß-caryophyllene was also seen on the nutritional physiology of S. litura. Parameters such as relative growth rate, relative consumption rate, efficiency of conversion of ingested food, efficiency of conversion of digested food and approximate digestibility showed a significant reduction in a dose dependent manner. DNA damage assessed using comet assay revealed significant genotoxic effects at LC30 and LC50 concentrations. There was an increase in tail length, percent tail DNA, tail moment and olive tail moment. Phenol oxidase activity was suppressed at LC50 concentration with respect to control. Total hemocyte count also declined significantly at LC30 and LC50 concentrations as compared to control. ß-caryophyllene induced genotoxic and cytotoxic damage affecting the growth and survival of S. litura larvae. Our findings suggest that ß-caryophyllene has the potential to be used for the management of insect pests.


Assuntos
Inseticidas , Óleos Voláteis , Sesquiterpenos , Animais , Spodoptera/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Larva , Inseticidas/farmacologia , Pupa , Sesquiterpenos/toxicidade , Óleos Voláteis/toxicidade , Dano ao DNA
19.
Sci Rep ; 12(1): 13580, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945334

RESUMO

The fall armyworm (Spodoptera frugiperda) is a highly polyphagous lepidopteran pest of relevant food and fiber staple crops. In the Americas, transgenic corn and cotton producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have controlled and reduced the damage caused by S. frugiperda. However, cases of field-evolved S. frugiperda resistance to Bt corn producing the Cry1F insecticidal protein have been documented in North and South America. When characterized, field resistance to Cry1F is linked to insertions and mutations resulting in a modified or truncated ABC transporter subfamily C2 (SfABCC2) protein that serves as Cry1F receptor in susceptible S. frugiperda. In this work, we present detection of a large genomic deletion (~ 8 kb) affecting the SfABCC2 and an ABC transporter gene subfamily 3 -like gene (SfABCC3) as linked to resistance to Cry1F corn in a S. frugiperda strain from Florida (FL39). Monitoring for this genomic deletion using a discriminatory PCR reaction in field-collected S. frugiperda moths detected individuals carrying this allele in Florida, but not in surrounding states. This is the first report of a large genomic deletion being involved in resistance to a Bt insecticidal protein.


Assuntos
Bacillus thuringiensis , Inseticidas , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/genética , Florida , Genômica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Plantas Geneticamente Modificadas/genética , Spodoptera/metabolismo , Zea mays/genética , Zea mays/metabolismo
20.
Pestic Biochem Physiol ; 186: 105153, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35973775

RESUMO

The beet armyworm, Spodoptera exigua is a global agricultural pest that is polyphagous, highly dispersive, and often difficult to control due to resistance to many insecticides. Previous studies showed that a target site mutation in the S. exigua ryanodine receptor (SeRyR) corresponding to I4743M contributes approximately 20-fold resistance to chlorantraniliprole, whereas a mutation in the cytochrome P450 enzyme CYP9A186 corresponding to F116V confers 200-fold to emamectin benzoate through enhanced metabolic detoxification. Here, high frequencies of mutations were found among six China S. exigua field populations collected from 2016 to 2019 resulting in SeRyR I4743M and CYP9A186 F116V substitutions, with some populations having high levels of resistance to chlorantraniliprole and emamectin benzoate, respectively. Whereas we found a significant correlation between emamectin benzoate resistance level and the allele frequency of CYP9A186 F116V, no significant correlation was found between chlorantraniliprole resistance level and SeRyR I4743M allele frequency in the six field populations. These results suggest that CYP9A186 F116V is a major resistance mechanism for emamectin benzoate in the tested field populations, whereas it is likely that resistance mechanisms other than SeRyR I4743M are responsible for resistance to chlorantraniliprole in the six China field populations. Because of the growing resistance to these two insecticides by S. exigua in China, the use of insecticidal compounds with different modes of action and/or other integrated pest management strategies are needed to further delay the evolution of insecticide resistance and effectively manage S. exigua in China.


Assuntos
Inseticidas , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , ortoaminobenzoatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA