Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Microbiol Spectr ; 12(6): e0051724, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687019

RESUMO

There is a growing interest in the use of probiotic bacteria as biosensors for the detection of disease. However, there is a lack of bacterial receptors developed for specific disease biomarkers. Here, we have investigated the use of the peptide-regulated transcription factor ComR from Streptococcus spp. for specific peptide biomarker detection. ComR exhibits a number of attractive features that are potentially exploitable to create a biomolecular switch for engineered biosensor circuitry within the probiotic organism Lactiplantibacillus plantarum WCFS1. Through iterative design-build-test cycles, we developed a genomically integrated, ComR-based biosensor circuit that allowed WCFS1 to detect low nanomolar concentrations of ComR's cognate peptide XIP. By screening a library of ComR proteins with mutant residues substituted at the K100 position, we identified mutations that increased the specificity of ComR toward an amidated version of its cognate peptide, demonstrating the potential for ComR to detect this important class of biomarker.IMPORTANCEUsing bacteria to detect disease is an exciting possibility under active study. Detecting extracellular peptides with specific amino acid sequences would be particularly useful as these are important markers of health and disease (biomarkers). In this work, we show that a probiotic bacteria (Lactiplantibacillus plantarum) can be genetically engineered to detect specific extracellular peptides using the protein ComR from Streptococcus bacteria. In its natural form, ComR allowed the probiotic bacteria to detect a specific peptide, XIP. We then modified XIP to be more like the peptide biomarkers found in humans and engineered ComR so that it activated with this modified XIP and not the original XIP. This newly engineered ComR also worked in the probiotic bacteria, as expected. This suggests that with additional engineering, ComR might be able to activate with human peptide biomarkers and be used by genetically engineered probiotic bacteria to better detect disease.


Assuntos
Proteínas de Bactérias , Peptídeos , Fatores de Transcrição , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peptídeos/metabolismo , Peptídeos/genética , Probióticos/metabolismo , Mutação , Técnicas Biossensoriais , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptococcus/genética , Streptococcus/metabolismo
2.
Mol Microbiol ; 120(6): 791-804, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37898560

RESUMO

Cyclic dimeric adenosine monophosphate (c-di-AMP) has been well studied in bacteria, including those of the genus Streptococcus, since the first recognition of this dinucleotide in 2008. Streptococci possess a sole diadenylate cyclase, CdaA, and distinct c-di-AMP phosphodiesterases. Interestingly, cdaA is required for viability of some streptococcal species but not all when streptococci are grown in standard laboratory media. Bacteria of this genus also have distinct c-di-AMP effector proteins, diverse c-di-AMP-signaling pathways, and subsequent biological outcomes. In streptococci, c-di-AMP may influence bacterial growth, morphology, biofilm formation, competence program, drug resistance, and bacterial pathogenesis. c-di-AMP secreted by streptococci has also been shown to interact with the mammalian host and induces immune responses including type I interferon production. In this review, we summarize the reported c-di-AMP networks in seven species of the genus Streptococcus, which cause diverse clinical manifestations, and propose future perspectives to investigate the signaling molecule in these streptococcal pathogens.


Assuntos
Proteínas de Bactérias , Sistemas do Segundo Mensageiro , Animais , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , AMP Cíclico/metabolismo , Bactérias/metabolismo , Streptococcus/metabolismo , Mamíferos/metabolismo
3.
Microb Pathog ; 185: 106393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852550

RESUMO

Cow mastitis, caused by Streptococcus infection of the mammary glands, is a common clinical disease that can lead to decreased milk quality and threaten animal welfare and performance. Esculetin (ESC) is a coumarin with anti-inflammatory and anti-asthmatic effects. However, whether ESC has therapeutic effects on mastitis remains unexplored. This study was conducted to investigate the protective effect of ESC against murine mastitis caused by Streptococcus isolated from bovine mammary glands and elucidate the underlying mechanisms. Streptococcus uberis was used to construct a mouse model of mastitis. The results showed that the mice exhibited edema and thickening of the acinar wall with inflammatory infiltration after S. uberis treatment. Intraperitoneal injection of ESC significantly reduced inflammatory cell infiltration, restored normal physiological function, and inhibited the production of the inflammatory cytokines interleukin-1ß, interleukin-6, and tumor necrosis factor-α. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot analysis revealed that ESC reduced P38 phosphorylation, further inhibited the influence of mammary Streptococcus on cytoplasmic translocation of nuclear factor-κB (P65), and inhibited the transcriptional activation of P65, thus inhibiting the generation of inflammatory cells. Collectively, ESC may inhibit mitogen-activated protein kinase and nuclear factor-κB, thereby highlighting its potential for the treatment and prevention of mastitis.


Assuntos
Mastite Bovina , NF-kappa B , Humanos , Feminino , Bovinos , Animais , Camundongos , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Streptococcus/metabolismo , Glândulas Mamárias Animais , Lipopolissacarídeos/farmacologia , Mastite Bovina/patologia
4.
J Bacteriol ; 205(6): e0008923, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37195233

RESUMO

The ability to take up and incorporate foreign DNA via natural transformation is a well-known characteristic of some species of Streptococcus, and is a mechanism that rapidly allows for the acquisition of antibacterial resistance. Here, we describe that the understudied species Streptococcus ferus is also capable of natural transformation and uses a system analogous to that identified in Streptococcus mutans. S. mutans natural transformation is under the control of the alternative sigma factor sigX (also known as comX), whose expression is induced by two types of peptide signals: CSP (competence stimulating peptide, encoded by comC) and XIP (sigX-inducing peptide, encoded by comS). These systems induce competence via either the two-component signal-transduction system ComDE or the RRNPP transcriptional regulator ComR, respectively. Protein and nucleotide homology searches identified putative orthologs of comRS and sigX in S. ferus, but not homologs of S. mutans blpRH (also known as comDE). We demonstrate that natural transformation in S. ferus is induced by a small, double-tryptophan containing sigX-inducing peptide (XIP), akin to that of S. mutans, and requires the presence of the comR and sigX orthologs for efficient transformation. Additionally, we find that natural transformation is induced in S. ferus by both the native XIP and the XIP variant of S. mutans, implying that cross talk between the two species is possible. This process has been harnessed to construct gene deletions in S. ferus and provides a method to genetically manipulate this understudied species. IMPORTANCE Natural transformation is the process by which bacteria take up DNA and allows for acquisition of new genetic traits, including those involved in antibiotic resistance. This study demonstrates that the understudied species Streptococcus ferus is capable of natural transformation using a peptide-pheromone system like that previously identified in Streptococcus mutans and provides a framework for future studies concerning this organism.


Assuntos
Proteínas de Bactérias , Streptococcus mutans , Streptococcus mutans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptococcus/genética , Streptococcus/metabolismo , Peptídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Competência de Transformação por DNA
5.
Methods Mol Biol ; 2588: 201-216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36418690

RESUMO

Selective markers employed in classical mutagenesis methods using natural genetic transformation can affect gene expression, risk phenotypic effects, and accumulate as unwanted genes during successive mutagenesis cycles. In this chapter, we present a protocol for markerless genome editing in Streptococcus mutans and Streptococcus pneumoniae achieved with an efficient method for natural transformation. High yields of transformants are obtained by combining the unimodal state of competence developed after treatment of S. mutans with sigX-inducing peptide pheromone (XIP) in a chemically defined medium (CDM) or of S. pneumoniae with the competence-stimulating peptide (CSP) together with use of a donor amplicon carrying extensive flanking homology. This combination ensures efficient and precise integration of a new allele by the recombination machinery present in competent cells.


Assuntos
Proteínas de Bactérias , Edição de Genes , Proteínas de Bactérias/metabolismo , Streptococcus/genética , Streptococcus/metabolismo , Streptococcus mutans/genética , Peptídeos/metabolismo
6.
Nat Chem Biol ; 18(10): 1135-1143, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35953547

RESUMO

Microbial natural products comprise diverse architectures that are generated by equally diverse biosynthetic strategies. In peptide natural products, amino acid sidechains are frequently used as sites of modification to generate macrocyclic motifs. Backbone amide groups, among the most stable of biological moieties, are rarely used for this purpose. Here we report the discovery and biosynthesis of bicyclostreptins-peptide natural products from Streptococcus spp. with an unprecedented structural motif consisting of a macrocyclic ß-ether and a heterocyclic sp3-sp3 linkage between a backbone amide nitrogen and an adjacent α-carbon. Both reactions are installed, in that order, by two radical S-adenosylmethionine (RaS) metalloenzymes. Bicyclostreptins are produced at nM concentrations and are potent growth regulation agents in Streptococcus thermophilus. Our results add a distinct and unusual chemotype to the growing family of ribosomal peptide natural products, expand the already impressive catalytic scope of RaS enzymes, and provide avenues for further biological studies in human-associated streptococci.


Assuntos
Produtos Biológicos , Metaloproteínas , Amidas , Proteínas de Bactérias/metabolismo , Produtos Biológicos/metabolismo , Carbono , Ciclização , Éteres , Humanos , Metaloproteínas/metabolismo , Nitrogênio , Peptídeos/química , S-Adenosilmetionina/metabolismo , Streptococcus/metabolismo
7.
Sci Rep ; 12(1): 656, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027607

RESUMO

In periodontal health, oral streptococci constitute up to 80% of the plaque biofilm. Yet, destructive inflammatory events of the periodontium are rare. This observation suggests that oral streptococci may possess mechanisms to co-exist with the host. However, the mechanisms employed by oral streptococci to modulate the innate immune response have not been well studied. One of the key virulence factors produced by oral streptococci is hydrogen peroxide (H2O2). In mammalian cells, H2O2 triggers the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key pathway mediating antioxidant defence. This study aimed to determine (1) if H2O2 producing oral streptococci activated the Nrf2 pathway in macrophages, and (2) if the activation of Nrf2 influenced the innate immune response. We found that oral streptococci downregulated the innate immune response in a H2O2 dependent manner through the activation of the Nrf2. The activation of the Nrf2 signalling pathway led to the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFĸB), the key transcription factor regulating pro-inflammatory response. This study showed for the first time that oral streptococci are unlikely passive bystanders but could play an active role in the maintenance of periodontal health by preventing overt inflammation.


Assuntos
Peróxido de Hidrogênio/metabolismo , Imunidade Inata , Mucosa Bucal/microbiologia , Periodonto/microbiologia , Streptococcus/metabolismo , Streptococcus/fisiologia , Animais , Humanos , Inflamação/prevenção & controle , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais
8.
Microbiol Spectr ; 9(2): e0116721, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704809

RESUMO

When encountering oxidative stress, organisms selectively upregulate antioxidant genes and simultaneously suppress the translation of most other proteins. Eukaryotes employ multiple strategies to adjust translation at both the initiation and elongation stages; however, how prokaryotes modulate translation under oxidative stress remains unclear. Here, we report that upon hydrogen peroxide (H2O2) challenge, Streptococcus oligofermentans reduced translation via RNase Z (So-RNaseZ) oxidative degradation, thus hindering tRNA maturation. S. oligofermentans encodes all CCA-less tRNAs that require So-RNaseZ for 3' end maturation. A combination of nonreducing SDS-PAGE and liquid chromatography/tandem mass spectrometry (LC/MS-MS) assays demonstrated that H2O2 oxidation induced Cys38-Cys149 disulfide linkages in recombinant So-RNaseZ protein, and serine substitution of Cys38 or Cys149 abolished these disulfide linkages. Consistently, redox Western blotting also determined intramolecular disulfide-linked So-RNaseZ in H2O2-treated S. oligofermentans cells. The disulfide-linked So-RNaseZ and monomer were both subject to proteolysis, whereas C149S mutation alleviated oxidative degradation of So-RNaseZ, suggesting that H2O2-mediated disulfide linkages substantially contributed to So-RNaseZ degradation. Accordingly, Northern blotting determined that tRNA precursor accumulation and mature tRNA species decrease in H2O2-treated S. oligofermentans. Moreover, reduced overall protein synthesis, as indicated by puromycin incorporation, and retarded growth of S. oligofermentans occurred in an H2O2 concentration-dependent manner. Overexpression of So-RNaseZ not only elevated tRNA precursor processing and protein synthesis but also partly rescued H2O2-suppressed S. oligofermentans growth. Moreover, So-RNaseZ oxidative degradation-mediated translation repression elevated S. oligofermentans survival under high H2O2 stress. Therefore, this work found that So-RNaseZ oxidative degradation-impeded tRNA maturation contributes to streptococcal translation repression and provides the oxidative stress adaptability for S. oligofermentans. IMPORTANCE Translation regulation is a common strategy used by organisms to reduce oxidative damage. Catalase-negative streptococci produce as well as tolerate high levels of H2O2. This work reports a novel translation regulation mechanism employed by Streptococcus oligofermentans in response to H2O2 challenge, in which the key tRNA endonuclease So-RNaseZ is oxidized to form Cys38-Cys149 disulfide linkages and both the disulfide-linked So-RNaseZ and monomers are subject to proteolysis; thus, tRNA maturation, protein translation, and growth are all suppressed. Notably, So-RNaseZ oxidative degradation-mediated translation repression offers oxidative adaptability to S. oligofermentans and enhances its survival against high H2O2 challenge. So-RNaseZ orthologs and H2O2-sensitive cysteines (Cys38 and Cys149) are widely distributed in Streptococcus and Lactococcus species genomes, which also encode all CCA-less tRNAs and lack catalase. Therefore, RNase Z oxidative degradation-based translation regulation could be widely employed by these lactic acid bacteria, including pathogenic streptococci, to cope with H2O2.


Assuntos
Endorribonucleases/metabolismo , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/genética , Biossíntese de Proteínas/genética , RNA de Transferência/biossíntese , Streptococcus/metabolismo , Antioxidantes/metabolismo , Dissulfetos/química , Regulação Bacteriana da Expressão Gênica/genética , RNA de Transferência/genética , Streptococcus/genética , Streptococcus/crescimento & desenvolvimento
9.
Mol Pharm ; 18(1): 328-337, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33259222

RESUMO

Albumin-binding fusion partners are frequently used as a means for the in vivo half-life extension of small therapeutic molecules that would normally be cleared very rapidly from circulation. However, in applications where small size is key, fusion to an additional molecule can be disadvantageous. Albumin-derived affinity proteins (ADAPTs) are a new type of scaffold proteins based on one of the albumin-binding domains of streptococcal protein G, with engineered binding specificities against numerous targets. Here, we engineered this scaffold further and showed that this domain, as small as 6 kDa, can harbor two distinct binding surfaces and utilize them to interact with two targets simultaneously. These novel ADAPTs were developed to possess affinity toward both serum albumin as well as another clinically relevant target, thus circumventing the need for an albumin-binding fusion partner. To accomplish this, we designed a phage display library and used it to successfully select for single-domain bispecific binders toward a panel of targets: TNFα, prostate-specific antigen (PSA), C-reactive protein (CRP), renin, angiogenin, myeloid-derived growth factor (MYDGF), and insulin. Apart from successfully identifying bispecific binders for all targets, we also demonstrated the formation of the ternary complex consisting of the ADAPT together with albumin and each of the five targets, TNFα, PSA, angiogenin, MYDGF, and insulin. This simultaneous binding of albumin and other targets presents an opportunity to combine the advantages of small molecules with those of larger ones allowing for lower cost of goods and noninvasive administration routes while still maintaining a sufficient in vivo half-life.


Assuntos
Proteínas Recombinantes de Fusão/metabolismo , Albumina Sérica/metabolismo , Proteínas de Bactérias/metabolismo , Meia-Vida , Expectativa de Vida , Ligação Proteica/fisiologia , Streptococcus/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
PLoS One ; 15(11): e0242158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170886

RESUMO

Calcium salts of long-chain fatty acids (CSFA) from linseed oil have the potential to reduce methane (CH4) production from ruminants; however, there is little information on the effect of supplementary CSFA on rumen microbiome as well as CH4 production. The aim of the present study was to evaluate the effects of supplementary CSFA on ruminal fermentation, digestibility, CH4 production, and rumen microbiome in vitro. We compared five treatments: three CSFA concentrations-0% (CON), 2.25% (FAL) and 4.50% (FAH) on a dry matter (DM) basis-15 mM of fumarate (FUM), and 20 mg/kg DM of monensin (MON). The results showed that the proportions of propionate in FAL, FAH, FUM, and MON were increased, compared with CON (P < 0.05). Although DM and neutral detergent fiber expressed exclusive of residual ash (NDFom) digestibility decreased in FAL and FAH compared to those in CON (P < 0.05), DM digestibility-adjusted CH4 production in FAL and FAH was reduced by 38.2% and 63.0%, respectively, compared with that in CON (P < 0.05). The genera Ruminobacter, Succinivibrio, Succiniclasticum, Streptococcus, Selenomonas.1, and Megasphaera, which are related to propionate production, were increased (P < 0.05), while Methanobrevibacter and protozoa counts, which are associated with CH4 production, were decreased in FAH, compared with CON (P < 0.05). The results suggested that the inclusion of CSFA significantly changed the rumen microbiome, leading to the acceleration of propionate production and the reduction of CH4 production. In conclusion, although further in vivo study is needed to evaluate the reduction effect on rumen CH4 production, CSFA may be a promising candidate for reduction of CH4 emission from ruminants.


Assuntos
Cálcio/química , Ácidos Graxos/química , Óleo de Semente do Linho/química , Metano/química , Microbiota , Rúmen/microbiologia , Sais/química , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Análise por Conglomerados , DNA Bacteriano/metabolismo , Detergentes , Digestão , Fermentação , Fumaratos/química , Gases , Técnicas In Vitro , Megasphaera/metabolismo , Monensin/química , RNA Ribossômico 16S/metabolismo , Selenomonas/metabolismo , Ovinos , Silagem/análise , Streptococcus/metabolismo
11.
Microbiol Immunol ; 64(11): 719-729, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918493

RESUMO

Abiotrophia defectiva is a species of nutritionally variant streptococci that is found in human saliva and dental plaques and that has been associated with infective endocarditis. In our previous study, it was found that A. defectiva could bind specifically to saliva-coated hydroxyapatite beads (SHA). This study identified a cell surface component of A. defectiva that promotes adherence to SHA beads. The binding of A. defectiva to SHA was reduced in the presence of antibodies against human proline-rich protein (PRP); these results suggested that PRP may be a critical component mediating interactions between A. defectiva and the salivary pellicle. Two-dimensional gel electrophoresis of whole A. defectiva cells followed by Far-Western blotting was conducted by probing with synthetic peptides analogous to the binding region of PRP known as PRP-C. The results indicate that an A. defectiva protein of 37 kDa interacts with PRP-C. The results of amino-terminal sequencing of the adhesive A. defectiva protein revealed significant similarity to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Recombinant GAPDH bound to immobilized PRP-C in a dose-dependent manner and binding of A. defectiva to SHA or to PRP was reduced in the presence of anti-GAPDH antiserum. Western blotting or electron immunomicroscopic observations with anti-GAPDH antiserum revealed that this protein was expressed in both cytosolic and cell wall fractions. These results suggest that A. defectiva could specifically bind to PRP via interactions with cell surface GAPDH; the findings suggest a mechanism underlying A. defectiva-mediated adherence to saliva-coated tooth surfaces.


Assuntos
Abiotrophia/metabolismo , Aderência Bacteriana , Durapatita/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Saliva/microbiologia , Proteínas Salivares Ricas em Prolina/metabolismo , Abiotrophia/genética , Sequência de Aminoácidos , Escherichia coli/genética , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Peptídeos , Prolina , Streptococcus/metabolismo
12.
Bull Exp Biol Med ; 169(4): 478-482, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32915361

RESUMO

Many streptococcal strains bind to two main human blood plasma proteins: IgG and human serum albumin (HSA). Protein G expressed in group C and G streptococci has specific binding regions for these proteins. Protein G in group G streptococcal strains also contains a region binding another human plasma protein, α2-macroglobulin (α2-М), upstream to the HSA-binding domain. Two recombinant polypeptides GM and GM1 capable of binding to α2-М were obtained using the G4223 strain of a group G Streptococcus, protein G molecule of which interacts with three human blood serum proteins (IgG, HSA, and α2-М). However, polypeptide GM containing three IgG-binding and three HSA-bindings domains and the region binding α2-М has higher molecular mass and higher affinity to α2-М than polypeptide GM1 that includes only the α2-М binding region.


Assuntos
Proteínas de Bactérias/metabolismo , Imunoglobulina G/metabolismo , Peptídeos/metabolismo , alfa 2-Macroglobulinas Associadas à Gravidez/metabolismo , Albumina Sérica Humana/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Imunoglobulina G/genética , Peptídeos/genética , Gravidez , alfa 2-Macroglobulinas Associadas à Gravidez/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Albumina Sérica Humana/genética , Streptococcus/genética , Streptococcus/metabolismo
13.
Microbiome ; 8(1): 74, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466801

RESUMO

BACKGROUND: Gut microbiome alterations are closely related to human health and linked to a variety of diseases. Although great efforts have been made to understand the risk factors for multiple myeloma (MM), little is known about the role of the gut microbiome and alterations of its metabolic functions in the development of MM. RESULTS: Here, in a cohort of newly diagnosed patients with MM and healthy controls (HCs), significant differences in metagenomic composition were discovered, for the first time, with higher bacterial diversity in MM. Specifically, nitrogen-recycling bacteria such as Klebsiella and Streptococcus were significantly enriched in MM. Also, the bacteria enriched in MM were significantly correlated with the host metabolome, suggesting strong metabolic interactions between microbes and the host. In addition, the MM-enriched bacteria likely result from the regulation of urea nitrogen accumulated during MM progression. Furthermore, by performing fecal microbiota transplantation (FMT) into 5TGM1 mice, we proposed a mechanistic explanation for the interaction between MM-enriched bacteria and MM progression via recycling urea nitrogen. Further experiments validated that Klebsiella pneumoniae promoted MM progression via de novo synthesis of glutamine in mice and that the mice fed with glutamine-deficient diet exhibited slower MM progression. CONCLUSIONS: Overall, our findings unveil a novel function of the altered gut microbiome in accelerating the malignant progression of MM and open new avenues for novel treatment strategies via manipulation of the intestinal microbiota of MM patients. Video abstract.


Assuntos
Biodiversidade , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Mieloma Múltiplo , Animais , Bactérias/genética , China , Progressão da Doença , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal/genética , Glutamina/metabolismo , Humanos , Klebsiella/fisiologia , Metagenoma , Camundongos , Mieloma Múltiplo/microbiologia , Mieloma Múltiplo/terapia , Streptococcus/metabolismo
14.
Cells ; 9(2)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098158

RESUMO

Mastitis caused by Streptococcus uberis (S. uberis) is a common and difficult-to-cure clinical disease in dairy cows. In this study, the role of Toll-like receptors (TLRs) and TLR-mediated signaling pathways in mastitis caused by S. uberis was investigated using mouse models and mammary epithelial cells (MECs). We used S. uberis to infect mammary glands of wild type, TLR2-/- and TLR4-/- mice and quantified the adaptor molecules in TLR signaling pathways, proinflammatory cytokines, tissue damage, and bacterial count. When compared with TLR4 deficiency, TLR2 deficiency induced more severe pathological changes through myeloid differentiation primary response 88 (MyD88)-mediated signaling pathways during S. uberis infection. In MECs, TLR2 detected S. uberis infection and induced mitochondrial reactive oxygen species (mROS) to assist host in controlling the secretion of inflammatory factors and the elimination of intracellular S. uberis. Our results demonstrated that TLR2-mediated mROS has a significant effect on S. uberis-induced host defense responses in mammary glands as well as in MECs.


Assuntos
Mastite/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Masculino , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , Mastite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Organismos Livres de Patógenos Específicos , Infecções Estreptocócicas/microbiologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
15.
Gut ; 69(8): 1404-1415, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31953253

RESUMO

OBJECTIVE: Recent evidence points to the gut microbiome's involvement in postoperative outcomes, including after gastrectomy. Here, we investigated the influence of gastrectomy for gastric cancer on the gut microbiome and metabolome, and how it related to postgastrectomy conditions. DESIGN: We performed shotgun metagenomics sequencing and capillary electrophoresis time-of-flight mass spectrometry-based metabolomics analyses on faecal samples collected from participants with a history of gastrectomy for gastric cancer (n=50) and compared them with control participants (n=56). RESULTS: The gut microbiota in the gastrectomy group showed higher species diversity and richness (p<0.05), together with greater abundance of aerobes, facultative anaerobes and oral microbes. Moreover, bile acids such as genotoxic deoxycholic acid and branched-chain amino acids were differentially abundant between the two groups (linear discriminant analysis (LDA) effect size (LEfSe): p<0.05, q<0.1, LDA>2.0), as were also Kyoto Encyclopedia of Genes and Genomes modules involved in nutrient transport and organic compounds biosynthesis (LEfSe: p<0.05, q<0.1, LDA>2.0). CONCLUSION: Our results reveal alterations of gut microbiota after gastrectomy, suggesting its association with postoperative comorbidities. The multi-omic approach applied in this study could complement the follow-up of patients after gastrectomy.


Assuntos
Bacteroidetes/metabolismo , Ácidos e Sais Biliares/metabolismo , Fezes/química , Fezes/microbiologia , Firmicutes/metabolismo , Gastrectomia , Neoplasias Gástricas/cirurgia , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Idoso , Aminoácidos de Cadeia Ramificada/metabolismo , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bacteroidetes/isolamento & purificação , Bifidobacterium/isolamento & purificação , Bifidobacterium/metabolismo , Estudos de Casos e Controles , Clostridiales/isolamento & purificação , Clostridiales/metabolismo , Ácido Desoxicólico/metabolismo , Feminino , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal , Humanos , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Masculino , Metaboloma , Metagenômica , Pessoa de Meia-Idade , Prevotella/isolamento & purificação , Prevotella/metabolismo , Análise de Sequência de DNA , Streptococcus/isolamento & purificação , Streptococcus/metabolismo , Veillonella/isolamento & purificação , Veillonella/metabolismo
16.
Methods Mol Biol ; 2059: 299-313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31435929

RESUMO

The construction protocol of bio-nanocapsule (BNC)-based nanocarriers, named GL-BNC and GL-virosome, for targeted drug delivery to macrophages is described here. First, genes encoding the Streptococcus sp. protein G-derived C2 domain (binds to IgG Fc) and Finegoldia magna protein L-derived B1 domain (binds to Igκ light chain) are prepared by PCR amplification. Subsequently, the genes encoding hepatic cell-specific binding domain of hepatitis B virus envelope L protein are replaced by these PCR products. The expression plasmid for this fused gene (encoding GL-fused L protein) can be used to transform Saccharomyces cerevisiae AH22R- cells. To obtain GL-BNC, the transformed yeast cells are disrupted with glass beads, treated with heat, and then subjected to IgG affinity column chromatography followed by size exclusion column chromatography. In addition, GL-BNCs can be fused with liposomes to form GL-virosome. The targeted delivery of GL-BNC and GL-virosome to macrophages can be confirmed by in vitro phagocytosis assays using the murine macrophage cell line RAW264.7.


Assuntos
Portadores de Fármacos/química , Macrófagos/efeitos dos fármacos , Nanocápsulas/química , Saccharomyces cerevisiae/metabolismo , Proteínas do Envelope Viral/química , Animais , Cromatografia de Afinidade , Portadores de Fármacos/administração & dosagem , Firmicutes/química , Firmicutes/genética , Firmicutes/metabolismo , Lipossomos/química , Macrófagos/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Fagocitose , Reação em Cadeia da Polimerase , Domínios Proteicos/genética , Células RAW 264.7 , Proteínas Recombinantes/genética , Streptococcus/química , Streptococcus/genética , Streptococcus/metabolismo , Proteínas do Envelope Viral/genética , Fluxo de Trabalho
17.
Elife ; 82019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31596237

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an indispensable cofactor in all domains of life, and its homeostasis must be regulated tightly. Here we report that a Nudix-related transcriptional factor, designated MsNrtR (MSMEG_3198), controls the de novo pathway of NAD+biosynthesis in M. smegmatis, a non-tuberculosis Mycobacterium. The integrated evidence in vitro and in vivo confirms that MsNrtR is an auto-repressor, which negatively controls the de novo NAD+biosynthetic pathway. Binding of MsNrtR cognate DNA is finely mapped, and can be disrupted by an ADP-ribose intermediate. Unexpectedly, we discover that the acetylation of MsNrtR at Lysine 134 participates in the homeostasis of intra-cellular NAD+ level in M. smegmatis. Furthermore, we demonstrate that NrtR acetylation proceeds via the non-enzymatic acetyl-phosphate (AcP) route rather than by the enzymatic Pat/CobB pathway. In addition, the acetylation also occurs on the paralogs of NrtR in the Gram-positive bacterium Streptococcus and the Gram-negative bacterium Vibrio, suggesting that these proteins have a common mechanism of post-translational modification in the context of NAD+ homeostasis. Together, these findings provide a first paradigm for the recruitment of acetylated NrtR to regulate bacterial central NAD+ metabolism.


Assuntos
Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , NAD/biossíntese , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Acetilação , Adenosina Difosfato Ribose/metabolismo , DNA Bacteriano/metabolismo , Homeostase , Ligação Proteica , Streptococcus/genética , Streptococcus/metabolismo , Vibrio/genética
18.
Nat Commun ; 10(1): 3846, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451691

RESUMO

Necrotizing soft tissue infections (NSTIs) are devastating infections caused by either a single pathogen, predominantly Streptococcus pyogenes, or by multiple bacterial species. A better understanding of the pathogenic mechanisms underlying these different NSTI types could facilitate faster diagnostic and more effective therapeutic strategies. Here, we integrate microbial community profiling with host and pathogen(s) transcriptional analysis in patient biopsies to dissect the pathophysiology of streptococcal and polymicrobial NSTIs. We observe that the pathogenicity of polymicrobial communities is mediated by synergistic interactions between community members, fueling a cycle of bacterial colonization and inflammatory tissue destruction. In S. pyogenes NSTIs, expression of specialized virulence factors underlies infection pathophysiology. Furthermore, we identify a strong interferon-related response specific to S. pyogenes NSTIs that could be exploited as a potential diagnostic biomarker. Our study provides insights into the pathophysiology of mono- and polymicrobial NSTIs and highlights the potential of host-derived signatures for microbial diagnosis of NSTIs.


Assuntos
Coinfecção/patologia , Infecções dos Tecidos Moles/patologia , Infecções Estreptocócicas/patologia , Fatores de Virulência/metabolismo , Adulto , Idoso , Técnicas de Tipagem Bacteriana , Bacteroides/genética , Bacteroides/isolamento & purificação , Bacteroides/metabolismo , Biópsia , Coinfecção/diagnóstico , Coinfecção/microbiologia , DNA Bacteriano/isolamento & purificação , Escherichia/genética , Escherichia/isolamento & purificação , Escherichia/metabolismo , Feminino , Humanos , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Necrose/diagnóstico , Necrose/microbiologia , Necrose/patologia , RNA Ribossômico 16S/genética , RNA-Seq , Infecções dos Tecidos Moles/diagnóstico , Infecções dos Tecidos Moles/microbiologia , Staphylococcus/genética , Staphylococcus/isolamento & purificação , Staphylococcus/metabolismo , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus/metabolismo , Fatores de Virulência/genética
19.
Sci Rep ; 9(1): 10446, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320675

RESUMO

Acetaldehyde is known to be carcinogenic and produced by oral bacteria. Thus, bacterial acetaldehyde production might contribute to oral cancer. Therefore, we examined bacterial acetaldehyde production from ethanol and glucose under various conditions mimicking the oral cavity and clarified the metabolic pathways responsible for bacterial acetaldehyde production. Streptococcus mitis, S. salivarius, S. mutans, Neisseria mucosa and N. sicca were used. The bacterial metabolism was conducted at pH 5.0-8.0 under aerobic and anaerobic conditions. The production of acetaldehyde and organic acids was measured with gas chromatography and HPLC, respectively. Bacterial enzymes were also assessed. All of the bacteria except for S. mutans exhibited their greatest acetaldehyde production from ethanol at neutral to alkaline pH under aerobic conditions. S. mutans demonstrated the greatest acetaldehyde from glucose under anaerobic conditions, although the level was much lower than that from ethanol. Alcohol dehydrogenase and NADH oxidase were detected in all of the bacteria. This study revealed that oral indigenous bacteria, Streptococcus and Neisseria can produce acetaldehyde, and that such acetaldehyde production is affected by environmental conditions. It was suggested that alcohol dehydrogenase and NADH oxidase are involved in ethanol-derived acetaldehyde production and that the branched-pathway from pyruvate is involved in glucose-derived acetaldehyde production.


Assuntos
Acetaldeído/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Neisseria/metabolismo , Streptococcus/metabolismo , Álcool Desidrogenase/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Neisseria/crescimento & desenvolvimento , Oxigênio/metabolismo , Streptococcus/crescimento & desenvolvimento
20.
Curr Issues Mol Biol ; 32: 521-560, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166179

RESUMO

Streptococci are common human pathogens, colonizing multiple parts of the human body such as the upper respiratory tract, urethra, gastrointestinal tract, and oral cavity. Since they cause a variety of serious infections including heart diseases, meningitis, and oral diseases, streptococci are considered to play an important role in human diseases. Two critical steps in the pathogenesis of streptococcal infection are the adhesion to and invasion of host cells. This invasion is a strategy of streptococci to evade the host immune response and antibiotic therapy, as well as to penetrate to deeper tissues. To establish interaction between bacteria and host cells, adhesion is the initial step. To effectively adhere to host cells, streptococci express multiple adhesins, and the expression of different adhesins may lead to distinct mechanisms of subsequent invasion. The binding of streptococcal molecules to host proteins triggers downstream signal transduction in the host cells, leading to the uptake of bacteria. In this review, we present the adhesion and invasion mechanisms of different streptococci and the interaction with host cells leading to internalization.


Assuntos
Adesinas Bacterianas/genética , Aderência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Infecções Estreptocócicas/microbiologia , Streptococcus/genética , Streptococcus/patogenicidade , Adesinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Citotoxinas/genética , Citotoxinas/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Fibronectinas/genética , Fibronectinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Pulmão/microbiologia , Pulmão/patologia , Boca/microbiologia , Boca/patologia , Ligação Proteica , Transdução de Sinais , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus/crescimento & desenvolvimento , Streptococcus/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA