Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 151: 109745, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960105

RESUMO

Iron homeostasis is vital for the host's defense against pathogenic invasion and the ferritinophagy is a crucial mechanism in maintaining intracellular iron homeostasis by facilitating the degradation and recycling of stored iron. The nuclear receptor coactivator 4 (NCOA4) serves as a ferritinophagy receptor, facilitating the binding and delivery of ferritin to the autophagosome and lysosome. However, NCOA4 of the sea cucumber Apostichopus japonicus (AjNCOA4) has not been reported until now. In this study, we identified and characterized AjNCOA4 in A. japonicus. This gene encodes a polypeptide containing 597 amino acids with an open reading frame of 1794 bp. The inferred amino acid sequence of AjNCOA4 comprises an ARA70 domain. Furthermore, a multiple sequence alignment demonstrated varying degrees of sequence homology between AjNCOA4 from A. japonicus and other NCOA4 orthologs. The phylogenetic tree of NCOA4 correlates with the established timeline of metazoan evolution. Expression analysis revealed that AjNCOA4 is expressed in all tested tissues, including the body wall, muscle, intestine, respiratory tree, and coelomocytes. Following challenge with Vibrio splendidus, the coelomocytes exhibited a significant increase in AjNCOA4 mRNA levels, peaking at 24 h. We successfully obtained recombinant AjNCOA4 protein through prokaryotic expression and prepared a specific polyclonal antibody. Immunofluorescence and co-immunoprecipitation experiments demonstrated an interaction between AjNCOA4 and AjFerritin in coelomocytes. RNA interference-mediated knockdown of AjNCOA4 expression resulted in elevated iron ion levels in coelomocytes. Bacterial stimulation enhanced ferritinophagy in coelomocytes, while knockdown of AjNCOA4 reduced the occurrence of ferritinophagy. These findings suggest that AjNCOA4 modulates ferritinophagy induced by V. splendidus in coelomocytes of A. japonicus.


Assuntos
Sequência de Aminoácidos , Ferritinas , Coativadores de Receptor Nuclear , Filogenia , Alinhamento de Sequência , Stichopus , Vibrio , Animais , Vibrio/fisiologia , Stichopus/imunologia , Stichopus/genética , Stichopus/microbiologia , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/imunologia , Ferritinas/genética , Ferritinas/imunologia , Ferritinas/metabolismo , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Autofagia , Sequência de Bases
2.
J Immunol ; 208(2): 464-479, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34965964

RESUMO

Inflammation participates in host defenses against infectious agents and contributes to the pathophysiology of many diseases. IL-17 is a well-known proinflammatory cytokine that contributes to various aspects of inflammation in vertebrates. However, the functional role of invertebrate IL-17 in inflammatory regulation is not well understood. In this study, we first established an inflammatory model in the Vibrio splendidus-challenged sea cucumber Apostichopus japonicus (Echinodermata). Typical inflammatory symptoms, such as increased coelomocyte infiltration, tissue vacuoles, and tissue fractures, were observed in the V. splendidus-infected and diseased tissue of the body wall. Interestingly, A. japonicus IL-17 (AjIL-17) expression in the body wall and coelomocytes was positively correlated with the development of inflammation. The administration of purified recombinant AjIL-17 protein also directly promoted inflammation in A. japonicus Through genome searches and ZDOCK prediction, a novel IL-17R counterpart containing FNIII and hypothetical TIR domains was identified in the sea cucumber genome. Coimmunoprecipitation, far-Western blotting, and laser confocal microscopy confirmed that AjIL-17R could bind AjIL-17. A subsequent cross-linking assay revealed that the AjIL-17 dimer mediates the inflammatory response by the specific binding of dimeric AjIL-17R upon pathogen infection. Moreover, silencing AjIL-17R significantly attenuated the LPS- or exogenous AjIL-17-mediated inflammatory response. Functional analysis revealed that AjIL-17/AjIL-17R modulated inflammatory responses by promoting A. japonicus TRAF6 ubiquitination and p65 nuclear translocation and evenly mediated coelomocyte proliferation and migration. Taken together, our results provide functional evidence that IL-17 is a conserved cytokine in invertebrates and vertebrates associated with inflammatory regulation via the IL-17-IL-17R-TRAF6 axis.


Assuntos
Citocinas/imunologia , Interleucina-17/metabolismo , Receptores de Interleucina-17/metabolismo , Stichopus/imunologia , Vibrio/imunologia , Animais , Proliferação de Células/fisiologia , Genoma/genética , Inflamação/imunologia , Interleucina-17/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Interleucina-17/genética , Stichopus/genética , Stichopus/microbiologia , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/metabolismo , Ubiquitinação
3.
Fish Shellfish Immunol ; 106: 1087-1094, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32890761

RESUMO

Probiotics play vital roles in controlling diseases, enhancing specific and non-specific immunity and stimulating growth in the aquaculture industry. However, the effect of fermentation of feed by probiotics on the immune ability of sea cucumber has not been reported to date. Here, three candidate probiotic strains (Bacillus species) were isolated from the culture seawater and sediment of sea cucumber, and fishmeal and scallop mantle fermented by the candidate probiotic strains were used to feed sea cucumber. The results showed that the free amino acid and small peptide contents of the fishmeal and scallop mantle were significantly increased after fermentation for 72 h. However, the weight gain (WG) and specific growth rate (SGR) of sea cucumber showed no significant differences among the fermented fishmeal, fermented scallop mantle and control groups. Scallop mantle fermented by the three candidate probiotics could increase the coelomocyte number and respiratory burst activity. The immune-related enzymatic activity was increased after consuming the fermented fishmeal and scallop mantle, while the activity of antioxidant enzymes was reduced. The expression levels of immune- and antioxidant-related genes were changed after consuming the fermented fishmeal and scallop mantle. Taken together, our results suggest that probiotics could increase the immunocompetence of sea cucumber, and fermented scallop mantle might be a potential substitute for fishmeal during feed preparation. Our results lay a foundation for further understanding the relationship between probiotics and the non-specific immunity of sea cucumber.


Assuntos
Bacillus , Probióticos/farmacologia , Stichopus , Ração Animal , Animais , Bacillus/isolamento & purificação , Catalase/genética , Dieta/veterinária , Fermentação , Produtos Pesqueiros , Hemólise , Muramidase/genética , Pectinidae , Probióticos/isolamento & purificação , Pseudoalteromonas , Stichopus/genética , Stichopus/crescimento & desenvolvimento , Stichopus/imunologia , Superóxido Dismutase/genética
4.
Fish Shellfish Immunol ; 106: 583-590, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32835852

RESUMO

MiR-210 plays a crucial role in cell survival, migration, and regeneration in vertebrates. In our previous work, the expression of miR-210 was considerably induced in diseased Apostichopus japonicus with skin ulcer syndrome (SUS). To further explore the mechanism of miR-210 in regulating the SUS, this study identified E2F transcription factor 3 (E2F3), a candidate target of miR-210, from the sea cucumber A. japonicus via RNA-seq and RACE (designated as AjE2F3). A 1992 bp fragment representing the full-length cDNA of AjE2F3 was obtained, which includes an ORF of 1194 bp encoding a polypeptide of 398 amino acids with a molecular weight of 44.43 kDa. Expression profiling analysis suggested that the expression of AjE2F3 decreased while that of miR-210 increased in Vibrio splendidus-challenged sea cucumber coelomocytes. Dual-luciferase reporter assay revealed that miR-210 targeted AjE2F3 via binding to the 3'UTR region from 108 nt to 128 nt. MiR-210 overexpression in cultured coelomocytes repressed AjE2F3 at the mRNA level and reduced cell proliferation in vitro. Consistently, AjE2F3 overexpression significantly promoted coelomocyte proliferation, as assessed by MTT in vitro. Overall, our results indicated that miR-210 can suppress coelomocyte proliferation by targeting AjE2F3 in pathogen-challenged sea cucumbers.


Assuntos
Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , MicroRNAs/genética , Stichopus/genética , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Proliferação de Células , Filogenia , Alinhamento de Sequência
5.
Fish Shellfish Immunol ; 102: 350-360, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32371258

RESUMO

Succinate dehydrogenase (SDH) is a mitochondrial enzyme with the unique ability to participate in both the tricarboxylic acid cycle and the electron transport chain to produce reactive oxygen species (ROS). The B subunit of SDH is required for succinate oxidation, which is critical for pro-inflammatory response. In this study, we cloned the iron-sulfur protein subunit of SDH from Apostichopus japonicus (denoted as AjSDHB) via RACE technology and explored its role in the immune system as a response to pathogen infection. The full-length cDNA of AjSDHB was 1442 bp with a complete open reading frame of 858 bp encoding 286 amino acids. Simple modular architecture research tool analysis revealed that AjSDHB contained two conserved domains, including a 2Fe-2S iron-sulfur cluster binding domain and a 4Fe-4S dicluster domain, without a signal peptide. Multiple sequence alignment demonstrated that AjSDHB shared a high degree of structural conservation and sequence identities with other counterparts from invertebrates and vertebrates. Phylogenetic analysis supported the finding that AjSDHB is a new member of the SDHB protein subfamily. Tissue distribution analysis revealed that AjSDHB was expressed in all examined tissues and particularly highly expressed in the muscles. AjSDHB transcripts were markedly induced in coelomocytes both by Vibrio splendidus challenge in vivo and lipopolysaccharide exposure in vitro. Function analysis showed that siRNA-mediated AjSDHB knockdown could substantially reduce the mitochondrial membrane potential (ΔΨm) and further decrease mitochondrial ROS production in A. japonicus coelomocytes. By contrast, AjSDHB overexpression considerably increased ΔΨm and mitochondrial ROS production of A. japonicus coelomocytes. These results supported the idea that AjSDHB is involved in the innate immunity of A. japonicus through its participation in mitochondrial ROS generation.


Assuntos
Proteínas Ferro-Enxofre/genética , Espécies Reativas de Oxigênio/metabolismo , Stichopus/genética , Stichopus/imunologia , Stichopus/metabolismo , Succinato Desidrogenase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Ferro-Enxofre/metabolismo , Lipopolissacarídeos/farmacologia , Mitocôndrias/metabolismo , Filogenia , Alinhamento de Sequência , Stichopus/enzimologia , Succinato Desidrogenase/genética , Vibrio/fisiologia
6.
Fish Shellfish Immunol ; 101: 261-268, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32276034

RESUMO

As a wide distribution molecule, 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) catalyzes the second step in the tyrosine catabolism pathway. This process commonly occurs in all aerobic life forms. The broad distribution of these metabolites suggests that they have an important role in many organisms. A portion of the 4-HPPD homology sequence was also identified in Apostichopus japonicus transcriptome. However, the functional roles of A. japonicus 4-HPPD remain unclear. In the current study, a 4-HPPD homolog was cloned from A. japonicus (designated as AjHPPD). The nucleotide sequence analysis showed that the open reading frame of AjHPPD was 1149 bp and encoded a 382-amino-acid residue polyprotein with glyoxalase_4 (residues 20-133) and glyoxalase (residues 180-335) domains. The spatial expression analysis revealed that AjHPPD was ubiquitously expressed in all examined tissues with large-magnitude in the respiratory tree and was minimally expressed in coelomocytes. Compared with a control group, the significant increase in transcription of AjHPPD mRNA in the Vibrio splendidus-challenged sea cucumber was 2.10-fold (p < 0.01) at 48 h and returned to the normal level at 72 and 96 h. Similarly, compared with a control group, the significant increase in the transcription of AjHPPD mRNA was 3.36-fold (p < 0.01) at 24 h after stimulation with 10 mg mL-1 of LPS. On the one hand, silencing AjHPPD in vitro could inhibit the expression of pentose phosphate pathway (PPP) flux enzyme glucose-6-phosphate dehydrogenase (G6PD) at the mRNA level and prevent the clearance of reactive oxygen species (ROS) in sea cucumbers. On the other hand, interference of AjHPPD by using specific siRNA can result in the significant promotion of coelomocyte apoptosis with a 1.61-fold increase in vitro. AjHPPD negatively regulated ROS levels by modulating tyrosine catabolism on AjG6PD expression and coelomocyte apoptosis in response to pathogen infection.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/genética , 4-Hidroxifenilpiruvato Dioxigenase/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Espécies Reativas de Oxigênio/metabolismo , Stichopus/genética , Stichopus/imunologia , 4-Hidroxifenilpiruvato Dioxigenase/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica/veterinária , Filogenia , Alinhamento de Sequência , Stichopus/microbiologia , Vibrio/fisiologia
7.
Fish Shellfish Immunol ; 99: 167-175, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32044463

RESUMO

Galectins belong to the family of carbohydrate-binding proteins and play major roles in the immune and inflammatory responses of both vertebrates and invertebrates. In the present study, one novel galectin-1 protein named AjGal-1 was identified from Apostichopus japonicas with an open reading frame of 1179 bp encoding a polypeptide of 392 amino acids. The deduced amino acids sequence of AjGal-1 contained three carbohydrate recognition domains (CRDs) which shared 34-37% identity with that of other galectin proteins from echinodermata, fishes, and birds. In the phylogenetic tree, AjGal-1 was closely clustered with galectins from Mesocentrotus nudus and Paracentrotus lividus. The mRNA transcripts of AjGal-1 were ubiquitously expressed in all the detected tissues, including gut, longitudinal muscle, gonad, coelomocytes, respiratory tree, tentacle and body wall, with the highest expression level in coelomocytes. After Vibrio splendidus stimulation, the mRNA expression levels of AjGal-1 in coelomocytes were significantly increased at 6 and 12 h (P < 0.01) compared with that in control group, and went back to normal level at 72 h. The recombinant protein of AjGal-1 (rAjGal-1) could bind various PAMPs including d-galactose, lipopolysaccharide (LPS), peptidoglycan (PGN) and mannose (Man), and exhibited the highest affinity to d-galactose. Meanwhile, rAjGal-1 could also bind and agglutinate different kinds of microorganisms, including gram-negative bacteria (V. splendidus and Escherichia coli), gram-positive bacteria (Micrococus leteus), and fungi (Pichia pastoris). rAjGal-1 also exhibited anti-microbial activity against V. splendidus and E. coli. All these results suggested that AjGal-1 could function as an important PRR with broad spectrum of microbial recognition and anti-microbial activity against the invading pathogen in A. japonicas.


Assuntos
Galectina 1/genética , Galectina 1/imunologia , Imunidade Inata , Moléculas com Motivos Associados a Patógenos , Stichopus/genética , Vibrioses/veterinária , Aglutinação , Animais , Galectina 1/isolamento & purificação , Regulação da Expressão Gênica , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Filogenia , Stichopus/imunologia , Vibrio , Vibrioses/imunologia
8.
Dev Comp Immunol ; 102: 103487, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472172

RESUMO

Myelocytomatosis viral oncogene (MYC), a transcription factor in the MYC family, plays vital roles in vertebrate innate immunity by regulating related immune gene expressions. In this study, we cloned and characterized an MYC gene from sea cucumber Apostichopus japonicus via RNA-seq and RACE approaches (designated as AjMYC). A 2074 bp fragment representing the full-length cDNA of AjMYC was obtained. This gene includes an open reading frame (ORF) of 1296 bp encoding a polypeptide of 432 amino acid residues with the molecular weight of 48.85 kDa and theoretical pI of 7.22. SMART analysis indicated that AjMYC shares an MYC common HLH motif (354-406 aa) at the C-terminal. Spatial expression analysis revealed that AjMYC is constitutively expressed in all detected tissues with peak expression in the tentacle. Vibrio splendidus-challenged sea cucumber could significantly boost the expression of AjMYC transcripts by a 5.58-fold increase in the first stage. Similarly, 2.75- and 3.23-fold increases were detected in LPS-exposed coelomocytes at 1 and 24 h, respectively. In this condition, coelomocyte apoptotic rate increased from 11.98% to 56.23% at 1 h and to 59.08% at 24 h. MYC inhibitor treatment could not only inhibit the expression of AjMYC and Ajcaspase3, but also depress the coelomocyte apoptosis. Furthermore, AjMYC overexpression in EPC cells for 24 h also promoted the cell apoptosis rate from 21.31% to 45.85%. Collectively, all these results suggested that AjMYC is an important immune factor in coelomocyte apoptosis toward pathogen-challenged sea cucumber.


Assuntos
Genes myc , Proteínas Proto-Oncogênicas c-myc/metabolismo , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Clonagem Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Lipopolissacarídeos/farmacologia , Peso Molecular , Fases de Leitura Aberta , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Alinhamento de Sequência , Distribuição Tecidual , Vibrio/patogenicidade
9.
Fish Shellfish Immunol ; 87: 839-846, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30797067

RESUMO

Macrophage migration inhibitory factor (MIF) is a cytokine and plays critical roles in inflammatory and immune responses in vertebrates. However, its functional role in inflammation has not been well studied in invertebrates. In the present study, we cloned and characterized MIF gene from Apostichopus japonicus by RNA-seq and RACE approaches (designated as AjMIF). A 1047 bp fragment representing the full-length cDNA of AjMIF was obtained, including a 5' UTR of 100 bp, an open reading frame (ORF) of 366 bp encoding a polypeptide of 121 amino acids residues with the molecular weight of 13.43 kDa and theoretical isoelectric point of 5.63 and a 3' UTR of 580 bp. SMART analysis showed that AjMIF has conserved MIF domain (2-117aa) similar to its mammalian counterparts. The amino terminal proline residue (P2) and invariant lysine residue (K33) which are critical active sites of tautomerase activity in mammalian MIF were also detected. Phylogenic analysis and multiple alignments have shown that AjMIF shared higher degree of structural conservation and sequence identities with other counterparts from invertebrates and vertebrates. For Vibrio splendidus challenged sea cucumber, the peak expression of AjMIF mRNAs in coelomocytes were detected at 6 h (23.5-fold) and remained at high levels until 24 h (4.01-fold), and returned to normal level at 48 h in comparison with that of the control group. Similarly, a significant increase in the relative mRNA levels of AjMIF was also found in 10 µg mL-1 LPS-exposed primary cultured coelomocytes. Functional analysis indicated that recombinant AjMIF incubation could promote inflammatory response related genes of Ajp105, AjVEGF, AjMMP1 and AjHMGB3 expression by 1.35-fold, 1.36-fold, 1.83-fold and 1.27-fold increase, respectively, which was consistent with the findings in vertebrate MIFs. All these results collectively suggested that AjMIF had a similar function to MIFs in higher animals and might serve as a candidate cytokine in inflammatory regulation in sea cucumber.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Stichopus/genética , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Fatores Inibidores da Migração de Macrófagos/genética , Filogenia , Alinhamento de Sequência , Vibrio/fisiologia
10.
Dev Comp Immunol ; 91: 26-36, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30339873

RESUMO

Lipopolysaccharides (LPS) can induce the apoptosis of coelomocytes in Apostichopus japonicus (A. japonicus), and ß-integrin serves as an apoptotic inhibitor during this process. However, the underlying mechanism in invertebrates is largely unknown. Integrin/focal adhesion kinase (FAK) signaling pathway modulates the apoptosis in vertebrates. In this study, a novel FAK was identified from A. japonicus (designated as AjFAK) by ß-integrin (designated as AjITGB) -mediated GST-pull down assay. This interaction was further validated in the LPS-exposed coelomocytes through co-immunoprecipitation and immunofluorescence analyses. To investigate the functional role of AjFAK in AjITGB-mediated coelomocyte apoptosis, we cloned the full-length cDNA of AjFAK and characterized its relationship with AjITGB through real-time PCR. The mRNA expression levels of AjFAK exhibited consistent expression patterns with those of AjITGB in our previous work with 0.48- and 0.22-fold decreases at 12 and 96 h in LPS-exposed coelomocytes and in Vibrio splendidus challenged sea cucumber, respectively. Moreover, the expression level of AjFAK decreased to 0.35-fold in AjITGB knockdown treatment by specific small interference RNA (siRNA). We further performed an assay for the apoptotic rate of coelomocytes in AjITGB, AjFAK, and AjITGB/AjFAK silencing conditions and found that their apoptotic percentages increased to 26%, 25%, and 30%, respectively, compared with those of the control. Finally, the expression levels of four caspases from A. japonicus were also investigated to determine the apoptotic effector. After AjITGB or AjFAK was silenced, the mRNA levels of caspase-3 were 6.6-fold and 2.5-fold higher than those of the control, respectively. In addition, the enzymatic activity of caspase-3 was enhanced to 1.82- and 1.79-fold that of the control in the two groups. However, no significant changes were detected in caspase-2/6/8. All our results supported that ß-integrin mediated the LPS-induced coelomocyte apoptosis in sea cucumber via the integrin/FAK/caspase-3 signaling pathway.


Assuntos
Cadeias beta de Integrinas/metabolismo , Fagócitos/imunologia , Stichopus/imunologia , Vibrioses/imunologia , Vibrio/imunologia , Animais , Apoptose , Caspase 3/metabolismo , Clonagem Molecular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Imunidade Inata , Cadeias beta de Integrinas/genética , Lipopolissacarídeos/imunologia , RNA Interferente Pequeno/genética , Transdução de Sinais , Stichopus/microbiologia , Células Tumorais Cultivadas
11.
Fish Shellfish Immunol ; 82: 68-76, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30092256

RESUMO

Fibrinogen-related proteins (FREPs) play important roles in innate immunity by recognizing pathogen associated molecular patterns on pathogenic bacteria surfaces via conserved fibrinogen-like domain (FBG). In this paper, the full-length cDNA of Apostichopus japonicus FREP (designated as AjFREP) was cloned combined with rapid amplification of cDNA ends (RACE) and transcriptome sequencing. The full-length cDNA of AjFREP was of 2110 bp with an open reading frame (ORF) of 1659 bp. SMART analysis revealed that the AjFREP contained a typical signal peptide of 19 amino acid residues, a FBG and two unusual epidermal growth factor-like domains (EGFs). Multiple sequence alignments suggested that FBG domain shared a remarkably high structural conservation in polypeptide binding site and Ca2+ binding site. Tissue distribution analysis revealed that AjFREP was constitutively expressed in all examined tissues with the largest magnitude in coelomocytes, indicating AjFREP might play an important role in immune defense. The mRNA level of AjFREP in coelomocytes was sharply up-regulated by Vibrio splendidus challenge, and reached its peak expression at 48 h. Knock-down AjFREP by specific siRNA could significantly repress the coelomocyte phagocytosis rate. Meantime, the survival number of V. splendidus in the coelomic fluid was promoted. All these current results indicated that AjFREP might be involved in pathogen clearance through mediating coelomocytes phagocytosis activity.


Assuntos
Fibrinogênio/genética , Fibrinogênio/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Stichopus/genética , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Fibrinogênio/química , Perfilação da Expressão Gênica/veterinária , Filogenia , Receptores de Reconhecimento de Padrão/química , Alinhamento de Sequência/veterinária
12.
Gene ; 675: 110-118, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29940274

RESUMO

The nucleotide-binding oligomerization domain-like receptors (NOD-like receptors, NLRs) can regulate the innate immune process and is an important part of inflammatory body. In this study, we use transcriptome sequencing and the rapid amplification of cDNA ends approach to identify a novel NLRP gene in Apostichopus japonicus. We designated the gene as AjNLRP10. The full-length of AjNLRP10 is 4509 bp. The putative open reading frame comprising 3489 bp encodes a polypeptide with 1162 amino acid residues. The predicted molecular mass of AjNLRP10 is 132.87 kDa and its theoretical pI is 5.60. AjNLRP10 comprises a signal peptide with two Ig superfamily (IgSF) domains and a NACHT [NAIP (neuronal apoptosis inhibitory protein), CIITA (MHC class II transcription activator), HET-E (incompatibility locus protein from Podospora anserina) and TP1 (telomerase-associated protein)] domain. Spatial distribution expression analysis detected AjNLRP10 in all of the tissues tested, but with higher expression in the coelomocytes, medium expression in the intestine and respiratory tree, and slightly weaker expression in the body wall, tube feet, and longitudinal muscle. The expression levels of AjNLRP10 in the respiratory tree and intestines of sea cucumbers with skin ulceration syndrome were increased by 4-fold and 2.7-fold compared with those in healthy sea cucumbers, respectively. We investigated expression profiles of AjCasepase-1 (Cysteinyl aspartate specific proteinase-1) and AjMMP37 (mitochondrial protein-37) after AjNLRP10 knock-down and discovered that AjCasepase-1 was raised by 2.60-fold and AjMMP37 was raised by 3.84-fold. The study showed that AjNLRP10 has inhibitory effect in the immune process. In conclusion, this study showed that the AjNLRP10 protein found in the sea cucumber involved with the innate immune responses against bacterial infection. It has a similar structure and biological function to that in other organisms, where it appears to be involved with these results provide insights into the innate immune mechanism in the sea cucumber as well as suggesting new strategies for disease prevention, molecular therapy, and the development of novel drugs for sea cucumbers.


Assuntos
Imunidade Inata/genética , Proteínas NLR/genética , Stichopus/genética , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Antibacterianos/metabolismo , Sequência de Bases , Clonagem Molecular , Regulação da Expressão Gênica , Proteínas NLR/metabolismo , Filogenia , Pepinos-do-Mar/classificação , Pepinos-do-Mar/genética , Pepinos-do-Mar/imunologia
13.
Fish Shellfish Immunol ; 77: 402-409, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29627478

RESUMO

F-type lectin (also known as fucolectin) is a newly identified family of fucose binding lectins with the sequence characters of a fucose binding motif and a unique lectin fold (the "F-type" fold). In the present study, a fucolectin was identified from sea cucumber Apostichopus japonicus (designated AjFL-1). The open reading frame (ORF) of AjFL-1 was of 546 bp, encoding a polypeptide of 181 amino acids with a predicted molecular mass of about 20 kDa. The deduced amino acid sequence of AjFL-1 shared 30%-40% similarity with the fucolectins from other animals. There were a typical F-type lectin domain (FLD) (residues 39-180) and a signal peptide (residues 1-24) in AjFL-1. The mRNA transcript of AjFL-1 could be detected by qRT-PCR in various tissues, such as intestinum, coelomocytes, respiratory tree, tentacle, and body wall, while undetectable in the gonads and longitudinal muscle. The mRNA expression level of AjFL-1 in coelomocytes was significantly up-regulated (47.06-fold to that in control group, p < 0.05) at 12 h after Vibrio splendidus challenge. Immunofluorescence assay showed that AjFL-1 protein was mainly distributed on the membrane, while few in cytoplasm of coelomocytes in sea cucumber. The recombinant AjFL-1 (rAjFL-1) could bind lipopolysaccharide (LPS), peptidoglycan (PGN), mannan (MAN) and fucose (FUC), and exhibited a broader binding activities towards Gram-negative bacterium Escherichia coli, Gram-positive bacterium Micrococcus luteus, as well fungus Pichia pastoris. In addition, rAjFL-1 could strongly promote the agglutination of fungus P. pastoris. These results indicated that AjFL-1 was a novel member of fucose-binding lectin family, which functioned as a pattern recognition receptor with broad spectrum of microbial recognition, and involved in innate immune response of sea cucumber.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Lectinas/genética , Lectinas/imunologia , Stichopus/genética , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Escherichia coli/fisiologia , Fucose/farmacologia , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Mananas/farmacologia , Micrococcus luteus/fisiologia , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Peptidoglicano/farmacologia , Filogenia , Pichia/fisiologia , Alinhamento de Sequência
14.
Fish Shellfish Immunol ; 72: 143-152, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29102628

RESUMO

Bioflocs are rich in various probiotics and bioactive compounds, which play an important role in improving growth and health status of aquatic organisms. A 60-day experiment was conducted to investigate the effects of dietary supplementation of biofloc on growth performance, digestive enzyme activity, physiological stress, antioxidant status, expression of immune-related genes and disease resistance of sea cucumber Apostichopus japonicus. Juvenile sea cucumbers were fed five experimental diets containing graded levels of biofloc from 0% to 20% (referred as B0, B5, B10, B15 and B20, respectively). The results showed that the sea cucumbers at dietary supplementation levels of 10%-15% biofloc had significantly higher specific growth rate (SGR) compared to control group (diet B0). Digestive enzyme activity increased with the increasing of dietary biofloc level, while no significant difference was found between diets B15 and B20. Dietary supplementation of biofloc also had significant influences on physiological stress parameters except for lactate. There was no significant discrepancy in total coelomocytes counts (TCC) in coelomic fluid of sea cucumber between the treatments. Phagocytosis and respiratory burst of cellular immune at 15% and 20% biofloc levels were significantly higher than those of control group. Significant increases in superoxide dismutase (SOD), total nitric oxide synthase (T-NOS), lysozyme (LSZ), acid phosphatase (ACP) and alkaline phosphatase (AKP) activities of sea cucumber were found at highest dietary supplementation level of 20% biofloc. The expression patterns of immune-related genes (i.e., Hsp90, Hsp70, p105, Rel, NOS and LSZ) in tissues of sea cucumber were analyzed between the experimental diets, and a general trend of up-regulation was observed at higher biofloc levels. Furthermore, dietary 10%-20% biofloc significantly reduced cumulative mortality of sea cucumber after being challenged with Vibrio splendidus. In conclusion, dietary supplementation of biofloc could improve growth performance of A. japonicus, by increasing digestive enzyme activity, releasing physiological stress, enhancing immune response and disease resistance of sea cucumber. The suitable supplemental level of approximately 15% biofloc was recommended in the present study.


Assuntos
Antioxidantes/metabolismo , Imunidade Inata , Probióticos/farmacologia , Stichopus/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Ração Animal/análise , Animais , Dieta , Stichopus/crescimento & desenvolvimento , Stichopus/imunologia
15.
Fish Shellfish Immunol ; 69: 211-217, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28860073

RESUMO

miR-92a, a well-documented oncogene, was previously found to be differentially expressed in diseased sea cucumber Apostichopus japonicus by high-throughput sequencing. In this study, we identified Aj14-3-3ζ as a novel target of miR-92a in this species and investigated their regulatory roles in vivo. The negative expression profiles between miR-92a and Aj14-3-3ζ protein were detected in both LPS-exposed primary coelomocytes and Vibrio splendidus-challenged sea cucumbers. Over-expression of miR-92a by injection of miR-92a agomir significantly depressed the mRNA and protein expression of Aj14-3-3ζ and promoted coelomocytes apoptosis with 5.04-fold increase in vivo, which was consistent with those from siRNA-mediated Aj14-3-3ζ knockdown assay. In contrast, miR-92a antagomir significantly elevated the mRNA and protein expression of Aj14-3-3ζ and decreased coelomocytes apoptosis. Taken together, our result confirmed that miR-92a is involved in apoptotic signaling pathway regulation perhaps via targeting Aj14-3-3ζ in sea cucumbers, which will enhance our understanding of miR-92a regulatory roles in sea cucumber pathogenesis.


Assuntos
Proteínas 14-3-3/genética , Apoptose/genética , Regulação da Expressão Gênica , Imunidade Inata , MicroRNAs/genética , Stichopus/genética , Stichopus/imunologia , Animais , Transdução de Sinais , Transcriptoma
16.
Fish Shellfish Immunol ; 69: 26-34, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28797638

RESUMO

Tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8) family is a newly identified protein with vital roles in maintaining immune homeostasis. In the current study, we first cloned and characterized a TNFAIP8 gene from the invertebrate sea cucumber Apostichopus japonicus. The gene was designated as AjTNFAIP8. The full-length cDNA of AjTNFAIP8 was 1455 bp long and encoded a matured protein of 201 amino acid residues. Structural analysis indicated that AjTNFAIP8 had a death effector domain (DED)-like domain and composed of six α-helices. Multiple sequence alignment and phylogenetic analysis supported that AjTNFAIP8 is a new member of the TNFAIP8 family. Analysis of basal transcription in five tissues revealed the constitutive expression of AjTNFAIP8 in the detected tissues with highest expression in the respiratory tree and minimum expression in the tentacle. Vibrio splendidus infection and LPS stimulation could significantly downregulate the mRNA expression of AjTNFAIP8. More importantly, the transcription of pro-inflammatory molecule NOS and its production of NO content were significantly increased after AjTNFAIP8 silencing, with the suppression of agmatinase transcript and arginase activity. These results clearly indicated that AjTNFAIP8 is an essential negative regulator in innate immunity. Basic information for further exploration of the functional mechanisms of TNFAIP8 family in other marine invertebrate is provided.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Arginina/metabolismo , Imunidade Inata/genética , Stichopus/genética , Stichopus/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/química , Sequência de Bases , Filogenia , Alinhamento de Sequência , Stichopus/imunologia
17.
Fish Shellfish Immunol ; 60: 447-457, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27847342

RESUMO

Cathepsin B (CTSB), a member of lysosomal cysteine protease, is involved in multiple levels of physiological and biological processes, and also plays crucial roles in host immune defense against pathogen infection in vertebrates. However, the function of CTSB within the innate immune system of invertebrates, particularly in marine echinoderms, has been poorly documented. In this study, the immune function of CTSB in Apostichopus japonicus (designated as AjCTSB), a commercially important and disease vulnerable aquaculture specie, was investigated by integrated molecular and protein approaches. A 2153 bp cDNA representing the full-length of AjCTSB was cloned via overlapping ESTs and RACE fragments. AjCTSB contained an open reading frame of 999 bp encoding a secreted protein of 332 amino acid residues with a predicted molecular mass of 36.8 kDa. The deduced amino acid of AjCTSB shared a typical activity center containing three conserved amino acid residues (Cys108, His277 and Asn297). Phylogenetic tree analysis also supported that AjCTSB was a new member of CTSB family with clustering firstly with invertebrate CTSBs. Quantitative real time PCR analysis revealed that AjCTSB was ubiquitously expressed in all examined tissues with the highest levels in intestine. The Vibrio splendidus challenged sea cucumber and LPS-exposed coelomocytes could both significantly boost the expression of AjCTSB. Moreover, the purified recombinant AjCTSB exhibited dose-dependent CTSB activities at the concentration ranged from 0 to 0.24 µg µL-1. Further functional analysis indicated that coelomocytes apoptosis was significantly inhibited by 0.16-fold in vivo and the apoptosis execution Ajcaspase 3 was extremely reduced in Apostichopus japonicus coelomocytes treated with specific AjCTSB siRNA. Collectively, all these results suggested that AjCTSB was an important immune factor and might be served as apoptosis enhancers in pathogen challenged sea cucumber.


Assuntos
Catepsina B/genética , Catepsina B/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , Stichopus/genética , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Catepsina B/química , Catepsina B/imunologia , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Lipopolissacarídeos/farmacologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Stichopus/microbiologia , Vibrio/fisiologia
18.
Fish Shellfish Immunol ; 55: 203-11, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27245866

RESUMO

The caspase family representing aspartate-specific cysteine proteases have been demonstrated to possess key roles in apoptosis and immune response. We previously demonstrated that LPS challenged Apostichopus japonicus coelomocyte could significantly induced apoptosis in vitro. However, apoptosis related molecules were scarcely investigated in this economic species. In the present work, we cloned and characterized four members caspase family from A. japonicus (designated as Ajcaspase-2, Ajcaspase-3, Ajcaspase-6, and Ajcaspase-8, respectively) by RACE. Multiple sequence alignment and structural analysis revealed that all Ajcaspases contained the conservative CASC domain at C terminal, in which some unique features for each Ajcaspase made them different from each other. These specific domains together with phylogenetic analysis supported that all these four identified proteins belonged to novel members of apoptotic signaling pathway in sea cucumber. Tissue distribution analysis revealed that four Ajcaspase genes were constitutively expressed in all examined tissues. The expression of Ajcaspase-2 was tightly correlated with that of Ajcaspase-8 in each detected tissues. Ajcaspase-3 and Ajcaspase-6 transcripts were both highly expressed in immune tissue of coelomocytes. Furthermore, the Vibrio splendidus challenged sea cucumber coelomocytes could significantly up-regulate the mRNA expressions of four genes. The expression levels of Ajcaspase-2 and Ajcaspase-8 were relative earlier than those of Ajcaspase-6 and Ajcaspase-3, respectively, which could be inferred that Ajcapase-2 might directly modulate Ajcaspase-6, and Ajcaspase-8 initiate the expression of Ajcaspase-3. The induce expressions differed among each Ajcaspase depending upon their roles such as initiator or effector caspase. All our results demonstrated that four Ajcaspases present diversified functions in apoptotic cascade signaling pathway of sea cucumber under immune response.


Assuntos
Caspases/genética , Caspases/metabolismo , Imunidade Inata/genética , Transdução de Sinais , Stichopus/enzimologia , Stichopus/genética , Sequência de Aminoácidos , Animais , Apoptose , Caspases/química , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência/veterinária , Stichopus/imunologia , Stichopus/microbiologia , Regulação para Cima , Vibrio/fisiologia
19.
Fish Shellfish Immunol ; 54: 211-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27079426

RESUMO

The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P < 0.05), indicating the positive effects of n-3 HUFAs on the growth of sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity.


Assuntos
Antioxidantes , Ácidos Graxos Ômega-3/administração & dosagem , Imunidade Inata , Stichopus/genética , Stichopus/imunologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Catalase/genética , Catalase/metabolismo , Dieta , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Muramidase/genética , Muramidase/metabolismo , Stichopus/microbiologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
20.
Fish Shellfish Immunol ; 54: 302-11, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27108378

RESUMO

In the present study, we isolated 3 bacteriophages with the ability to control Vibrio splendidus, a bacterium known to cause disease in the juvenile sea cucumber. These bacteriophages were designated as vB_VspS_VS-ABTNL-1 (PVS-1), vB_VspS_VS-ABTNL-2 (PVS-2) and vB_VspS_VS-ABTNL-3 (PVS-3). The ability of the 3 phages to inhibit the growth of V. splendidus VS-ABTNL was tested in vitro using each of the 3 phages individually or in the form of a cocktail of all 3 phages in the proportion of 1:1:1. All treated cultures produced a significant (P < 0.05) inhibition of growth of V. splendidus VS-ABTNL compared with untreated V. splendidus VS-ABTNL with the cocktail being superior to any of the 3 phages used individually. The lytic capability of the 3 phages was subsequently determined with a Spot Assay Technique performed with 4 isolates of V. splendidus, 3 other Vibrio species and 2 environmental isolates. Both PVS-1 and PVS-2 were lytic to all 4 isolates of V. splendidus while PVS-3 only inhibited the growth of 3 of them. V. splendidus VS-ABTNL was more susceptible to phage PVS-2 than the other 2 phages. In an in vivo performance trial, 360 sea cucumbers (23 ± 2 g) were randomly assigned to 1 of 6 treatments. Each treatment was housed in 3 PVC tanks (38 cm × 54 cm × 80 cm) with 20 sea cucumbers per tank. Six diets were prepared including an unsupplemented control diet, antibiotic treatment diet, 3 diets containing 1 of the 3 phages individually and a diet containing a cocktail of all 3 phages. After 60 days of feeding, all sea cucumber were challenged with V. splendidus VS-ABTNL by immersion in sea water containing a bacterial concentration of 6 × 10(6) CFU/mL for 2 days. The survival rate of sea cucumbers during the next 10 days was 18% for the unsupplemented diet, 82% for the antibiotic treatment, 82% for the phage cocktail, 65% for phage PVS-1, 58% for phage PVS-2 and 50% for phage PVS-3. There were no significant differences in weight gain, ingestion rate or feed conversion among sea cucumber fed the 4 phage treatments compared with those fed the unsupplemented diet (P > 0.05). The levels of nitric oxide synthase and acid phosphatase of sea cucumbers fed phage-containing diets were significantly (P < 0.05) increased compared with those fed the control diet. However, no significant differences (P > 0.05) were detected among the 4 phage-fed treatments. An additional study was conducted in which 60 healthy sea cucumbers (23 ± 2 g) were randomly assigned to a control, an untreated group and a test group to investigate the effects of injecting phages by coelomic injection on the survival rate and enzyme activities in the coelomic fluid of the sea cucumbers. The control was injected with 1 ml of sterilized seawater while the untreated group and the test group were injected with the same volume of V. splendidus-ABTNL culture (3 × 10(5) CFU/mL). Then, the test group was injected with 1 ml of the 3 phage cocktail (MOI = 10). After 48 h, the activities of lysozyme, acid phosphatase and superoxide dismutase were elevated in the untreated group while the levels of these enzymes in the test group were similar to the blank control. After 10-day observation, the survival rate of the sea cucumber was 100% for the blank control, 80% for the test group and 20% for the negative control. The overall results of this experiment indicate that phage therapy increased the survival of sea cucumber infected with V. splendidus VS-ABTNL. The above results demonstrate that using phages, especially a combination of different phages, may be a feasible way to control Vibrio infection in the sea cucumber industry.


Assuntos
Bacteriófagos/fisiologia , Imunidade Inata , Stichopus/imunologia , Stichopus/microbiologia , Vibrio/fisiologia , Vibrio/virologia , Ração Animal/análise , Animais , Aquicultura , Dieta , Suplementos Nutricionais/análise , Distribuição Aleatória , Stichopus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA