Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(8): e4707, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37334491

RESUMO

Staphylococcus epidermidis and Staphylococcus aureus are highly problematic bacteria in hospital settings. A major challenge is their ability to form biofilms on abiotic or biotic surfaces. Biofilms are well-organized, multicellular bacterial aggregates that resist antibiotic treatment and often lead to recurrent infections. Bacterial cell wall-anchored (CWA) proteins are important players in biofilm formation and infection. Many have putative stalk-like regions or regions of low complexity near the cell wall-anchoring motif. Recent work demonstrated the strong propensity of the stalk region of S. epidermidis accumulation-associated protein (Aap) to remain highly extended under solution conditions that typically induce compaction. This behavior is consistent with the expected function of a stalk-like region that is covalently attached to the cell wall peptidoglycan and projects the adhesive domains of Aap away from the cell surface. In this study, we evaluate whether the ability to resist compaction is a common theme among stalk regions from various staphylococcal CWA proteins. Circular dichroism spectroscopy was used to examine secondary structure changes as a function of temperature and cosolvents along with sedimentation velocity analytical ultracentrifugation, size-exclusion chromatography, and SAXS to characterize structural characteristics in solution. All stalk regions tested are intrinsically disordered, lacking secondary structure beyond random coil and polyproline type II helix, and they all sample highly extended conformations. Remarkably, the Ser-Asp dipeptide repeat region of SdrC exhibited nearly identical behavior in solution when compared to the Aap Pro/Gly-rich region, despite highly divergent sequence patterns, indicating conservation of function by various distinct staphylococcal CWA protein stalk regions.


Assuntos
Proteínas de Membrana , Infecções Estafilocócicas , Humanos , Proteínas de Membrana/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Biofilmes , Proteínas de Bactérias/química , Staphylococcus epidermidis/química , Staphylococcus epidermidis/metabolismo , Infecções Estafilocócicas/microbiologia
2.
J Biol Chem ; 299(3): 102936, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702253

RESUMO

Staphylococcus aureus and Staphylococcus epidermidis are frequently associated with medical device infections that involve establishment of a bacterial biofilm on the device surface. Staphylococcal surface proteins Aap, SasG, and Pls are members of the Periscope Protein class and have been implicated in biofilm formation and host colonization; they comprise a repetitive region ("B region") and an N-terminal host colonization domain within the "A region," predicted to be a lectin domain. Repetitive E-G5 domains (as found in Aap, SasG, and Pls) form elongated "stalks" that would vary in length with repeat number, resulting in projection of the N-terminal A domain variable distances from the bacterial cell surface. Here, we present the structures of the lectin domains within A regions of SasG, Aap, and Pls and a structure of the Aap lectin domain attached to contiguous E-G5 repeats, suggesting the lectin domains will sit at the tip of the variable length rod. We demonstrate that these isolated domains (Aap, SasG) are sufficient to bind to human host desquamated nasal epithelial cells. Previously, proteolytic cleavage or a deletion within the A domain had been reported to induce biofilm formation; the structures suggest a potential link between these observations. Intriguingly, while the Aap, SasG, and Pls lectin domains bind a metal ion, they lack the nonproline cis peptide bond thought to be key for carbohydrate binding by the lectin fold. This suggestion of noncanonical ligand binding should be a key consideration when investigating the host cell interactions of these bacterial surface proteins.


Assuntos
Proteínas de Bactérias , Modelos Moleculares , Domínios Proteicos , Staphylococcus aureus , Humanos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lectinas/química , Lectinas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/química , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Domínios Proteicos/fisiologia , Estrutura Terciária de Proteína , Ligação Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli , Células Epiteliais/microbiologia
3.
J Bacteriol ; 203(17): e0017821, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34096781

RESUMO

Antimicrobial peptides (AMPs) are one of the key immune responses that can eliminate pathogenic bacteria through membrane perturbation. As a successful skin commensal, Staphylococcus epidermidis can sense and respond to AMPs through the GraXRS two-component system and an efflux system comprising the VraG permease and VraF ATPase. GraS is a membrane sensor known to function in AMP resistance through a negatively charged, 9-residue extracellular loop, which is predicted to be linear without any secondary structure. An important question is how GraS can impart effective sensing of AMPs through such a small unstructured sequence. In this study, we verified the role of graS and vraG in AMP sensing in S. epidermidis, as demonstrated by the failure of the ΔgraS or ΔvraG mutants to sense. Deletion of the extracellular loop of VraG did not affect sensing but reduced survival with polymyxin B. Importantly, a specific region within the extracellular loop, termed the guard loop (GL), has inhibitory activity since sensing of polymyxin B was enhanced in the ΔGL mutant, indicating that the GL may act as a gatekeeper for sensing. Bacterial two-hybrid analysis demonstrated that the extracellular regions of GraS and VraG interact, but interaction appears dispensable to sensing activity. Mutation of the extracellular loop of VraG, the GL, and the active site of VraF suggested that an active detoxification function of VraG is necessary for AMP resistance. Altogether, we provide evidence for a unique sensory scheme that relies on the function of a permease to impart effective information processing. IMPORTANCE Staphylococcus epidermidis has become an important opportunistic pathogen that is responsible for nosocomial and device-related infections that account for considerable morbidity worldwide. A thorough understanding of the mechanisms that enable S. epidermidis to colonize human skin successfully is essential for the development of alternative treatment strategies and prophylaxis. Here, we demonstrate the importance of an AMP response system in a clinically relevant S. epidermidis strain. Furthermore, we provide evidence for a unique sensory scheme that would rely on the detoxification function of a permease to effect information processing.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Conformação Proteica em alfa-Hélice , Infecções Estafilocócicas/metabolismo , Staphylococcus epidermidis/química , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética
4.
Carbohydr Polym ; 232: 115801, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952600

RESUMO

The aim of this study was to use of bacterial cellulose/polypyrrole/TiO2-Ag (BC/PPy/TiO2-Ag) nanocomposite film to detect and measure the growth of 5 pathogenic bacteria. For this purpose, at first, 13 BC/PPy/TiO2-Ag films were fabricated, then bacterial suspensions were prepared according to McFarland standard. The results showed that by increasing the bacterial concentration, the electrical resistance of sensors was decreased and there was a relation between bacterial concentration and bacterial type with electrical resistance change of sensors. The obtained data showed that the sensitivity of the sensors was increased with increasing the concentration of polypyrrole and TiO2-Ag. FT-IR and SEM tests were performed to investigate the interaction between nanoparticles and determine the size of nanoparticles. The BC/PPy/TiO2-Ag biosensors are portable and the response time of these sensors is very short for target analysis. Therefore, these sensors have the potential to improve biological safety as diagnostic tools.


Assuntos
Aeromonas hydrophila/química , Celulose/química , Nanocompostos/química , Staphylococcus aureus/química , Staphylococcus epidermidis/química , Aeromonas hydrophila/crescimento & desenvolvimento , Tamanho da Partícula , Polímeros/química , Pirróis/química , Prata/química , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/crescimento & desenvolvimento , Propriedades de Superfície , Titânio/química
5.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514281

RESUMO

The glycerol fermentation of probiotic Staphylococcus epidermidis (S. epidermidis) in the skin microbiome produced butyric acid in vitro at concentrations in the millimolar range. The exposure of dorsal skin of mice to ultraviolet B (UVB) light provoked a significant increased production of pro-inflammatory interleukin (IL)-6 cytokine. Topical application of butyric acid alone or S. epidermidis with glycerol remarkably ameliorated the UVB-induced IL-6 production. In vivo knockdown of short-chain fatty acid receptor 2 (FFAR2) in mouse skin considerably blocked the probiotic effect of S. epidermidis on suppression of UVB-induced IL-6 production. These results demonstrate that butyric acid in the metabolites of fermenting skin probiotic bacteria mediates FFAR2 to modulate the production of pro-inflammatory cytokines induced by UVB.


Assuntos
Ácido Butírico/farmacologia , Interleucina-6/metabolismo , Microbiota/efeitos dos fármacos , Probióticos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Pele/microbiologia , Staphylococcus epidermidis/química , Raios Ultravioleta , Acetolactato Sintase/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Ácidos Graxos Voláteis/metabolismo , Feminino , Fermentação , Glicerol/farmacologia , Inflamação/patologia , Camundongos Endogâmicos ICR , Microbiota/efeitos da radiação , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação
6.
Drug Dev Ind Pharm ; 43(10): 1715-1728, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28581830

RESUMO

OBJECTIVE: The aim of this study was to develop mupirocin topical spray using Eudragit E100 as a film-forming agent for the treatment of bacterial skin infections as well as to promote wound healing. MATERIALS AND METHODS: Twenty-seven of mupirocin formulations were formulated containing Eudragit E100 and other excipients. Mupirocin spray was prepared by aerosol crimping and filling machine using HFA-134a as a propellant. The formulations were evaluated for their stability and physicochemical properties. The factorial study was applied to evaluate the effects of glycerol and PEG400 on mupirocin-loaded Eudragit E100 films. The optimized formulation was assessed of drug release, antibacterial activities and in vitro cell line studies in comparison to the ointment formulation. RESULTS AND DISCUSSION: Mupirocin sprays were formulated and optimized to obtain the formulation with excellent physicochemical and mechanical properties of the dressing film. The formulation had an excellent stability up to a year with more than 80% of mupirocin content. Mupirocin was released from the film up to 90% within 2 h. The formulation had a potent antibacterial effect against S. aureus and S. epidermidis. The formulation was safe to use as a topical formulation that had no toxicity to keratinocytes, fibroblasts and monocytes. The formulation also had an antiendotoxin effect without stimulating the production of NO and inflammatory cytokines (IL-1ß and TNF-α). CONCLUSIONS: Mupirocin topical spray was successful developed as a topical formulation and can be used instead of the ointment formulation. Animal experiments are warranted to further emphasize the safe use in the human skin.


Assuntos
Antibacterianos/administração & dosagem , Hidrocarbonetos Fluorados/química , Mupirocina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Cicatrização/efeitos dos fármacos , Administração Tópica , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Química Farmacêutica , Humanos , Mupirocina/administração & dosagem , Mupirocina/química , Staphylococcus aureus/química , Staphylococcus epidermidis/química , Fator de Necrose Tumoral alfa/química , Cicatrização/fisiologia
7.
Angew Chem Int Ed Engl ; 56(11): 2999-3003, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28170145

RESUMO

A series of tubular molecules with different lengths have been synthesized by attaching Trp-incorporated peptides to the pillar[5]arene backbone. The tubular molecules are able to insert into the lipid bilayer to form unimolecular transmembrane channels. One of the channels has been revealed to specifically insert into the bilayer of the Gram-positive bacteria. In contrast, this channel cannot insert into the membranes of the mammalian rat erythrocytes even at the high concentration of 100 µm. It was further demonstrated that, as a result of this high membrane selectivity, the channel exhibits efficient antimicrobial activity for the Gram-positive bacteria and very low hemolytic toxicity for mammalian erythrocytes.


Assuntos
Calixarenos/química , Bicamadas Lipídicas/química , Peptídeos/química , Staphylococcus epidermidis/química , Animais , Calixarenos/metabolismo , Calixarenos/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/metabolismo , Estrutura Molecular , Tamanho da Partícula , Peptídeos/metabolismo , Peptídeos/farmacologia , Staphylococcus epidermidis/citologia , Staphylococcus epidermidis/metabolismo , Propriedades de Superfície
8.
J Mol Biol ; 429(2): 261-279, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27890783

RESUMO

Staphylococcus epidermidis is one of the primary bacterial species responsible for healthcare-associated infections. The most significant virulence factor for S. epidermidis is its ability to form a biofilm, which renders the bacteria highly resistant to host immune responses and antibiotic action. Intercellular adhesion within the biofilm is mediated by the accumulation-associated protein (Aap), a cell wall-anchored protein that self-assembles in a zinc-dependent manner. The C-terminal portion of Aap contains a 135-aa-long, proline/glycine-rich region (PGR) that has not yet been characterized. The region contains a set of 18 nearly identical AEPGKP repeats. Analysis of the PGR using biophysical techniques demonstrated the region is a highly extended, intrinsically disordered polypeptide with unusually high polyproline type II helix propensity. In contrast to many intrinsically disordered polypeptides, there was a minimal temperature dependence of the global conformational state of PGR in solution as measured by analytical ultracentrifugation and dynamic light scattering. Furthermore, PGR was resistant to conformational collapse or α-helix formation upon the addition of the osmolyte trimethylamine N-oxide or the cosolvent 2,2,2-trifluoroethanol. Collectively, these results suggest PGR functions as a resilient, extended stalk that projects the rest of Aap outward from the bacterial cell wall, promoting intercellular adhesion between cells in the biofilm. This work sheds light on regions of low complexity often found near the attachment point of bacterial cell wall-anchored proteins.


Assuntos
Proteínas de Bactérias/química , Biofilmes , Glicina/química , Prolina/química , Sequência de Aminoácidos , Aderência Bacteriana , Proteínas de Bactérias/genética , Metilaminas , Staphylococcus epidermidis/química , Staphylococcus epidermidis/genética , Trifluoretanol , Fatores de Virulência/química , Fatores de Virulência/genética
9.
Arch Biochem Biophys ; 566: 1-6, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25499551

RESUMO

Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) catalyzes the irreversible decarboxylation of mevalonate diphosphate in the mevalonate pathway to form isopentenyl diphosphate, which is a precursor in the biosynthesis of many essential polyisoprenoid natural products, including sterols. In low G/C Gram-positive bacteria, which utilize the mevalonate pathway, MDD is required for cell viability and thus is a potential target for development of antibiotic drugs. To identify potential inhibitors of the enzyme, the National Cancer Institute's Mechanistic Diversity Set library of compounds was screened for inhibitors of Staphylococcus epidermidis MDD. From this screen, the compound Eriochrome Black A (EBA), an azo dye, was found to inhibit the enzyme with an IC50 value<5µM. Molecular docking of EBA into a crystal structure of S. epidermidis MDD suggested binding at the active site. EBA, along with the related Eriochrome B and T compounds, was evaluated for its ability to not only inhibit enzymatic activity but to inhibit bacterial growth as well. These compounds exhibited competitive inhibition towards the substrate mevalonate diphosphate, with Ki values ranging from 0.6 to 2.7µM. Non-competitive inhibition was observed versus ATP indicating binding of the inhibitor in the mevalonate diphosphate binding site, consistent with molecular docking predictions. Fluorescence quenching analyses also supported active site binding of EBA. These eriochrome compounds are effective at inhibiting S. epidermidis cell growth on both solid media and in liquid culture (MIC50 from 31 to 350µM) raising the possibility that they could be developed into antibiotic leads targeting pathogenic low-G/C Gram-positive cocci.


Assuntos
Compostos Azo/química , Proteínas de Bactérias/antagonistas & inibidores , Carboxiliases/antagonistas & inibidores , Inibidores Enzimáticos/química , Staphylococcus epidermidis/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carboxiliases/química , Carboxiliases/genética , Ensaios de Triagem em Larga Escala , Cinética , Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/química , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequenas , Staphylococcus epidermidis/enzimologia
10.
Proc Natl Acad Sci U S A ; 110(44): 17862-7, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24127585

RESUMO

Glucose transporters are required to bring glucose into cells, where it is an essential energy source and precursor in protein and lipid synthesis. These transporters are involved in important common diseases such as cancer and diabetes. Here, we report the crystal structure of the Staphylococcus epidermidis glucose/H(+) symporter in an inward-facing conformation at 3.2-Å resolution. The Staphylococcus epidermidis glucose/H(+) symporter is homologous to human glucose transporters, is very specific and has high avidity for glucose, and is inhibited by the human glucose transport inhibitors cytochalasin B, phloretin, and forskolin. On the basis of the crystal structure in conjunction with mutagenesis and functional studies, we propose a mechanism for glucose/H(+) symport and discuss the symport mechanism versus facilitated diffusion.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/química , Modelos Moleculares , Conformação Proteica , Staphylococcus epidermidis/química , Transporte Biológico/fisiologia , Clonagem Molecular , Colforsina/farmacologia , Cristalização , Citocalasina B/farmacologia , Escherichia coli , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Mutagênese , Mutagênese Sítio-Dirigida , Floretina/farmacologia , Homologia de Sequência , Staphylococcus epidermidis/genética
11.
Eur J Oral Sci ; 121(1): 7-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23331418

RESUMO

The salivary agglutinin glycoprotein (SAG) is present in saliva but is also part of the salivary pellicle, playing a seemingly paradoxical role with regard to bacterial homeostasis. On the one hand, SAG aggregates bacteria in solution, thereby preventing bacterial colonization. On the other hand, when bound to the tooth surface, SAG facilitates bacterial colonization and microbial growth. The protein part of SAG is predominantly composed of conserved scavenger receptor cysteine-rich (SRCR) domains. Previously it was found that bacterial binding and aggregation is mediated via a single peptide loop, designated SRCRP2 (P2), within the SRCR domains of SAG. The current data suggest that the SRCR domains also harbour a hydroxyapatite (HA)-binding moiety, SRCRP3 (P3). The observation that P2 and P3 individually play unique roles in the function of SAGs contributes to our understanding of the dual role of SAGs in bacterial binding. Inspired by the bacterial-modulating capacity of SAGs, we created a P3-polyethylene glycol (PEG) conjugate. It was found that a P3 coating resulted in an increased antifouling activity of 20% compared with the uncoated surface in vitro. An additional PEG moiety resulted in an antifouling activity of up to 40% and 30% for Streptococcus mutans and Staphylococcus epidermidis, respectively.


Assuntos
Aglutininas/análise , Durapatita/química , Glicoproteínas/química , Saliva/química , Staphylococcus epidermidis/química , Streptococcus mutans/química , Aglutininas/química , Sequência de Aminoácidos , Aderência Bacteriana/fisiologia , Cromatografia de Fase Reversa , Cristalografia , Durapatita/metabolismo , Glicoproteínas/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ligação Proteica , Saliva/metabolismo
12.
Langmuir ; 28(18): 7258-66, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22506651

RESUMO

We report a universal method for the surface-initated polymerization (SIP) of an antifouling polymer brush on various classes of surfaces, including noble metals, metal oxides, and inert polymers. Inspired by the versatility of mussel adhesive proteins, we synthesized a novel bifunctional tripeptide bromide (BrYKY) that combines atom-transfer radical polymerization (ATRP) initiating alkyl bromide with l-3,4-dihydroxyphenylalanine (DOPA) and lysine. The simple dip-coating of substrates with variable wetting properties and compositions, including Teflon, in a BrYKY solution at pH 8.5 led to the formation of a thin film of cross-linked BrYKY. Subsequently, we showed that the BrYKY layer initiated the ATRP of a zwitterionic monomer, sulfobetaine methacrylate (SBMA), on all substrates, resulting in high-density antifouling pSBMA brushes. Both BrYKY deposition and pSBMA grafting were unambiguously confirmed by ellipsometry, X-ray photoelectron spectroscopy, and goniometry. All substrates that were coated with BrYKY/pSBMA dramatically reduced bacterial adhesion for 24 h and also resisted mammalian cell adhesion for at least 4 months, demonstrating the long-term stability of the BrYKY anchoring and antifouling properties of pSBMA. The use of BrYKY as a primer and polymerization initiator has the potential to be widely employed in surface-grafted polymer brush modifications for biomedical and other applications.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Biomiméticos/síntese química , Bivalves/química , Peptídeos/síntese química , Polimerização , Células 3T3 , Animais , Aderência Bacteriana , Materiais Biomiméticos/química , Adesão Celular , Células Cultivadas , Fibroblastos/citologia , Metais/química , Camundongos , Estrutura Molecular , Óxidos/química , Peptídeos/química , Polímeros/química , Pseudomonas aeruginosa/química , Staphylococcus epidermidis/química , Propriedades de Superfície
13.
J Am Chem Soc ; 134(18): 7648-51, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22524291

RESUMO

Lantibiotics are a large family of antibacterial peptide natural products containing multiple post-translational modifications, including the thioether structures lanthionine and methyllanthionine. Efforts to probe structure-activity relationships and engineer improved pharmacological properties have driven the development of new methods to produce non-natural analogues of these compounds. In this study, solid-supported chemical synthesis was used to produce analogues of the potent lantibiotic epilancin 15X, in order to assess the importance of several N-terminal post-translational modifications for biological activity. Surprisingly, substitution of these moieties, including the unusual N-terminal D-lactyl moiety, resulted in relatively small changes in the antimicrobial activity and pore-forming ability of the peptides.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bacteriocinas/química , Bacteriocinas/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Técnicas de Síntese em Fase Sólida/métodos , Staphylococcus epidermidis/química , Sequência de Aminoácidos , Antibacterianos/síntese química , Bacteriocinas/síntese química , Humanos , Dados de Sequência Molecular , Peptídeos/síntese química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus/efeitos dos fármacos
14.
Biochem J ; 432(1): 133-43, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20815816

RESUMO

Gram-positive bacterial cell wall components including PGN (peptidoglycan) elicit a potent pro-inflammatory response in diverse cell types, including endothelial cells, by activating TLR2 (Toll-like receptor 2) signalling. The functional integrity of the endothelium is under the influence of a network of gap junction intercellular communication channels composed of Cxs (connexins) that also form hemichannels, signalling conduits that are implicated in ATP release and purinergic signalling. PGN modulates Cx expression in a variety of cell types, yet effects in endothelial cells remain unresolved. Using the endothelial cell line b.End5, a 6 h challenge with PGN induced IL-6 (interleukin 6), TLR2 and Cx43 mRNA expression that was associated with enhanced Cx43 protein expression and gap junction coupling. Cx43 hemichannel activity, measured by ATP release from the cells, was induced following 15 min of exposure to PGN. Inhibition of hemichannel activity with carbenoxolone or apyrase prevented induction of IL-6 and TLR2 mRNA expression by PGN, but had no effect on Cx43 mRNA expression levels. In contrast, knockdown of TLR2 expression had no effect on PGN-induced hemichannel activity, but reduced the level of TLR2 and Cx43 mRNA expression following 6 h of PGN challenge. PGN also acutely induced hemichannel activity in HeLa cells transfected to express Cx43, but had no effect in Cx43-deficient HeLa OHIO cells. All ATP responses were blocked with Cx-specific channel blockers. We conclude that acute Cx43 hemichannel signalling plays a role in the initiation of early innate immune responses in the endothelium.


Assuntos
Conexina 43/metabolismo , Células Endoteliais/efeitos dos fármacos , Peptidoglicano/farmacologia , Staphylococcus epidermidis/química , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Linhagem Celular , Conexina 43/genética , Conexina 43/imunologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Chem Senses ; 34(3): 203-10, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19147808

RESUMO

The volatile fatty acid, (R)/(S)-3-hydroxy-3-methylhexanoic acid ((R)/(S)-HMHA), and the human specific volatile thiol, (R)/(S)-3-methyl-3-sulfanylhexan-1-ol ((R)/(S)-MSH), were recently identified as major components of human sweat malodor. Their 2 corresponding precursors were subsequently isolated from sterile and odorless axillary secretions. The purpose of this work was to analyze these 2 odor precursors in 49 male and female volunteers over a period of 3 years to elucidate to which extent they are implicated in the gender-specific character of body odor. Surprisingly, the ratio between the acid precursor 1, a glutamine conjugate, and the "sulfur" precursor 2, a cysteinylglycine-S-conjugate, was 3 times higher in men than in women with no correlation with either the sweat volume or the protein concentration. Indeed, women have the potential to liberate significantly more (R)/(S)-MSH, which has a tropical fruit- and onion-like odor than (R)/(S)-HMHA (possibly transformed into (E)/(Z)-3-methyl-2-hexenoic acid) that has a cheesy, rancid odor. Parallel to this work, sensory analysis on sweat incubated with isolated skin bacteria (Staphylococcus epidermidis Ax3, Corynebacterium jeikeium American Type Culture Collection 43217, or Staphylococcus haemolyticus Ax4) confirmed that intrinsic composition of sweat is important for the development of body odors and may be modulated by gender differences in bacterial compositions. Sweat samples having the highest sulfur intensity were also found to be the most intense and the most unpleasant.


Assuntos
Secreções Corporais/química , Hexanóis/química , Odorantes/análise , Ácidos Sulfanílicos/química , Suor/química , Axila/microbiologia , Axila/fisiologia , Corynebacterium/química , Corynebacterium/isolamento & purificação , Feminino , Humanos , Masculino , Caracteres Sexuais , Fatores Sexuais , Staphylococcus epidermidis/química , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus haemolyticus/química , Staphylococcus haemolyticus/isolamento & purificação , Suor/microbiologia , Sudorese
16.
Appl Microbiol Biotechnol ; 75(1): 125-32, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17221196

RESUMO

Bacterial infections are serious complications after orthopaedic implant surgery. Staphylococci, with Staphylococcus epidermidis as a leading species, are the prevalent and most important species involved in orthopaedic implant-related infections. The biofilm mode of growth of these bacteria on an implant surface protects the organisms from the host's immune system and from antibiotic therapy. Therapeutic agents that disintegrate the biofilm matrix would release planktonic cells into the environment and therefore allow antibiotics to eliminate the bacteria. An addition of a biofilm-degrading agent to a solution used for washing-draining procedures of infected orthopaedic implants would greatly improve the efficiency of the procedure and thus help to avoid the removal of the implant. We have previously shown that the extracellular staphylococcal matrix consists of a poly-N-acetylglucosamine (PNAG), extracellular teichoic acids (TAs) and protein components. In this study, we accessed the sensitivity of pre-formed biofilms of five clinical staphylococcal strains associated with orthopaedic prosthesis infections and with known compositions of the biofilm matrix to periodate, Pectinex Ultra SP, proteinase K, trypsin, pancreatin and dispersin B, an enzyme with a PNAG-hydrolysing activity. We also tested the effect of these agents on the purified carbohydrate components of staphylococcal biofilms, PNAG and TA. We found that the enzymatic detachment of staphylococcal biofilms depends on the nature of their constituents and varies between the clinical isolates. We suggest that a treatment with dispersin B followed by a protease (proteinase K or trypsin) could be capable to eradicate biofilms of a variety of staphylococcal strains on inert surfaces.


Assuntos
Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Glicosídeo Hidrolases/farmacologia , Pancreatina/farmacologia , Peptídeo Hidrolases/farmacologia , Ácido Periódico/farmacologia , Staphylococcus/química , Staphylococcus/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Glicosídeo Hidrolases/metabolismo , Humanos , Pancreatina/metabolismo , Peptídeo Hidrolases/metabolismo , Ácido Periódico/metabolismo , Polissacarídeos/metabolismo , Infecções Relacionadas à Prótese/microbiologia , Staphylococcus/classificação , Staphylococcus/crescimento & desenvolvimento , Staphylococcus epidermidis/química , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Ácidos Teicoicos/metabolismo
17.
Langmuir ; 20(25): 10949-55, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15568845

RESUMO

Glass surfaces were modified by end-grafting poly(ethylene oxide) (PEO) chains having molecular weights of 526, 2000, or 9800 Da. Characterization using water contact angles, ellipsometry, and X-ray photoelectron spectroscopy confirmed the presence of the PEO brushes on the surface with estimated lengths in water of 2.8-, 7.5-, and 23.7-nm, respectively. Adhesion of two bacterial (Staphylococcus epidermidis and Pseudomonas aeruginosa) and two yeast (Candida albicans and Candida tropicalis) strains to these brushes was studied and compared to their adhesion to bare glass. For the bacterium P. aeruginosa and the yeast C. tropicalis, adhesion to the 2.8-nm brush was comparable to their adhesion on bare glass, whereas adhesion to the 7.5- and 23.7-nm brushes was greatly reduced. For S. epidermidis, adhesion was only slightly higher to the 2.8-nm brush than that to the longer brushes. Adhesion of the yeast C. albicans to the PEO brushes was lower than that to glass, but no differences in adhesion were found between the three brush lengths. After passage of an air bubble, nearly all microorganisms adhering to a brush were removed, irrespective of brush length, whereas retention of the adhering organisms on glass was much higher. No significant differences were found in adhesion nor retention between experiments conducted at 20 and those conducted at 37 degrees C.


Assuntos
Aderência Bacteriana/fisiologia , Polietilenoglicóis/química , Temperatura , Aderência Bacteriana/efeitos dos fármacos , Candida albicans/química , Candida tropicalis/química , Peso Molecular , Polietilenoglicóis/farmacologia , Pseudomonas aeruginosa/química , Staphylococcus epidermidis/química , Propriedades de Superfície , Aderências Teciduais
18.
CLAO J ; 27(2): 89-93, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11352455

RESUMO

PURPOSE: A comparative assessment of the relative primary adhesion of cells of Pseudomonas aeruginosa, its lux transformant, and of slime and non-slime producing strains of Staphylococcus epidermidis to various hydrogel lenses was conducted. METHODS: Hydrogel lenses were placed in cell suspensions with bacteria with or without a tritiated leucine label. After 2 hours exposure, the lenses were rinsed vigorously and densities of cells on the lenses were determined via scintillation counting or ATP analyses. RESULTS: The radiolabel procedure indicated greater numbers than the ATP analyses of adhered cells per lens per common inoculum of all strains. All strains exhibited greater primary adhesion to the 38% water content contact lens, with the lux transformant of P. aeruginosa showing the greatest degree of adhesion. Primary adhesion by P. aeruginosa was typically at least ten-fold greater per lens than that observed with S. epidermidis. CONCLUSIONS: Both a radiolabel-cell procedure and bioluminescent ATP analyses demonstrated similar patterns of primary adhesion of bacteria to hydrogel lenses. Generally the adhesion increased inversely to the water content of the lenses but the chemical composition of the lenses, particularly surface properties, altered this pattern for lenses of similar water content. The magnitude of primary adhesion varied with the species and strain of bacterium.


Assuntos
Trifosfato de Adenosina/análise , Aderência Bacteriana , Lentes de Contato Hidrofílicas/microbiologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus epidermidis/fisiologia , Contagem de Colônia Microbiana , Pseudomonas aeruginosa/química , Staphylococcus epidermidis/química
19.
EMBO J ; 19(23): 6299-310, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11101502

RESUMO

Epidermin from Staphylococcus epidermidis Tü3298 is an antimicrobial peptide of the lantibiotic family that contains, amongst other unusual amino acids, S:-[(Z:)- 2-aminovinyl]-D-cysteine. This residue is introduced by post-translational modification of the ribosomally synthesized precursor EpiA. Modification starts with the oxidative decarboxylation of its C-terminal cysteine by the flavoprotein EpiD generating a reactive (Z:)-enethiol intermediate. We have determined the crystal structures of EpiD and EpiD H67N in complex with the substrate pentapeptide DSYTC at 2.5 A resolution. Rossmann-type monomers build up a dodecamer of 23 point symmetry with trimers disposed at the vertices of a tetrahedron. Oligomer formation is essential for binding of flavin mononucleotide and substrate, which is buried by an otherwise disordered substrate recognition clamp. A pocket for the tyrosine residue of the substrate peptide is formed by an induced fit mechanism. The substrate contacts flavin mononucleotide only via Cys-Sgamma, suggesting its oxidation as the initial step. A thioaldehyde intermediate could undergo spontaneous decarboxylation. The unusual substrate recognition mode and the type of chemical reaction performed provide insight into a novel family of flavoproteins.


Assuntos
Carboxiliases , Oxirredutases/química , Sequência de Aminoácidos , Antibacterianos/química , Sítios de Ligação , Cristalografia por Raios X , Cisteína/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavoproteínas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxirredutases/metabolismo , Oxigênio/metabolismo , Peptídeos/química , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Ribossomos/metabolismo , Homologia de Sequência de Aminoácidos , Staphylococcus epidermidis/química , Tirosina/química
20.
J Exp Med ; 189(6): 907-18, 1999 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10075974

RESUMO

Staphylococcus epidermidis releases factors that activate the HIV-1 long terminal repeat, induce cytokine release, and activate nuclear factor B in cells of macrophage lineage. The active material had a mass of 34,500 daltons, was inactivated by proteases and partitioned into the phenol layer on hot aqueous phenol extraction, and thus was termed phenol-soluble modulin (PSM). High performance liquid chromatography (HPLC) of crude PSM yielded two peaks of activity designated PSM peak 1 and peak 2. MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectroscopy indicated the presence of two components in peak 1, which were designated PSM and PSM. Peak 2 contained a single component, designated PSM. Separation of PSM and PSM in peak 1 could be achieved by a second HPLC procedure. The structure of each component was determined by amino acid sequence analysis and identification and sequencing of their genes. PSM, PSM, and PSM were 22-, 44-, and 25-amino acid, respectively, strongly hydrophobic polypeptides. PSM was identified as Staphylococcus epidermidis delta toxin, whereas PSM and PSM exhibited more distant homology to previously described staphylococcal toxins. They appeared to exist as a complex or aggregate with activity greater than the component parts. The properties of the S. epidermidis PSMs suggest that they may contribute to the systemic manifestations of Gram-positive sepsis.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Staphylococcus epidermidis/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Linhagem Celular , Citocinas/biossíntese , Repetição Terminal Longa de HIV , Humanos , Lipopolissacarídeos/farmacologia , Dados de Sequência Molecular , Peso Molecular , NF-kappa B/metabolismo , Ácidos Teicoicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA